Properties

Label 231.4.i.a.100.2
Level $231$
Weight $4$
Character 231.100
Analytic conductor $13.629$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [231,4,Mod(67,231)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("231.67"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(231, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6294412113\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 55 x^{14} - 108 x^{13} + 1559 x^{12} - 2354 x^{11} + 27458 x^{10} - 12372 x^{9} + \cdots + 7225344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.2
Root \(2.32362 + 4.02463i\) of defining polynomial
Character \(\chi\) \(=\) 231.100
Dual form 231.4.i.a.67.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.82362 + 3.15860i) q^{2} +(1.50000 + 2.59808i) q^{3} +(-2.65118 - 4.59197i) q^{4} +(1.62425 - 2.81329i) q^{5} -10.9417 q^{6} +(-2.33065 - 18.3730i) q^{7} -9.83896 q^{8} +(-4.50000 + 7.79423i) q^{9} +(5.92404 + 10.2607i) q^{10} +(-5.50000 - 9.52628i) q^{11} +(7.95353 - 13.7759i) q^{12} +40.9617 q^{13} +(62.2833 + 26.1438i) q^{14} +9.74551 q^{15} +(39.1519 - 67.8131i) q^{16} +(-47.6051 - 82.4545i) q^{17} +(-16.4126 - 28.4274i) q^{18} +(41.0011 - 71.0160i) q^{19} -17.2247 q^{20} +(44.2386 - 33.6147i) q^{21} +40.1196 q^{22} +(28.1656 - 48.7843i) q^{23} +(-14.7584 - 25.5624i) q^{24} +(57.2236 + 99.1142i) q^{25} +(-74.6986 + 129.382i) q^{26} -27.0000 q^{27} +(-78.1895 + 59.4124i) q^{28} +12.0038 q^{29} +(-17.7721 + 30.7822i) q^{30} +(-101.602 - 175.980i) q^{31} +(103.441 + 179.164i) q^{32} +(16.5000 - 28.5788i) q^{33} +347.255 q^{34} +(-55.4741 - 23.2856i) q^{35} +47.7212 q^{36} +(74.4813 - 129.005i) q^{37} +(149.541 + 259.012i) q^{38} +(61.4426 + 106.422i) q^{39} +(-15.9809 + 27.6798i) q^{40} -30.5005 q^{41} +(25.5013 + 201.032i) q^{42} +269.054 q^{43} +(-29.1630 + 50.5117i) q^{44} +(14.6183 + 25.3196i) q^{45} +(102.727 + 177.928i) q^{46} +(-94.9465 + 164.452i) q^{47} +234.912 q^{48} +(-332.136 + 85.6421i) q^{49} -417.416 q^{50} +(142.815 - 247.364i) q^{51} +(-108.597 - 188.095i) q^{52} +(226.954 + 393.097i) q^{53} +(49.2377 - 85.2823i) q^{54} -35.7335 q^{55} +(22.9311 + 180.771i) q^{56} +246.007 q^{57} +(-21.8903 + 37.9152i) q^{58} +(188.094 + 325.789i) q^{59} +(-25.8371 - 44.7511i) q^{60} +(119.191 - 206.444i) q^{61} +741.134 q^{62} +(153.691 + 64.5130i) q^{63} -128.115 q^{64} +(66.5322 - 115.237i) q^{65} +(60.1794 + 104.234i) q^{66} +(-173.761 - 300.964i) q^{67} +(-252.419 + 437.203i) q^{68} +168.994 q^{69} +(174.714 - 132.757i) q^{70} -769.107 q^{71} +(44.2753 - 76.6871i) q^{72} +(-300.412 - 520.328i) q^{73} +(271.651 + 470.513i) q^{74} +(-171.671 + 297.343i) q^{75} -434.805 q^{76} +(-162.208 + 123.254i) q^{77} -448.192 q^{78} +(616.171 - 1067.24i) q^{79} +(-127.185 - 220.291i) q^{80} +(-40.5000 - 70.1481i) q^{81} +(55.6214 - 96.3391i) q^{82} -351.925 q^{83} +(-271.642 - 114.024i) q^{84} -309.291 q^{85} +(-490.653 + 849.835i) q^{86} +(18.0057 + 31.1867i) q^{87} +(54.1143 + 93.7287i) q^{88} +(378.743 - 656.002i) q^{89} -106.633 q^{90} +(-95.4673 - 752.591i) q^{91} -298.688 q^{92} +(304.806 - 527.939i) q^{93} +(-346.293 - 599.796i) q^{94} +(-133.192 - 230.696i) q^{95} +(-310.322 + 537.493i) q^{96} -818.178 q^{97} +(335.181 - 1205.26i) q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 24 q^{3} - 30 q^{4} - 20 q^{5} + 24 q^{6} + 18 q^{7} - 156 q^{8} - 72 q^{9} - 94 q^{10} - 88 q^{11} + 90 q^{12} - 188 q^{13} + 52 q^{14} - 120 q^{15} + 10 q^{16} - 144 q^{17} + 36 q^{18}+ \cdots + 1584 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/231\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.82362 + 3.15860i −0.644747 + 1.11673i 0.339613 + 0.940565i \(0.389704\pi\)
−0.984360 + 0.176169i \(0.943629\pi\)
\(3\) 1.50000 + 2.59808i 0.288675 + 0.500000i
\(4\) −2.65118 4.59197i −0.331397 0.573997i
\(5\) 1.62425 2.81329i 0.145277 0.251628i −0.784199 0.620509i \(-0.786926\pi\)
0.929476 + 0.368881i \(0.120259\pi\)
\(6\) −10.9417 −0.744490
\(7\) −2.33065 18.3730i −0.125843 0.992050i
\(8\) −9.83896 −0.434825
\(9\) −4.50000 + 7.79423i −0.166667 + 0.288675i
\(10\) 5.92404 + 10.2607i 0.187334 + 0.324473i
\(11\) −5.50000 9.52628i −0.150756 0.261116i
\(12\) 7.95353 13.7759i 0.191332 0.331397i
\(13\) 40.9617 0.873903 0.436952 0.899485i \(-0.356058\pi\)
0.436952 + 0.899485i \(0.356058\pi\)
\(14\) 62.2833 + 26.1438i 1.18899 + 0.499088i
\(15\) 9.74551 0.167752
\(16\) 39.1519 67.8131i 0.611749 1.05958i
\(17\) −47.6051 82.4545i −0.679173 1.17636i −0.975230 0.221192i \(-0.929005\pi\)
0.296057 0.955170i \(-0.404328\pi\)
\(18\) −16.4126 28.4274i −0.214916 0.372245i
\(19\) 41.0011 71.0160i 0.495068 0.857483i −0.504916 0.863169i \(-0.668476\pi\)
0.999984 + 0.00568549i \(0.00180976\pi\)
\(20\) −17.2247 −0.192578
\(21\) 44.2386 33.6147i 0.459697 0.349302i
\(22\) 40.1196 0.388797
\(23\) 28.1656 48.7843i 0.255345 0.442271i −0.709644 0.704560i \(-0.751144\pi\)
0.964989 + 0.262290i \(0.0844776\pi\)
\(24\) −14.7584 25.5624i −0.125523 0.217412i
\(25\) 57.2236 + 99.1142i 0.457789 + 0.792914i
\(26\) −74.6986 + 129.382i −0.563446 + 0.975918i
\(27\) −27.0000 −0.192450
\(28\) −78.1895 + 59.4124i −0.527729 + 0.400996i
\(29\) 12.0038 0.0768637 0.0384318 0.999261i \(-0.487764\pi\)
0.0384318 + 0.999261i \(0.487764\pi\)
\(30\) −17.7721 + 30.7822i −0.108158 + 0.187334i
\(31\) −101.602 175.980i −0.588653 1.01958i −0.994409 0.105596i \(-0.966325\pi\)
0.405756 0.913982i \(-0.367008\pi\)
\(32\) 103.441 + 179.164i 0.571434 + 0.989753i
\(33\) 16.5000 28.5788i 0.0870388 0.150756i
\(34\) 347.255 1.75158
\(35\) −55.4741 23.2856i −0.267910 0.112457i
\(36\) 47.7212 0.220931
\(37\) 74.4813 129.005i 0.330936 0.573199i −0.651759 0.758426i \(-0.725969\pi\)
0.982696 + 0.185227i \(0.0593021\pi\)
\(38\) 149.541 + 259.012i 0.638387 + 1.10572i
\(39\) 61.4426 + 106.422i 0.252274 + 0.436952i
\(40\) −15.9809 + 27.6798i −0.0631702 + 0.109414i
\(41\) −30.5005 −0.116180 −0.0580900 0.998311i \(-0.518501\pi\)
−0.0580900 + 0.998311i \(0.518501\pi\)
\(42\) 25.5013 + 201.032i 0.0936889 + 0.738571i
\(43\) 269.054 0.954195 0.477098 0.878850i \(-0.341689\pi\)
0.477098 + 0.878850i \(0.341689\pi\)
\(44\) −29.1630 + 50.5117i −0.0999200 + 0.173067i
\(45\) 14.6183 + 25.3196i 0.0484258 + 0.0838760i
\(46\) 102.727 + 177.928i 0.329266 + 0.570305i
\(47\) −94.9465 + 164.452i −0.294667 + 0.510379i −0.974907 0.222610i \(-0.928542\pi\)
0.680240 + 0.732989i \(0.261876\pi\)
\(48\) 234.912 0.706387
\(49\) −332.136 + 85.6421i −0.968327 + 0.249685i
\(50\) −417.416 −1.18063
\(51\) 142.815 247.364i 0.392121 0.679173i
\(52\) −108.597 188.095i −0.289609 0.501618i
\(53\) 226.954 + 393.097i 0.588200 + 1.01879i 0.994468 + 0.105038i \(0.0334965\pi\)
−0.406268 + 0.913754i \(0.633170\pi\)
\(54\) 49.2377 85.2823i 0.124082 0.214916i
\(55\) −35.7335 −0.0876056
\(56\) 22.9311 + 180.771i 0.0547197 + 0.431368i
\(57\) 246.007 0.571655
\(58\) −21.8903 + 37.9152i −0.0495576 + 0.0858363i
\(59\) 188.094 + 325.789i 0.415048 + 0.718884i 0.995433 0.0954580i \(-0.0304315\pi\)
−0.580386 + 0.814342i \(0.697098\pi\)
\(60\) −25.8371 44.7511i −0.0555925 0.0962891i
\(61\) 119.191 206.444i 0.250177 0.433319i −0.713397 0.700760i \(-0.752845\pi\)
0.963574 + 0.267440i \(0.0861779\pi\)
\(62\) 741.134 1.51813
\(63\) 153.691 + 64.5130i 0.307354 + 0.129014i
\(64\) −128.115 −0.250224
\(65\) 66.5322 115.237i 0.126958 0.219898i
\(66\) 60.1794 + 104.234i 0.112236 + 0.194399i
\(67\) −173.761 300.964i −0.316841 0.548784i 0.662986 0.748632i \(-0.269289\pi\)
−0.979827 + 0.199847i \(0.935955\pi\)
\(68\) −252.419 + 437.203i −0.450152 + 0.779686i
\(69\) 168.994 0.294847
\(70\) 174.714 132.757i 0.298319 0.226678i
\(71\) −769.107 −1.28558 −0.642790 0.766042i \(-0.722223\pi\)
−0.642790 + 0.766042i \(0.722223\pi\)
\(72\) 44.2753 76.6871i 0.0724708 0.125523i
\(73\) −300.412 520.328i −0.481651 0.834244i 0.518127 0.855304i \(-0.326629\pi\)
−0.999778 + 0.0210595i \(0.993296\pi\)
\(74\) 271.651 + 470.513i 0.426740 + 0.739136i
\(75\) −171.671 + 297.343i −0.264305 + 0.457789i
\(76\) −434.805 −0.656257
\(77\) −162.208 + 123.254i −0.240069 + 0.182417i
\(78\) −448.192 −0.650612
\(79\) 616.171 1067.24i 0.877528 1.51992i 0.0234819 0.999724i \(-0.492525\pi\)
0.854046 0.520198i \(-0.174142\pi\)
\(80\) −127.185 220.291i −0.177747 0.307866i
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) 55.6214 96.3391i 0.0749068 0.129742i
\(83\) −351.925 −0.465407 −0.232703 0.972548i \(-0.574757\pi\)
−0.232703 + 0.972548i \(0.574757\pi\)
\(84\) −271.642 114.024i −0.352840 0.148107i
\(85\) −309.291 −0.394674
\(86\) −490.653 + 849.835i −0.615214 + 1.06558i
\(87\) 18.0057 + 31.1867i 0.0221886 + 0.0384318i
\(88\) 54.1143 + 93.7287i 0.0655523 + 0.113540i
\(89\) 378.743 656.002i 0.451087 0.781305i −0.547367 0.836892i \(-0.684370\pi\)
0.998454 + 0.0555877i \(0.0177032\pi\)
\(90\) −106.633 −0.124890
\(91\) −95.4673 752.591i −0.109975 0.866956i
\(92\) −298.688 −0.338482
\(93\) 304.806 527.939i 0.339859 0.588653i
\(94\) −346.293 599.796i −0.379972 0.658130i
\(95\) −133.192 230.696i −0.143845 0.249146i
\(96\) −310.322 + 537.493i −0.329918 + 0.571434i
\(97\) −818.178 −0.856427 −0.428214 0.903678i \(-0.640857\pi\)
−0.428214 + 0.903678i \(0.640857\pi\)
\(98\) 335.181 1205.26i 0.345494 1.24235i
\(99\) 99.0000 0.100504
\(100\) 303.420 525.539i 0.303420 0.525539i
\(101\) −276.823 479.472i −0.272722 0.472369i 0.696836 0.717231i \(-0.254591\pi\)
−0.969558 + 0.244862i \(0.921257\pi\)
\(102\) 520.882 + 902.194i 0.505637 + 0.875790i
\(103\) 766.610 1327.81i 0.733363 1.27022i −0.222075 0.975030i \(-0.571283\pi\)
0.955438 0.295192i \(-0.0953837\pi\)
\(104\) −403.021 −0.379995
\(105\) −22.7133 179.055i −0.0211104 0.166418i
\(106\) −1655.51 −1.51696
\(107\) 165.019 285.821i 0.149093 0.258237i −0.781799 0.623530i \(-0.785698\pi\)
0.930893 + 0.365293i \(0.119031\pi\)
\(108\) 71.5818 + 123.983i 0.0637774 + 0.110466i
\(109\) 733.204 + 1269.95i 0.644296 + 1.11595i 0.984464 + 0.175588i \(0.0561827\pi\)
−0.340168 + 0.940365i \(0.610484\pi\)
\(110\) 65.1644 112.868i 0.0564835 0.0978322i
\(111\) 446.888 0.382132
\(112\) −1337.18 561.291i −1.12814 0.473545i
\(113\) −1082.09 −0.900836 −0.450418 0.892818i \(-0.648725\pi\)
−0.450418 + 0.892818i \(0.648725\pi\)
\(114\) −448.622 + 777.037i −0.368573 + 0.638387i
\(115\) −91.4961 158.476i −0.0741918 0.128504i
\(116\) −31.8242 55.1211i −0.0254724 0.0441195i
\(117\) −184.328 + 319.265i −0.145651 + 0.252274i
\(118\) −1372.05 −1.07040
\(119\) −1403.99 + 1066.82i −1.08154 + 0.821811i
\(120\) −95.8857 −0.0729427
\(121\) −60.5000 + 104.789i −0.0454545 + 0.0787296i
\(122\) 434.717 + 752.951i 0.322602 + 0.558762i
\(123\) −45.7508 79.2427i −0.0335383 0.0580900i
\(124\) −538.730 + 933.107i −0.390156 + 0.675770i
\(125\) 777.845 0.556581
\(126\) −484.046 + 367.803i −0.342240 + 0.260052i
\(127\) −1047.31 −0.731760 −0.365880 0.930662i \(-0.619232\pi\)
−0.365880 + 0.930662i \(0.619232\pi\)
\(128\) −593.893 + 1028.65i −0.410103 + 0.710320i
\(129\) 403.581 + 699.023i 0.275452 + 0.477098i
\(130\) 242.659 + 420.297i 0.163712 + 0.283558i
\(131\) 1278.45 2214.35i 0.852664 1.47686i −0.0261305 0.999659i \(-0.508319\pi\)
0.878795 0.477200i \(-0.158348\pi\)
\(132\) −174.978 −0.115378
\(133\) −1400.34 587.801i −0.912967 0.383224i
\(134\) 1267.50 0.817129
\(135\) −43.8548 + 75.9587i −0.0279587 + 0.0484258i
\(136\) 468.385 + 811.267i 0.295321 + 0.511511i
\(137\) −348.765 604.079i −0.217497 0.376715i 0.736545 0.676388i \(-0.236456\pi\)
−0.954042 + 0.299673i \(0.903122\pi\)
\(138\) −308.180 + 533.784i −0.190102 + 0.329266i
\(139\) 99.4507 0.0606856 0.0303428 0.999540i \(-0.490340\pi\)
0.0303428 + 0.999540i \(0.490340\pi\)
\(140\) 40.1447 + 316.470i 0.0242346 + 0.191047i
\(141\) −569.679 −0.340253
\(142\) 1402.56 2429.30i 0.828874 1.43565i
\(143\) −225.290 390.213i −0.131746 0.228190i
\(144\) 352.367 + 610.318i 0.203916 + 0.353193i
\(145\) 19.4972 33.7701i 0.0111666 0.0193411i
\(146\) 2191.35 1.24217
\(147\) −720.709 734.452i −0.404375 0.412086i
\(148\) −789.852 −0.438686
\(149\) 1624.22 2813.24i 0.893030 1.54677i 0.0568062 0.998385i \(-0.481908\pi\)
0.836224 0.548388i \(-0.184758\pi\)
\(150\) −626.125 1084.48i −0.340819 0.590316i
\(151\) 1236.10 + 2140.98i 0.666173 + 1.15385i 0.978966 + 0.204024i \(0.0654022\pi\)
−0.312793 + 0.949821i \(0.601264\pi\)
\(152\) −403.408 + 698.723i −0.215268 + 0.372855i
\(153\) 856.893 0.452782
\(154\) −93.5047 737.119i −0.0489274 0.385706i
\(155\) −660.109 −0.342072
\(156\) 325.790 564.286i 0.167206 0.289609i
\(157\) 308.665 + 534.623i 0.156905 + 0.271768i 0.933751 0.357923i \(-0.116515\pi\)
−0.776846 + 0.629691i \(0.783182\pi\)
\(158\) 2247.32 + 3892.48i 1.13157 + 1.95993i
\(159\) −680.863 + 1179.29i −0.339597 + 0.588200i
\(160\) 672.055 0.332066
\(161\) −961.959 403.789i −0.470888 0.197658i
\(162\) 295.426 0.143277
\(163\) −1337.14 + 2316.00i −0.642535 + 1.11290i 0.342330 + 0.939580i \(0.388784\pi\)
−0.984865 + 0.173324i \(0.944549\pi\)
\(164\) 80.8623 + 140.058i 0.0385018 + 0.0666870i
\(165\) −53.6003 92.8385i −0.0252896 0.0438028i
\(166\) 641.777 1111.59i 0.300070 0.519736i
\(167\) 2747.54 1.27312 0.636560 0.771227i \(-0.280357\pi\)
0.636560 + 0.771227i \(0.280357\pi\)
\(168\) −435.261 + 330.734i −0.199888 + 0.151885i
\(169\) −519.137 −0.236293
\(170\) 564.029 976.927i 0.254465 0.440746i
\(171\) 369.010 + 639.144i 0.165023 + 0.285828i
\(172\) −713.310 1235.49i −0.316218 0.547705i
\(173\) 253.067 438.324i 0.111216 0.192631i −0.805045 0.593214i \(-0.797859\pi\)
0.916261 + 0.400583i \(0.131192\pi\)
\(174\) −131.342 −0.0572242
\(175\) 1687.66 1282.37i 0.729001 0.553932i
\(176\) −861.343 −0.368899
\(177\) −564.283 + 977.368i −0.239628 + 0.415048i
\(178\) 1381.37 + 2392.60i 0.581673 + 1.00749i
\(179\) −303.730 526.075i −0.126826 0.219669i 0.795619 0.605797i \(-0.207146\pi\)
−0.922445 + 0.386128i \(0.873812\pi\)
\(180\) 77.5112 134.253i 0.0320964 0.0555925i
\(181\) 2546.22 1.04563 0.522815 0.852446i \(-0.324882\pi\)
0.522815 + 0.852446i \(0.324882\pi\)
\(182\) 2551.23 + 1070.90i 1.03907 + 0.436155i
\(183\) 715.144 0.288879
\(184\) −277.120 + 479.986i −0.111030 + 0.192310i
\(185\) −241.953 419.074i −0.0961552 0.166546i
\(186\) 1111.70 + 1925.52i 0.438246 + 0.759065i
\(187\) −523.657 + 907.000i −0.204778 + 0.354687i
\(188\) 1006.88 0.390608
\(189\) 62.9275 + 496.072i 0.0242185 + 0.190920i
\(190\) 971.568 0.370973
\(191\) −1189.08 + 2059.55i −0.450465 + 0.780229i −0.998415 0.0562824i \(-0.982075\pi\)
0.547949 + 0.836511i \(0.315409\pi\)
\(192\) −192.172 332.852i −0.0722334 0.125112i
\(193\) −1207.72 2091.84i −0.450434 0.780175i 0.547979 0.836492i \(-0.315397\pi\)
−0.998413 + 0.0563175i \(0.982064\pi\)
\(194\) 1492.05 2584.30i 0.552179 0.956402i
\(195\) 399.193 0.146599
\(196\) 1273.82 + 1298.11i 0.464219 + 0.473072i
\(197\) −3381.10 −1.22281 −0.611404 0.791318i \(-0.709395\pi\)
−0.611404 + 0.791318i \(0.709395\pi\)
\(198\) −180.538 + 312.702i −0.0647995 + 0.112236i
\(199\) 2393.84 + 4146.25i 0.852738 + 1.47699i 0.878728 + 0.477323i \(0.158393\pi\)
−0.0259903 + 0.999662i \(0.508274\pi\)
\(200\) −563.021 975.181i −0.199058 0.344778i
\(201\) 521.284 902.891i 0.182928 0.316841i
\(202\) 2019.28 0.703348
\(203\) −27.9766 220.546i −0.00967276 0.0762526i
\(204\) −1514.52 −0.519791
\(205\) −49.5406 + 85.8068i −0.0168784 + 0.0292342i
\(206\) 2796.01 + 4842.83i 0.945667 + 1.63794i
\(207\) 253.490 + 439.058i 0.0851150 + 0.147424i
\(208\) 1603.73 2777.74i 0.534609 0.925971i
\(209\) −902.024 −0.298537
\(210\) 606.982 + 254.785i 0.199456 + 0.0837230i
\(211\) 2580.29 0.841870 0.420935 0.907091i \(-0.361702\pi\)
0.420935 + 0.907091i \(0.361702\pi\)
\(212\) 1203.39 2084.34i 0.389856 0.675250i
\(213\) −1153.66 1998.20i −0.371115 0.642790i
\(214\) 601.863 + 1042.46i 0.192255 + 0.332995i
\(215\) 437.012 756.927i 0.138623 0.240102i
\(216\) 265.652 0.0836820
\(217\) −2996.48 + 2276.88i −0.937394 + 0.712281i
\(218\) −5348.34 −1.66163
\(219\) 901.235 1560.98i 0.278081 0.481651i
\(220\) 94.7360 + 164.087i 0.0290323 + 0.0502853i
\(221\) −1949.99 3377.48i −0.593532 1.02803i
\(222\) −814.953 + 1411.54i −0.246379 + 0.426740i
\(223\) −3554.80 −1.06747 −0.533737 0.845650i \(-0.679213\pi\)
−0.533737 + 0.845650i \(0.679213\pi\)
\(224\) 3050.71 2318.09i 0.909974 0.691445i
\(225\) −1030.03 −0.305193
\(226\) 1973.32 3417.89i 0.580811 1.00599i
\(227\) 2437.58 + 4222.02i 0.712723 + 1.23447i 0.963831 + 0.266513i \(0.0858717\pi\)
−0.251108 + 0.967959i \(0.580795\pi\)
\(228\) −652.207 1129.66i −0.189445 0.328128i
\(229\) −3151.69 + 5458.89i −0.909475 + 1.57526i −0.0946791 + 0.995508i \(0.530182\pi\)
−0.814796 + 0.579748i \(0.803151\pi\)
\(230\) 667.416 0.191340
\(231\) −563.535 236.548i −0.160510 0.0673753i
\(232\) −118.105 −0.0334222
\(233\) −1952.53 + 3381.88i −0.548989 + 0.950877i 0.449355 + 0.893353i \(0.351654\pi\)
−0.998344 + 0.0575238i \(0.981679\pi\)
\(234\) −672.288 1164.44i −0.187815 0.325306i
\(235\) 308.434 + 534.223i 0.0856171 + 0.148293i
\(236\) 997.344 1727.45i 0.275091 0.476472i
\(237\) 3697.03 1.01328
\(238\) −809.328 6380.12i −0.220424 1.73765i
\(239\) −3569.46 −0.966063 −0.483032 0.875603i \(-0.660464\pi\)
−0.483032 + 0.875603i \(0.660464\pi\)
\(240\) 381.556 660.874i 0.102622 0.177747i
\(241\) −2226.61 3856.60i −0.595139 1.03081i −0.993527 0.113594i \(-0.963764\pi\)
0.398388 0.917217i \(-0.369570\pi\)
\(242\) −220.658 382.191i −0.0586134 0.101521i
\(243\) 121.500 210.444i 0.0320750 0.0555556i
\(244\) −1263.98 −0.331632
\(245\) −298.537 + 1073.50i −0.0778483 + 0.279932i
\(246\) 333.728 0.0864949
\(247\) 1679.48 2908.94i 0.432642 0.749357i
\(248\) 999.658 + 1731.46i 0.255961 + 0.443337i
\(249\) −527.887 914.327i −0.134351 0.232703i
\(250\) −1418.49 + 2456.90i −0.358854 + 0.621553i
\(251\) 5783.13 1.45429 0.727147 0.686482i \(-0.240846\pi\)
0.727147 + 0.686482i \(0.240846\pi\)
\(252\) −111.221 876.783i −0.0278027 0.219175i
\(253\) −619.643 −0.153979
\(254\) 1909.89 3308.03i 0.471800 0.817181i
\(255\) −463.936 803.562i −0.113933 0.197337i
\(256\) −2678.53 4639.35i −0.653937 1.13265i
\(257\) −1296.56 + 2245.71i −0.314698 + 0.545072i −0.979373 0.202060i \(-0.935236\pi\)
0.664676 + 0.747132i \(0.268570\pi\)
\(258\) −2943.92 −0.710388
\(259\) −2543.81 1067.78i −0.610288 0.256172i
\(260\) −705.554 −0.168295
\(261\) −54.0170 + 93.5602i −0.0128106 + 0.0221886i
\(262\) 4662.83 + 8076.25i 1.09951 + 1.90440i
\(263\) −4143.48 7176.71i −0.971474 1.68264i −0.691110 0.722749i \(-0.742878\pi\)
−0.280364 0.959894i \(-0.590455\pi\)
\(264\) −162.343 + 281.186i −0.0378466 + 0.0655523i
\(265\) 1474.52 0.341809
\(266\) 4410.31 3351.18i 1.01659 0.772459i
\(267\) 2272.46 0.520870
\(268\) −921.345 + 1595.82i −0.210000 + 0.363731i
\(269\) −945.714 1638.02i −0.214354 0.371272i 0.738719 0.674014i \(-0.235431\pi\)
−0.953073 + 0.302742i \(0.902098\pi\)
\(270\) −159.949 277.040i −0.0360525 0.0624448i
\(271\) 734.668 1272.48i 0.164679 0.285232i −0.771862 0.635790i \(-0.780675\pi\)
0.936541 + 0.350558i \(0.114008\pi\)
\(272\) −7455.33 −1.66193
\(273\) 1812.09 1376.92i 0.401731 0.305256i
\(274\) 2544.06 0.560921
\(275\) 629.460 1090.26i 0.138029 0.239072i
\(276\) −448.032 776.014i −0.0977115 0.169241i
\(277\) 3214.90 + 5568.37i 0.697346 + 1.20784i 0.969384 + 0.245551i \(0.0789690\pi\)
−0.272038 + 0.962286i \(0.587698\pi\)
\(278\) −181.360 + 314.125i −0.0391269 + 0.0677697i
\(279\) 1828.84 0.392436
\(280\) 545.808 + 229.106i 0.116494 + 0.0488990i
\(281\) −210.954 −0.0447846 −0.0223923 0.999749i \(-0.507128\pi\)
−0.0223923 + 0.999749i \(0.507128\pi\)
\(282\) 1038.88 1799.39i 0.219377 0.379972i
\(283\) −463.018 801.971i −0.0972564 0.168453i 0.813292 0.581856i \(-0.197673\pi\)
−0.910548 + 0.413403i \(0.864340\pi\)
\(284\) 2039.04 + 3531.72i 0.426038 + 0.737919i
\(285\) 399.577 692.087i 0.0830487 0.143845i
\(286\) 1643.37 0.339771
\(287\) 71.0860 + 560.387i 0.0146205 + 0.115256i
\(288\) −1861.93 −0.380956
\(289\) −2076.00 + 3595.74i −0.422552 + 0.731882i
\(290\) 71.1108 + 123.168i 0.0143992 + 0.0249402i
\(291\) −1227.27 2125.69i −0.247229 0.428214i
\(292\) −1592.89 + 2758.97i −0.319236 + 0.552932i
\(293\) −1290.46 −0.257303 −0.128651 0.991690i \(-0.541065\pi\)
−0.128651 + 0.991690i \(0.541065\pi\)
\(294\) 3634.14 937.071i 0.720909 0.185888i
\(295\) 1222.05 0.241188
\(296\) −732.818 + 1269.28i −0.143899 + 0.249241i
\(297\) 148.500 + 257.210i 0.0290129 + 0.0502519i
\(298\) 5923.93 + 10260.5i 1.15156 + 1.99455i
\(299\) 1153.71 1998.29i 0.223147 0.386502i
\(300\) 1820.52 0.350359
\(301\) −627.070 4943.34i −0.120079 0.946609i
\(302\) −9016.68 −1.71805
\(303\) 830.470 1438.42i 0.157456 0.272722i
\(304\) −3210.54 5560.83i −0.605715 1.04913i
\(305\) −387.191 670.635i −0.0726902 0.125903i
\(306\) −1562.65 + 2706.58i −0.291930 + 0.505637i
\(307\) −3882.39 −0.721757 −0.360879 0.932613i \(-0.617523\pi\)
−0.360879 + 0.932613i \(0.617523\pi\)
\(308\) 996.022 + 418.087i 0.184265 + 0.0773464i
\(309\) 4599.66 0.846814
\(310\) 1203.79 2085.02i 0.220550 0.382004i
\(311\) 3274.24 + 5671.15i 0.596994 + 1.03402i 0.993262 + 0.115889i \(0.0369716\pi\)
−0.396269 + 0.918135i \(0.629695\pi\)
\(312\) −604.531 1047.08i −0.109695 0.189997i
\(313\) −191.406 + 331.525i −0.0345652 + 0.0598687i −0.882791 0.469767i \(-0.844338\pi\)
0.848225 + 0.529636i \(0.177671\pi\)
\(314\) −2251.55 −0.404657
\(315\) 431.127 327.593i 0.0771151 0.0585961i
\(316\) −6534.32 −1.16324
\(317\) −4329.97 + 7499.73i −0.767178 + 1.32879i 0.171909 + 0.985113i \(0.445007\pi\)
−0.939087 + 0.343679i \(0.888327\pi\)
\(318\) −2483.27 4301.15i −0.437909 0.758480i
\(319\) −66.0208 114.351i −0.0115876 0.0200704i
\(320\) −208.090 + 360.423i −0.0363519 + 0.0629633i
\(321\) 990.112 0.172158
\(322\) 3029.65 2302.09i 0.524336 0.398417i
\(323\) −7807.45 −1.34495
\(324\) −214.745 + 371.950i −0.0368219 + 0.0637774i
\(325\) 2343.98 + 4059.89i 0.400063 + 0.692930i
\(326\) −4876.88 8447.01i −0.828545 1.43508i
\(327\) −2199.61 + 3809.84i −0.371984 + 0.644296i
\(328\) 300.094 0.0505180
\(329\) 3242.77 + 1361.17i 0.543403 + 0.228097i
\(330\) 390.986 0.0652215
\(331\) 5298.30 9176.92i 0.879821 1.52390i 0.0282850 0.999600i \(-0.490995\pi\)
0.851536 0.524295i \(-0.175671\pi\)
\(332\) 933.015 + 1616.03i 0.154234 + 0.267142i
\(333\) 670.332 + 1161.05i 0.110312 + 0.191066i
\(334\) −5010.47 + 8678.38i −0.820840 + 1.42174i
\(335\) −1128.93 −0.184119
\(336\) −547.496 4316.04i −0.0888939 0.700771i
\(337\) −3561.41 −0.575675 −0.287838 0.957679i \(-0.592936\pi\)
−0.287838 + 0.957679i \(0.592936\pi\)
\(338\) 946.708 1639.75i 0.152349 0.263877i
\(339\) −1623.13 2811.35i −0.260049 0.450418i
\(340\) 819.985 + 1420.26i 0.130794 + 0.226542i
\(341\) −1117.62 + 1935.78i −0.177486 + 0.307414i
\(342\) −2691.73 −0.425592
\(343\) 2347.60 + 5902.75i 0.369558 + 0.929208i
\(344\) −2647.21 −0.414907
\(345\) 274.488 475.428i 0.0428346 0.0741918i
\(346\) 922.995 + 1598.67i 0.143412 + 0.248397i
\(347\) 97.6127 + 169.070i 0.0151012 + 0.0261561i 0.873477 0.486865i \(-0.161860\pi\)
−0.858376 + 0.513021i \(0.828526\pi\)
\(348\) 95.4725 165.363i 0.0147065 0.0254724i
\(349\) −614.409 −0.0942366 −0.0471183 0.998889i \(-0.515004\pi\)
−0.0471183 + 0.998889i \(0.515004\pi\)
\(350\) 972.850 + 7669.20i 0.148574 + 1.17125i
\(351\) −1105.97 −0.168183
\(352\) 1137.85 1970.81i 0.172294 0.298422i
\(353\) 772.956 + 1338.80i 0.116545 + 0.201861i 0.918396 0.395662i \(-0.129485\pi\)
−0.801851 + 0.597523i \(0.796151\pi\)
\(354\) −2058.08 3564.69i −0.308999 0.535201i
\(355\) −1249.22 + 2163.72i −0.186766 + 0.323488i
\(356\) −4016.46 −0.597955
\(357\) −4877.67 2047.43i −0.723120 0.303534i
\(358\) 2215.55 0.327082
\(359\) −1362.00 + 2359.06i −0.200233 + 0.346814i −0.948603 0.316467i \(-0.897503\pi\)
0.748370 + 0.663281i \(0.230837\pi\)
\(360\) −143.829 249.118i −0.0210567 0.0364714i
\(361\) 67.3215 + 116.604i 0.00981507 + 0.0170002i
\(362\) −4643.34 + 8042.50i −0.674167 + 1.16769i
\(363\) −363.000 −0.0524864
\(364\) −3202.78 + 2433.64i −0.461184 + 0.350432i
\(365\) −1951.78 −0.279892
\(366\) −1304.15 + 2258.85i −0.186254 + 0.322602i
\(367\) 4779.56 + 8278.44i 0.679812 + 1.17747i 0.975037 + 0.222042i \(0.0712721\pi\)
−0.295225 + 0.955428i \(0.595395\pi\)
\(368\) −2205.48 3820.00i −0.312414 0.541117i
\(369\) 137.252 237.728i 0.0193633 0.0335383i
\(370\) 1764.92 0.247983
\(371\) 6693.42 5086.01i 0.936672 0.711732i
\(372\) −3232.38 −0.450514
\(373\) −3634.77 + 6295.61i −0.504561 + 0.873926i 0.495425 + 0.868651i \(0.335012\pi\)
−0.999986 + 0.00527489i \(0.998321\pi\)
\(374\) −1909.90 3308.05i −0.264061 0.457366i
\(375\) 1166.77 + 2020.90i 0.160671 + 0.278290i
\(376\) 934.174 1618.04i 0.128129 0.221925i
\(377\) 491.696 0.0671714
\(378\) −1681.65 705.883i −0.228822 0.0960495i
\(379\) 12989.3 1.76047 0.880234 0.474540i \(-0.157385\pi\)
0.880234 + 0.474540i \(0.157385\pi\)
\(380\) −706.232 + 1223.23i −0.0953393 + 0.165133i
\(381\) −1570.96 2720.98i −0.211241 0.365880i
\(382\) −4336.86 7511.67i −0.580872 1.00610i
\(383\) 1154.46 1999.59i 0.154021 0.266773i −0.778681 0.627420i \(-0.784111\pi\)
0.932702 + 0.360647i \(0.117444\pi\)
\(384\) −3563.36 −0.473546
\(385\) 83.2823 + 656.533i 0.0110246 + 0.0869092i
\(386\) 8809.71 1.16166
\(387\) −1210.74 + 2097.07i −0.159033 + 0.275452i
\(388\) 2169.14 + 3757.05i 0.283817 + 0.491586i
\(389\) 2635.09 + 4564.11i 0.343456 + 0.594883i 0.985072 0.172143i \(-0.0550690\pi\)
−0.641616 + 0.767026i \(0.721736\pi\)
\(390\) −727.976 + 1260.89i −0.0945192 + 0.163712i
\(391\) −5363.31 −0.693694
\(392\) 3267.87 842.629i 0.421052 0.108569i
\(393\) 7670.72 0.984572
\(394\) 6165.84 10679.5i 0.788402 1.36555i
\(395\) −2001.63 3466.93i −0.254970 0.441621i
\(396\) −262.467 454.605i −0.0333067 0.0576888i
\(397\) −6373.42 + 11039.1i −0.805724 + 1.39556i 0.110077 + 0.993923i \(0.464890\pi\)
−0.915801 + 0.401632i \(0.868443\pi\)
\(398\) −17461.8 −2.19920
\(399\) −573.354 4519.88i −0.0719389 0.567111i
\(400\) 8961.66 1.12021
\(401\) 3001.53 5198.81i 0.373789 0.647421i −0.616356 0.787468i \(-0.711392\pi\)
0.990145 + 0.140046i \(0.0447251\pi\)
\(402\) 1901.25 + 3293.06i 0.235885 + 0.408564i
\(403\) −4161.79 7208.44i −0.514426 0.891012i
\(404\) −1467.82 + 2542.33i −0.180759 + 0.313084i
\(405\) −263.129 −0.0322839
\(406\) 747.635 + 313.825i 0.0913904 + 0.0383617i
\(407\) −1638.59 −0.199562
\(408\) −1405.16 + 2433.80i −0.170504 + 0.295321i
\(409\) 4110.19 + 7119.05i 0.496909 + 0.860671i 0.999994 0.00356568i \(-0.00113499\pi\)
−0.503085 + 0.864237i \(0.667802\pi\)
\(410\) −180.686 312.958i −0.0217645 0.0376973i
\(411\) 1046.30 1812.24i 0.125572 0.217497i
\(412\) −8129.68 −0.972137
\(413\) 5547.35 4215.16i 0.660938 0.502215i
\(414\) −1849.08 −0.219511
\(415\) −571.614 + 990.065i −0.0676131 + 0.117109i
\(416\) 4237.11 + 7338.89i 0.499378 + 0.864948i
\(417\) 149.176 + 258.381i 0.0175184 + 0.0303428i
\(418\) 1644.95 2849.13i 0.192481 0.333387i
\(419\) −2847.79 −0.332037 −0.166019 0.986123i \(-0.553091\pi\)
−0.166019 + 0.986123i \(0.553091\pi\)
\(420\) −761.997 + 579.004i −0.0885277 + 0.0672679i
\(421\) −1481.78 −0.171538 −0.0857688 0.996315i \(-0.527335\pi\)
−0.0857688 + 0.996315i \(0.527335\pi\)
\(422\) −4705.47 + 8150.12i −0.542793 + 0.940146i
\(423\) −854.518 1480.07i −0.0982225 0.170126i
\(424\) −2233.00 3867.66i −0.255764 0.442996i
\(425\) 5448.28 9436.69i 0.621836 1.07705i
\(426\) 8415.35 0.957101
\(427\) −4070.80 1708.74i −0.461357 0.193658i
\(428\) −1749.98 −0.197636
\(429\) 675.869 1170.64i 0.0760635 0.131746i
\(430\) 1593.89 + 2760.69i 0.178754 + 0.309610i
\(431\) −489.376 847.624i −0.0546924 0.0947299i 0.837383 0.546617i \(-0.184084\pi\)
−0.892075 + 0.451887i \(0.850751\pi\)
\(432\) −1057.10 + 1830.95i −0.117731 + 0.203916i
\(433\) 15417.0 1.71108 0.855538 0.517740i \(-0.173226\pi\)
0.855538 + 0.517740i \(0.173226\pi\)
\(434\) −1727.32 13616.9i −0.191046 1.50606i
\(435\) 116.983 0.0128940
\(436\) 3887.71 6733.71i 0.427035 0.739647i
\(437\) −2309.64 4000.42i −0.252826 0.437908i
\(438\) 3287.02 + 5693.29i 0.358584 + 0.621086i
\(439\) 2859.61 4952.99i 0.310893 0.538482i −0.667663 0.744463i \(-0.732705\pi\)
0.978556 + 0.205982i \(0.0660387\pi\)
\(440\) 351.581 0.0380931
\(441\) 827.099 2974.13i 0.0893099 0.321146i
\(442\) 14224.2 1.53071
\(443\) 4677.64 8101.92i 0.501674 0.868925i −0.498324 0.866991i \(-0.666051\pi\)
0.999998 0.00193389i \(-0.000615577\pi\)
\(444\) −1184.78 2052.10i −0.126638 0.219343i
\(445\) −1230.35 2131.03i −0.131065 0.227012i
\(446\) 6482.60 11228.2i 0.688251 1.19209i
\(447\) 9745.33 1.03118
\(448\) 298.590 + 2353.85i 0.0314889 + 0.248235i
\(449\) 8588.44 0.902703 0.451351 0.892346i \(-0.350942\pi\)
0.451351 + 0.892346i \(0.350942\pi\)
\(450\) 1878.37 3253.44i 0.196772 0.340819i
\(451\) 167.753 + 290.557i 0.0175148 + 0.0303365i
\(452\) 2868.81 + 4968.93i 0.298534 + 0.517077i
\(453\) −3708.29 + 6422.95i −0.384615 + 0.666173i
\(454\) −17780.9 −1.83810
\(455\) −2272.32 953.820i −0.234127 0.0982764i
\(456\) −2420.45 −0.248570
\(457\) −6552.95 + 11350.0i −0.670753 + 1.16178i 0.306938 + 0.951729i \(0.400695\pi\)
−0.977691 + 0.210048i \(0.932638\pi\)
\(458\) −11495.0 19909.9i −1.17276 2.03128i
\(459\) 1285.34 + 2226.27i 0.130707 + 0.226391i
\(460\) −485.145 + 840.295i −0.0491739 + 0.0851717i
\(461\) 3602.92 0.364002 0.182001 0.983298i \(-0.441743\pi\)
0.182001 + 0.983298i \(0.441743\pi\)
\(462\) 1774.83 1348.61i 0.178729 0.135807i
\(463\) −12636.3 −1.26838 −0.634190 0.773177i \(-0.718667\pi\)
−0.634190 + 0.773177i \(0.718667\pi\)
\(464\) 469.971 814.014i 0.0470213 0.0814433i
\(465\) −990.163 1715.01i −0.0987478 0.171036i
\(466\) −7121.34 12334.5i −0.707918 1.22615i
\(467\) 7013.66 12148.0i 0.694976 1.20373i −0.275213 0.961383i \(-0.588748\pi\)
0.970189 0.242350i \(-0.0779182\pi\)
\(468\) 1954.74 0.193073
\(469\) −5124.64 + 3893.96i −0.504549 + 0.383383i
\(470\) −2249.87 −0.220805
\(471\) −925.994 + 1603.87i −0.0905893 + 0.156905i
\(472\) −1850.65 3205.43i −0.180473 0.312588i
\(473\) −1479.80 2563.09i −0.143850 0.249156i
\(474\) −6741.97 + 11677.4i −0.653310 + 1.13157i
\(475\) 9384.92 0.906547
\(476\) 8621.05 + 3618.74i 0.830137 + 0.348455i
\(477\) −4085.18 −0.392133
\(478\) 6509.33 11274.5i 0.622866 1.07884i
\(479\) 5141.84 + 8905.93i 0.490473 + 0.849524i 0.999940 0.0109659i \(-0.00349063\pi\)
−0.509467 + 0.860490i \(0.670157\pi\)
\(480\) 1008.08 + 1746.05i 0.0958592 + 0.166033i
\(481\) 3050.88 5284.28i 0.289206 0.500920i
\(482\) 16241.9 1.53486
\(483\) −393.865 3104.92i −0.0371045 0.292503i
\(484\) 641.585 0.0602540
\(485\) −1328.93 + 2301.77i −0.124420 + 0.215501i
\(486\) 443.140 + 767.540i 0.0413605 + 0.0716385i
\(487\) −2801.03 4851.53i −0.260630 0.451425i 0.705779 0.708432i \(-0.250597\pi\)
−0.966410 + 0.257007i \(0.917264\pi\)
\(488\) −1172.71 + 2031.20i −0.108783 + 0.188418i
\(489\) −8022.87 −0.741936
\(490\) −2846.34 2900.61i −0.262417 0.267421i
\(491\) 17867.1 1.64222 0.821109 0.570772i \(-0.193356\pi\)
0.821109 + 0.570772i \(0.193356\pi\)
\(492\) −242.587 + 420.173i −0.0222290 + 0.0385018i
\(493\) −571.442 989.766i −0.0522038 0.0904196i
\(494\) 6125.45 + 10609.6i 0.557889 + 0.966291i
\(495\) 160.801 278.515i 0.0146009 0.0252896i
\(496\) −15911.7 −1.44043
\(497\) 1792.52 + 14130.8i 0.161781 + 1.27536i
\(498\) 3850.66 0.346490
\(499\) 2155.31 3733.10i 0.193356 0.334903i −0.753004 0.658016i \(-0.771396\pi\)
0.946360 + 0.323113i \(0.104729\pi\)
\(500\) −2062.21 3571.84i −0.184449 0.319476i
\(501\) 4121.31 + 7138.32i 0.367518 + 0.636560i
\(502\) −10546.2 + 18266.6i −0.937652 + 1.62406i
\(503\) 21922.9 1.94333 0.971664 0.236368i \(-0.0759570\pi\)
0.971664 + 0.236368i \(0.0759570\pi\)
\(504\) −1512.16 634.741i −0.133645 0.0560984i
\(505\) −1798.52 −0.158482
\(506\) 1129.99 1957.21i 0.0992774 0.171953i
\(507\) −778.705 1348.76i −0.0682120 0.118147i
\(508\) 2776.60 + 4809.21i 0.242503 + 0.420028i
\(509\) 207.297 359.050i 0.0180517 0.0312664i −0.856858 0.515552i \(-0.827587\pi\)
0.874910 + 0.484285i \(0.160920\pi\)
\(510\) 3384.17 0.293831
\(511\) −8859.85 + 6732.17i −0.767000 + 0.582806i
\(512\) 10036.2 0.866290
\(513\) −1107.03 + 1917.43i −0.0952759 + 0.165023i
\(514\) −4728.87 8190.64i −0.405801 0.702867i
\(515\) −2490.34 4313.39i −0.213082 0.369069i
\(516\) 2139.93 3706.47i 0.182568 0.316218i
\(517\) 2088.82 0.177691
\(518\) 8011.63 6087.65i 0.679558 0.516363i
\(519\) 1518.40 0.128421
\(520\) −654.607 + 1133.81i −0.0552047 + 0.0956173i
\(521\) 6318.50 + 10944.0i 0.531322 + 0.920276i 0.999332 + 0.0365530i \(0.0116378\pi\)
−0.468010 + 0.883723i \(0.655029\pi\)
\(522\) −197.013 341.237i −0.0165192 0.0286121i
\(523\) −4311.01 + 7466.89i −0.360435 + 0.624291i −0.988032 0.154246i \(-0.950705\pi\)
0.627598 + 0.778538i \(0.284038\pi\)
\(524\) −13557.6 −1.13028
\(525\) 5863.19 + 2461.11i 0.487410 + 0.204594i
\(526\) 30224.5 2.50542
\(527\) −9673.56 + 16755.1i −0.799595 + 1.38494i
\(528\) −1292.01 2237.83i −0.106492 0.184449i
\(529\) 4496.90 + 7788.85i 0.369598 + 0.640162i
\(530\) −2688.97 + 4657.44i −0.220380 + 0.381710i
\(531\) −3385.70 −0.276698
\(532\) 1013.38 + 7988.68i 0.0825854 + 0.651040i
\(533\) −1249.35 −0.101530
\(534\) −4144.10 + 7177.79i −0.335829 + 0.581673i
\(535\) −536.064 928.490i −0.0433198 0.0750320i
\(536\) 1709.63 + 2961.17i 0.137770 + 0.238625i
\(537\) 911.189 1578.23i 0.0732229 0.126826i
\(538\) 6898.49 0.552816
\(539\) 2642.60 + 2692.99i 0.211178 + 0.215205i
\(540\) 465.067 0.0370617
\(541\) −3015.28 + 5222.62i −0.239625 + 0.415042i −0.960607 0.277912i \(-0.910358\pi\)
0.720982 + 0.692954i \(0.243691\pi\)
\(542\) 2679.51 + 4641.05i 0.212352 + 0.367805i
\(543\) 3819.33 + 6615.28i 0.301848 + 0.522815i
\(544\) 9848.61 17058.3i 0.776206 1.34443i
\(545\) 4763.63 0.374407
\(546\) 1044.58 + 8234.64i 0.0818750 + 0.645439i
\(547\) −4459.63 −0.348593 −0.174296 0.984693i \(-0.555765\pi\)
−0.174296 + 0.984693i \(0.555765\pi\)
\(548\) −1849.28 + 3203.04i −0.144156 + 0.249685i
\(549\) 1072.72 + 1858.00i 0.0833923 + 0.144440i
\(550\) 2295.79 + 3976.43i 0.177987 + 0.308282i
\(551\) 492.168 852.460i 0.0380528 0.0659093i
\(552\) −1662.72 −0.128207
\(553\) −21044.5 8833.57i −1.61827 0.679280i
\(554\) −23451.0 −1.79845
\(555\) 725.858 1257.22i 0.0555153 0.0961552i
\(556\) −263.662 456.675i −0.0201110 0.0348334i
\(557\) 4131.98 + 7156.80i 0.314323 + 0.544423i 0.979293 0.202447i \(-0.0648893\pi\)
−0.664971 + 0.746869i \(0.731556\pi\)
\(558\) −3335.10 + 5776.56i −0.253022 + 0.438246i
\(559\) 11020.9 0.833874
\(560\) −3750.99 + 2850.20i −0.283051 + 0.215077i
\(561\) −3141.94 −0.236458
\(562\) 384.700 666.320i 0.0288747 0.0500125i
\(563\) −5679.00 9836.31i −0.425118 0.736325i 0.571314 0.820732i \(-0.306434\pi\)
−0.996431 + 0.0844065i \(0.973101\pi\)
\(564\) 1510.32 + 2615.95i 0.112759 + 0.195304i
\(565\) −1757.59 + 3044.23i −0.130871 + 0.226676i
\(566\) 3377.48 0.250823
\(567\) −1194.44 + 907.598i −0.0884688 + 0.0672232i
\(568\) 7567.21 0.559002
\(569\) 4938.58 8553.88i 0.363860 0.630224i −0.624733 0.780839i \(-0.714792\pi\)
0.988592 + 0.150615i \(0.0481254\pi\)
\(570\) 1457.35 + 2524.21i 0.107091 + 0.185487i
\(571\) −2632.59 4559.78i −0.192943 0.334187i 0.753281 0.657699i \(-0.228470\pi\)
−0.946224 + 0.323511i \(0.895137\pi\)
\(572\) −1194.56 + 2069.05i −0.0873204 + 0.151243i
\(573\) −7134.49 −0.520153
\(574\) −1899.67 797.401i −0.138137 0.0579841i
\(575\) 6446.95 0.467576
\(576\) 576.516 998.555i 0.0417040 0.0722334i
\(577\) 9596.53 + 16621.7i 0.692390 + 1.19925i 0.971053 + 0.238865i \(0.0767755\pi\)
−0.278663 + 0.960389i \(0.589891\pi\)
\(578\) −7571.67 13114.5i −0.544879 0.943758i
\(579\) 3623.17 6275.51i 0.260058 0.450434i
\(580\) −206.762 −0.0148023
\(581\) 820.212 + 6465.92i 0.0585682 + 0.461707i
\(582\) 8952.28 0.637601
\(583\) 2496.50 4324.06i 0.177349 0.307177i
\(584\) 2955.74 + 5119.49i 0.209434 + 0.362750i
\(585\) 598.789 + 1037.13i 0.0423195 + 0.0732995i
\(586\) 2353.31 4076.06i 0.165895 0.287339i
\(587\) 21860.1 1.53708 0.768538 0.639805i \(-0.220985\pi\)
0.768538 + 0.639805i \(0.220985\pi\)
\(588\) −1461.86 + 5256.64i −0.102527 + 0.368674i
\(589\) −16663.2 −1.16569
\(590\) −2228.56 + 3859.97i −0.155505 + 0.269343i
\(591\) −5071.65 8784.35i −0.352994 0.611404i
\(592\) −5832.17 10101.6i −0.404900 0.701308i
\(593\) −2857.79 + 4949.84i −0.197901 + 0.342775i −0.947848 0.318723i \(-0.896746\pi\)
0.749946 + 0.661499i \(0.230079\pi\)
\(594\) −1083.23 −0.0748240
\(595\) 720.848 + 5682.61i 0.0496670 + 0.391537i
\(596\) −17224.4 −1.18379
\(597\) −7181.52 + 12438.8i −0.492328 + 0.852738i
\(598\) 4207.86 + 7288.23i 0.287746 + 0.498391i
\(599\) −7340.57 12714.2i −0.500714 0.867262i −1.00000 0.000824549i \(-0.999738\pi\)
0.499286 0.866437i \(-0.333596\pi\)
\(600\) 1689.06 2925.54i 0.114926 0.199058i
\(601\) −12450.1 −0.845011 −0.422505 0.906360i \(-0.638849\pi\)
−0.422505 + 0.906360i \(0.638849\pi\)
\(602\) 16757.6 + 7034.11i 1.13453 + 0.476227i
\(603\) 3127.71 0.211227
\(604\) 6554.22 11352.3i 0.441536 0.764762i
\(605\) 196.534 + 340.408i 0.0132070 + 0.0228753i
\(606\) 3028.92 + 5246.25i 0.203039 + 0.351674i
\(607\) 4760.50 8245.43i 0.318324 0.551354i −0.661814 0.749668i \(-0.730213\pi\)
0.980139 + 0.198314i \(0.0635466\pi\)
\(608\) 16964.7 1.13160
\(609\) 531.030 403.504i 0.0353340 0.0268486i
\(610\) 2824.36 0.187467
\(611\) −3889.17 + 6736.24i −0.257511 + 0.446022i
\(612\) −2271.77 3934.83i −0.150051 0.259895i
\(613\) 14.7694 + 25.5813i 0.000973133 + 0.00168551i 0.866512 0.499157i \(-0.166357\pi\)
−0.865538 + 0.500843i \(0.833024\pi\)
\(614\) 7080.00 12262.9i 0.465351 0.806011i
\(615\) −297.243 −0.0194894
\(616\) 1595.96 1212.69i 0.104388 0.0793194i
\(617\) −13875.2 −0.905342 −0.452671 0.891678i \(-0.649529\pi\)
−0.452671 + 0.891678i \(0.649529\pi\)
\(618\) −8388.04 + 14528.5i −0.545981 + 0.945667i
\(619\) −5183.58 8978.23i −0.336584 0.582981i 0.647203 0.762317i \(-0.275938\pi\)
−0.983788 + 0.179336i \(0.942605\pi\)
\(620\) 1750.07 + 3031.20i 0.113362 + 0.196348i
\(621\) −760.471 + 1317.18i −0.0491412 + 0.0851150i
\(622\) −23883.9 −1.53964
\(623\) −12935.5 5429.75i −0.831860 0.349179i
\(624\) 9622.39 0.617314
\(625\) −5889.54 + 10201.0i −0.376930 + 0.652862i
\(626\) −698.104 1209.15i −0.0445716 0.0772003i
\(627\) −1353.04 2343.53i −0.0861803 0.149269i
\(628\) 1636.65 2834.76i 0.103996 0.180126i
\(629\) −14182.8 −0.899053
\(630\) 248.523 + 1959.16i 0.0157165 + 0.123897i
\(631\) 5081.22 0.320571 0.160285 0.987071i \(-0.448759\pi\)
0.160285 + 0.987071i \(0.448759\pi\)
\(632\) −6062.48 + 10500.5i −0.381571 + 0.660900i
\(633\) 3870.44 + 6703.80i 0.243027 + 0.420935i
\(634\) −15792.4 27353.3i −0.989272 1.71347i
\(635\) −1701.09 + 2946.37i −0.106308 + 0.184131i
\(636\) 7220.36 0.450166
\(637\) −13604.9 + 3508.05i −0.846224 + 0.218201i
\(638\) 481.587 0.0298844
\(639\) 3460.98 5994.60i 0.214263 0.371115i
\(640\) 1929.26 + 3341.58i 0.119158 + 0.206387i
\(641\) −4860.33 8418.33i −0.299487 0.518727i 0.676531 0.736414i \(-0.263482\pi\)
−0.976019 + 0.217687i \(0.930149\pi\)
\(642\) −1805.59 + 3127.37i −0.110998 + 0.192255i
\(643\) 22740.9 1.39473 0.697365 0.716716i \(-0.254355\pi\)
0.697365 + 0.716716i \(0.254355\pi\)
\(644\) 696.136 + 5487.80i 0.0425957 + 0.335792i
\(645\) 2622.07 0.160068
\(646\) 14237.8 24660.6i 0.867151 1.50195i
\(647\) −13931.4 24129.8i −0.846520 1.46622i −0.884295 0.466929i \(-0.845360\pi\)
0.0377747 0.999286i \(-0.487973\pi\)
\(648\) 398.478 + 690.184i 0.0241569 + 0.0418410i
\(649\) 2069.04 3583.68i 0.125142 0.216752i
\(650\) −17098.1 −1.03176
\(651\) −10410.2 4369.77i −0.626743 0.263079i
\(652\) 14180.0 0.851737
\(653\) −13055.6 + 22613.0i −0.782399 + 1.35515i 0.148142 + 0.988966i \(0.452671\pi\)
−0.930541 + 0.366188i \(0.880663\pi\)
\(654\) −8022.51 13895.4i −0.479671 0.830815i
\(655\) −4153.06 7193.31i −0.247746 0.429109i
\(656\) −1194.16 + 2068.34i −0.0710731 + 0.123102i
\(657\) 5407.41 0.321101
\(658\) −10213.0 + 7760.36i −0.605082 + 0.459772i
\(659\) −22590.4 −1.33535 −0.667676 0.744452i \(-0.732711\pi\)
−0.667676 + 0.744452i \(0.732711\pi\)
\(660\) −284.208 + 492.262i −0.0167618 + 0.0290323i
\(661\) −15089.2 26135.2i −0.887899 1.53789i −0.842355 0.538924i \(-0.818831\pi\)
−0.0455444 0.998962i \(-0.514502\pi\)
\(662\) 19324.2 + 33470.4i 1.13452 + 1.96505i
\(663\) 5849.97 10132.4i 0.342676 0.593532i
\(664\) 3462.57 0.202370
\(665\) −3928.15 + 2984.81i −0.229064 + 0.174054i
\(666\) −4889.72 −0.284494
\(667\) 338.094 585.596i 0.0196268 0.0339945i
\(668\) −7284.22 12616.6i −0.421908 0.730767i
\(669\) −5332.19 9235.63i −0.308153 0.533737i
\(670\) 2058.74 3565.84i 0.118710 0.205612i
\(671\) −2622.19 −0.150862
\(672\) 10598.6 + 4448.85i 0.608409 + 0.255384i
\(673\) 3391.09 0.194230 0.0971151 0.995273i \(-0.469038\pi\)
0.0971151 + 0.995273i \(0.469038\pi\)
\(674\) 6494.67 11249.1i 0.371165 0.642877i
\(675\) −1545.04 2676.08i −0.0881015 0.152596i
\(676\) 1376.32 + 2383.86i 0.0783070 + 0.135632i
\(677\) −1635.66 + 2833.04i −0.0928559 + 0.160831i −0.908712 0.417424i \(-0.862933\pi\)
0.815856 + 0.578255i \(0.196266\pi\)
\(678\) 11839.9 0.670663
\(679\) 1906.88 + 15032.4i 0.107775 + 0.849619i
\(680\) 3043.10 0.171614
\(681\) −7312.75 + 12666.1i −0.411491 + 0.712723i
\(682\) −4076.23 7060.25i −0.228867 0.396409i
\(683\) 15970.7 + 27662.1i 0.894734 + 1.54972i 0.834134 + 0.551562i \(0.185968\pi\)
0.0606000 + 0.998162i \(0.480699\pi\)
\(684\) 1956.62 3388.97i 0.109376 0.189445i
\(685\) −2265.93 −0.126389
\(686\) −22925.5 3349.24i −1.27595 0.186406i
\(687\) −18910.2 −1.05017
\(688\) 10534.0 18245.4i 0.583728 1.01105i
\(689\) 9296.45 + 16101.9i 0.514030 + 0.890326i
\(690\) 1001.12 + 1734.00i 0.0552350 + 0.0956698i
\(691\) 6405.55 11094.7i 0.352646 0.610801i −0.634066 0.773279i \(-0.718615\pi\)
0.986712 + 0.162478i \(0.0519486\pi\)
\(692\) −2683.70 −0.147426
\(693\) −230.734 1818.93i −0.0126477 0.0997048i
\(694\) −712.034 −0.0389459
\(695\) 161.533 279.783i 0.00881626 0.0152702i
\(696\) −177.157 306.845i −0.00964817 0.0167111i
\(697\) 1451.98 + 2514.91i 0.0789064 + 0.136670i
\(698\) 1120.45 1940.67i 0.0607588 0.105237i
\(699\) −11715.2 −0.633918
\(700\) −10362.9 4349.90i −0.559544 0.234872i
\(701\) 17225.0 0.928076 0.464038 0.885815i \(-0.346400\pi\)
0.464038 + 0.885815i \(0.346400\pi\)
\(702\) 2016.86 3493.31i 0.108435 0.187815i
\(703\) −6107.63 10578.7i −0.327672 0.567545i
\(704\) 704.630 + 1220.46i 0.0377227 + 0.0653376i
\(705\) −925.302 + 1602.67i −0.0494310 + 0.0856171i
\(706\) −5638.31 −0.300568
\(707\) −8164.18 + 6203.57i −0.434294 + 0.329999i
\(708\) 5984.06 0.317648
\(709\) 1411.05 2444.01i 0.0747434 0.129459i −0.826231 0.563331i \(-0.809520\pi\)
0.900975 + 0.433872i \(0.142853\pi\)
\(710\) −4556.22 7891.60i −0.240834 0.417136i
\(711\) 5545.54 + 9605.16i 0.292509 + 0.506641i
\(712\) −3726.44 + 6454.38i −0.196144 + 0.339731i
\(713\) −11446.7 −0.601239
\(714\) 15362.0 11672.9i 0.805196 0.611830i
\(715\) −1463.71 −0.0765588
\(716\) −1610.48 + 2789.44i −0.0840595 + 0.145595i
\(717\) −5354.19 9273.73i −0.278878 0.483032i
\(718\) −4967.55 8604.04i −0.258199 0.447214i
\(719\) 15464.9 26786.0i 0.802147 1.38936i −0.116054 0.993243i \(-0.537024\pi\)
0.918200 0.396116i \(-0.129642\pi\)
\(720\) 2289.33 0.118498
\(721\) −26182.6 10990.3i −1.35241 0.567684i
\(722\) −491.076 −0.0253129
\(723\) 6679.83 11569.8i 0.343604 0.595139i
\(724\) −6750.49 11692.2i −0.346519 0.600189i
\(725\) 686.900 + 1189.75i 0.0351873 + 0.0609463i
\(726\) 661.974 1146.57i 0.0338404 0.0586134i
\(727\) −8100.81 −0.413263 −0.206632 0.978419i \(-0.566250\pi\)
−0.206632 + 0.978419i \(0.566250\pi\)
\(728\) 939.299 + 7404.71i 0.0478197 + 0.376974i
\(729\) 729.000 0.0370370
\(730\) 3559.30 6164.89i 0.180460 0.312565i
\(731\) −12808.4 22184.7i −0.648064 1.12248i
\(732\) −1895.97 3283.92i −0.0957338 0.165816i
\(733\) 15747.1 27274.7i 0.793494 1.37437i −0.130297 0.991475i \(-0.541593\pi\)
0.923791 0.382897i \(-0.125074\pi\)
\(734\) −34864.4 −1.75323
\(735\) −3236.84 + 834.626i −0.162439 + 0.0418852i
\(736\) 11653.9 0.583652
\(737\) −1911.38 + 3310.60i −0.0955311 + 0.165465i
\(738\) 500.592 + 867.052i 0.0249689 + 0.0432474i
\(739\) 12424.2 + 21519.3i 0.618444 + 1.07118i 0.989770 + 0.142674i \(0.0455700\pi\)
−0.371326 + 0.928503i \(0.621097\pi\)
\(740\) −1282.92 + 2222.08i −0.0637311 + 0.110386i
\(741\) 10076.9 0.499571
\(742\) 3858.42 + 30416.8i 0.190899 + 1.50490i
\(743\) −16842.2 −0.831600 −0.415800 0.909456i \(-0.636498\pi\)
−0.415800 + 0.909456i \(0.636498\pi\)
\(744\) −2998.97 + 5194.37i −0.147779 + 0.255961i
\(745\) −5276.29 9138.81i −0.259474 0.449423i
\(746\) −13256.9 22961.6i −0.650629 1.12692i
\(747\) 1583.66 2742.98i 0.0775678 0.134351i
\(748\) 5553.23 0.271452
\(749\) −5635.99 2365.75i −0.274946 0.115411i
\(750\) −8510.96 −0.414369
\(751\) −8040.32 + 13926.2i −0.390673 + 0.676666i −0.992538 0.121932i \(-0.961091\pi\)
0.601865 + 0.798598i \(0.294424\pi\)
\(752\) 7434.68 + 12877.2i 0.360525 + 0.624448i
\(753\) 8674.69 + 15025.0i 0.419819 + 0.727147i
\(754\) −896.666 + 1553.07i −0.0433086 + 0.0750126i
\(755\) 8030.93 0.387120
\(756\) 2111.12 1604.14i 0.101562 0.0771717i
\(757\) −19231.4 −0.923351 −0.461675 0.887049i \(-0.652751\pi\)
−0.461675 + 0.887049i \(0.652751\pi\)
\(758\) −23687.6 + 41028.1i −1.13506 + 1.96598i
\(759\) −929.465 1609.88i −0.0444499 0.0769894i
\(760\) 1310.47 + 2269.80i 0.0625471 + 0.108335i
\(761\) 5701.35 9875.03i 0.271582 0.470394i −0.697685 0.716404i \(-0.745787\pi\)
0.969267 + 0.246011i \(0.0791199\pi\)
\(762\) 11459.3 0.544787
\(763\) 21623.9 16431.0i 1.02600 0.779608i
\(764\) 12609.9 0.597132
\(765\) 1391.81 2410.68i 0.0657791 0.113933i
\(766\) 4210.60 + 7292.97i 0.198610 + 0.344002i
\(767\) 7704.68 + 13344.9i 0.362711 + 0.628235i
\(768\) 8035.58 13918.0i 0.377551 0.653937i
\(769\) −35970.1 −1.68675 −0.843377 0.537322i \(-0.819436\pi\)
−0.843377 + 0.537322i \(0.819436\pi\)
\(770\) −2225.60 934.211i −0.104163 0.0437229i
\(771\) −7779.37 −0.363381
\(772\) −6403.77 + 11091.7i −0.298545 + 0.517095i
\(773\) −9159.08 15864.0i −0.426170 0.738148i 0.570359 0.821395i \(-0.306804\pi\)
−0.996529 + 0.0832478i \(0.973471\pi\)
\(774\) −4415.87 7648.52i −0.205071 0.355194i
\(775\) 11628.1 20140.4i 0.538958 0.933503i
\(776\) 8050.02 0.372396
\(777\) −1041.54 8210.68i −0.0480887 0.379095i
\(778\) −19221.6 −0.885769
\(779\) −1250.56 + 2166.03i −0.0575171 + 0.0996225i
\(780\) −1058.33 1833.08i −0.0485825 0.0841473i
\(781\) 4230.09 + 7326.73i 0.193809 + 0.335686i
\(782\) 9780.64 16940.6i 0.447257 0.774672i
\(783\) −324.102 −0.0147924
\(784\) −7196.12 + 25876.3i −0.327811 + 1.17877i
\(785\) 2005.40 0.0911792
\(786\) −13988.5 + 24228.8i −0.634800 + 1.09951i
\(787\) 16707.0 + 28937.5i 0.756724 + 1.31068i 0.944513 + 0.328475i \(0.106535\pi\)
−0.187789 + 0.982209i \(0.560132\pi\)
\(788\) 8963.89 + 15525.9i 0.405235 + 0.701888i
\(789\) 12430.4 21530.1i 0.560881 0.971474i
\(790\) 14600.9 0.657565
\(791\) 2521.97 + 19881.3i 0.113364 + 0.893674i
\(792\) −974.057 −0.0437015
\(793\) 4882.25 8456.31i 0.218630 0.378679i
\(794\) −23245.4 40262.2i −1.03898 1.79956i
\(795\) 2211.79 + 3830.93i 0.0986717 + 0.170904i
\(796\) 12693.0 21984.9i 0.565190 0.978937i
\(797\) 24235.5 1.07712 0.538560 0.842587i \(-0.318968\pi\)
0.538560 + 0.842587i \(0.318968\pi\)
\(798\) 15322.1 + 6431.55i 0.679695 + 0.285306i
\(799\) 18079.8 0.800521
\(800\) −11838.5 + 20504.9i −0.523193 + 0.906196i
\(801\) 3408.69 + 5904.02i 0.150362 + 0.260435i
\(802\) 10947.3 + 18961.3i 0.481999 + 0.834846i
\(803\) −3304.53 + 5723.61i −0.145223 + 0.251534i
\(804\) −5528.07 −0.242487
\(805\) −2698.44 + 2050.41i −0.118146 + 0.0897733i
\(806\) 30358.1 1.32670
\(807\) 2837.14 4914.07i 0.123757 0.214354i
\(808\) 2723.65 + 4717.51i 0.118586 + 0.205398i
\(809\) 12399.9 + 21477.2i 0.538883 + 0.933373i 0.998965 + 0.0454959i \(0.0144868\pi\)
−0.460082 + 0.887877i \(0.652180\pi\)
\(810\) 479.847 831.119i 0.0208149 0.0360525i
\(811\) −32827.3 −1.42136 −0.710680 0.703515i \(-0.751613\pi\)
−0.710680 + 0.703515i \(0.751613\pi\)
\(812\) −938.570 + 713.174i −0.0405632 + 0.0308220i
\(813\) 4408.01 0.190155
\(814\) 2988.16 5175.65i 0.128667 0.222858i
\(815\) 4343.72 + 7523.54i 0.186692 + 0.323360i
\(816\) −11183.0 19369.5i −0.479759 0.830967i
\(817\) 11031.5 19107.1i 0.472392 0.818206i
\(818\) −29981.7 −1.28152
\(819\) 6295.47 + 2642.57i 0.268598 + 0.112746i
\(820\) 525.363 0.0223738
\(821\) −6280.27 + 10877.8i −0.266971 + 0.462407i −0.968078 0.250649i \(-0.919356\pi\)
0.701107 + 0.713056i \(0.252689\pi\)
\(822\) 3816.09 + 6609.67i 0.161924 + 0.280461i
\(823\) 1527.35 + 2645.45i 0.0646902 + 0.112047i 0.896557 0.442929i \(-0.146061\pi\)
−0.831866 + 0.554976i \(0.812727\pi\)
\(824\) −7542.65 + 13064.3i −0.318884 + 0.552324i
\(825\) 3776.76 0.159382
\(826\) 3197.77 + 25208.7i 0.134703 + 1.06189i
\(827\) 34363.5 1.44491 0.722453 0.691420i \(-0.243015\pi\)
0.722453 + 0.691420i \(0.243015\pi\)
\(828\) 1344.10 2328.04i 0.0564137 0.0977115i
\(829\) 10121.6 + 17531.2i 0.424051 + 0.734479i 0.996331 0.0855797i \(-0.0272742\pi\)
−0.572280 + 0.820058i \(0.693941\pi\)
\(830\) −2084.81 3611.00i −0.0871867 0.151012i
\(831\) −9644.70 + 16705.1i −0.402613 + 0.697346i
\(832\) −5247.80 −0.218671
\(833\) 22873.0 + 23309.1i 0.951382 + 0.969524i
\(834\) −1088.16 −0.0451798
\(835\) 4462.70 7729.62i 0.184956 0.320353i
\(836\) 2391.43 + 4142.07i 0.0989344 + 0.171359i
\(837\) 2743.25 + 4751.46i 0.113286 + 0.196218i
\(838\) 5193.28 8995.03i 0.214080 0.370797i
\(839\) 29046.6 1.19523 0.597616 0.801782i \(-0.296115\pi\)
0.597616 + 0.801782i \(0.296115\pi\)
\(840\) 223.476 + 1761.71i 0.00917934 + 0.0723628i
\(841\) −24244.9 −0.994092
\(842\) 2702.20 4680.34i 0.110598 0.191562i
\(843\) −316.431 548.075i −0.0129282 0.0223923i
\(844\) −6840.81 11848.6i −0.278993 0.483231i
\(845\) −843.209 + 1460.48i −0.0343281 + 0.0594580i
\(846\) 6233.27 0.253315
\(847\) 2066.30 + 867.342i 0.0838238 + 0.0351856i
\(848\) 35542.8 1.43932
\(849\) 1389.05 2405.91i 0.0561510 0.0972564i
\(850\) 19871.2 + 34417.9i 0.801854 + 1.38885i
\(851\) −4195.62 7267.03i −0.169006 0.292727i
\(852\) −6117.12 + 10595.2i −0.245973 + 0.426038i
\(853\) −13618.2 −0.546635 −0.273317 0.961924i \(-0.588121\pi\)
−0.273317 + 0.961924i \(0.588121\pi\)
\(854\) 12820.8 9741.93i 0.513723 0.390353i
\(855\) 2397.46 0.0958963
\(856\) −1623.61 + 2812.18i −0.0648294 + 0.112288i
\(857\) −9107.46 15774.6i −0.363016 0.628763i 0.625439 0.780273i \(-0.284920\pi\)
−0.988456 + 0.151510i \(0.951586\pi\)
\(858\) 2465.05 + 4269.60i 0.0980834 + 0.169885i
\(859\) −6237.03 + 10802.9i −0.247736 + 0.429091i −0.962897 0.269869i \(-0.913020\pi\)
0.715162 + 0.698959i \(0.246353\pi\)
\(860\) −4634.38 −0.183757
\(861\) −1349.30 + 1025.27i −0.0534077 + 0.0405819i
\(862\) 3569.74 0.141051
\(863\) 16244.0 28135.5i 0.640734 1.10978i −0.344535 0.938774i \(-0.611963\pi\)
0.985269 0.171011i \(-0.0547033\pi\)
\(864\) −2792.90 4837.44i −0.109973 0.190478i
\(865\) −822.088 1423.90i −0.0323143 0.0559699i
\(866\) −28114.8 + 48696.3i −1.10321 + 1.91082i
\(867\) −12456.0 −0.487921
\(868\) 18399.6 + 7723.35i 0.719497 + 0.302013i
\(869\) −13555.8 −0.529169
\(870\) −213.333 + 369.503i −0.00831339 + 0.0143992i
\(871\) −7117.57 12328.0i −0.276888 0.479584i
\(872\) −7213.96 12495.0i −0.280156 0.485244i
\(873\) 3681.80 6377.07i 0.142738 0.247229i
\(874\) 16847.6 0.652036
\(875\) −1812.88 14291.4i −0.0700418 0.552156i
\(876\) −9557.34 −0.368622
\(877\) 15910.0 27557.0i 0.612592 1.06104i −0.378210 0.925720i \(-0.623460\pi\)
0.990802 0.135320i \(-0.0432064\pi\)
\(878\) 10429.7 + 18064.8i 0.400894 + 0.694369i
\(879\) −1935.69 3352.72i −0.0742769 0.128651i
\(880\) −1399.04 + 2423.20i −0.0535927 + 0.0928252i
\(881\) 32871.3 1.25705 0.628525 0.777789i \(-0.283659\pi\)
0.628525 + 0.777789i \(0.283659\pi\)
\(882\) 7885.79 + 8036.17i 0.301053 + 0.306793i
\(883\) 11692.0 0.445603 0.222802 0.974864i \(-0.428480\pi\)
0.222802 + 0.974864i \(0.428480\pi\)
\(884\) −10339.5 + 17908.6i −0.393389 + 0.681370i
\(885\) 1833.08 + 3174.98i 0.0696251 + 0.120594i
\(886\) 17060.5 + 29549.6i 0.646905 + 1.12047i
\(887\) −3348.60 + 5799.95i −0.126759 + 0.219553i −0.922419 0.386190i \(-0.873791\pi\)
0.795660 + 0.605743i \(0.207124\pi\)
\(888\) −4396.91 −0.166161
\(889\) 2440.90 + 19242.2i 0.0920869 + 0.725942i
\(890\) 8974.75 0.338016
\(891\) −445.500 + 771.629i −0.0167506 + 0.0290129i
\(892\) 9424.40 + 16323.5i 0.353758 + 0.612727i
\(893\) 7785.82 + 13485.4i 0.291761 + 0.505345i
\(894\) −17771.8 + 30781.6i −0.664852 + 1.15156i
\(895\) −1973.33 −0.0736998
\(896\) 20283.6 + 8514.18i 0.756281 + 0.317454i
\(897\) 6922.27 0.257668
\(898\) −15662.0 + 27127.5i −0.582015 + 1.00808i
\(899\) −1219.61 2112.42i −0.0452461 0.0783685i
\(900\) 2730.78 + 4729.85i 0.101140 + 0.175180i
\(901\) 21608.4 37426.9i 0.798979 1.38387i
\(902\) −1223.67 −0.0451705
\(903\) 11902.6 9044.19i 0.438641 0.333302i
\(904\) 10646.6 0.391706
\(905\) 4135.71 7163.25i 0.151907 0.263110i
\(906\) −13525.0 23426.0i −0.495959 0.859026i
\(907\) 13043.5 + 22591.9i 0.477509 + 0.827070i 0.999668 0.0257781i \(-0.00820634\pi\)
−0.522158 + 0.852849i \(0.674873\pi\)
\(908\) 12924.9 22386.6i 0.472389 0.818201i
\(909\) 4982.82 0.181815
\(910\) 7156.58 5437.94i 0.260701 0.198094i
\(911\) −15265.3 −0.555174 −0.277587 0.960701i \(-0.589535\pi\)
−0.277587 + 0.960701i \(0.589535\pi\)
\(912\) 9631.63 16682.5i 0.349710 0.605715i
\(913\) 1935.59 + 3352.53i 0.0701627 + 0.121525i
\(914\) −23900.2 41396.3i −0.864931 1.49811i
\(915\) 1161.57 2011.90i 0.0419677 0.0726902i
\(916\) 33422.8 1.20559
\(917\) −43663.9 18328.2i −1.57242 0.660033i
\(918\) −9375.88 −0.337092
\(919\) 969.683 1679.54i 0.0348062 0.0602861i −0.848098 0.529840i \(-0.822252\pi\)
0.882904 + 0.469554i \(0.155585\pi\)
\(920\) 900.226 + 1559.24i 0.0322604 + 0.0558767i
\(921\) −5823.58 10086.7i −0.208353 0.360879i
\(922\) −6570.36 + 11380.2i −0.234689 + 0.406493i
\(923\) −31504.0 −1.12347
\(924\) 407.811 + 3214.87i 0.0145195 + 0.114460i
\(925\) 17048.4 0.605996
\(926\) 23043.9 39913.2i 0.817785 1.41644i
\(927\) 6899.49 + 11950.3i 0.244454 + 0.423407i
\(928\) 1241.68 + 2150.65i 0.0439225 + 0.0760761i
\(929\) 3178.23 5504.86i 0.112244 0.194412i −0.804431 0.594046i \(-0.797530\pi\)
0.916675 + 0.399634i \(0.130863\pi\)
\(930\) 7222.73 0.254669
\(931\) −7535.99 + 27098.4i −0.265287 + 0.953935i
\(932\) 20706.0 0.727734
\(933\) −9822.71 + 17013.4i −0.344674 + 0.596994i
\(934\) 25580.5 + 44306.7i 0.896167 + 1.55221i
\(935\) 1701.10 + 2946.39i 0.0594994 + 0.103056i
\(936\) 1813.59 3141.24i 0.0633324 0.109695i
\(937\) −11467.9 −0.399828 −0.199914 0.979813i \(-0.564066\pi\)
−0.199914 + 0.979813i \(0.564066\pi\)
\(938\) −2954.09 23287.8i −0.102830 0.810633i
\(939\) −1148.44 −0.0399125
\(940\) 1635.43 2832.64i 0.0567465 0.0982879i
\(941\) −18795.0 32554.0i −0.651117 1.12777i −0.982852 0.184395i \(-0.940967\pi\)
0.331735 0.943372i \(-0.392366\pi\)
\(942\) −3377.32 5849.69i −0.116814 0.202328i
\(943\) −859.066 + 1487.95i −0.0296660 + 0.0513830i
\(944\) 29457.1 1.01562
\(945\) 1497.80 + 628.712i 0.0515593 + 0.0216423i
\(946\) 10794.4 0.370988
\(947\) 25694.1 44503.5i 0.881674 1.52710i 0.0321960 0.999482i \(-0.489750\pi\)
0.849478 0.527623i \(-0.176917\pi\)
\(948\) −9801.47 16976.7i −0.335799 0.581620i
\(949\) −12305.4 21313.5i −0.420916 0.729049i
\(950\) −17114.5 + 29643.2i −0.584493 + 1.01237i
\(951\) −25979.8 −0.885861
\(952\) 13813.8 10496.4i 0.470281 0.357344i
\(953\) 18421.2 0.626151 0.313075 0.949728i \(-0.398641\pi\)
0.313075 + 0.949728i \(0.398641\pi\)
\(954\) 7449.82 12903.5i 0.252827 0.437909i
\(955\) 3862.74 + 6690.45i 0.130885 + 0.226699i
\(956\) 9463.27 + 16390.9i 0.320151 + 0.554517i
\(957\) 198.062 343.054i 0.00669013 0.0115876i
\(958\) −37507.0 −1.26492
\(959\) −10285.9 + 7815.77i −0.346350 + 0.263175i
\(960\) −1248.54 −0.0419756
\(961\) −5750.43 + 9960.04i −0.193026 + 0.334330i
\(962\) 11127.3 + 19273.0i 0.372930 + 0.645933i
\(963\) 1485.17 + 2572.39i 0.0496977 + 0.0860790i
\(964\) −11806.3 + 20449.1i −0.394455 + 0.683216i
\(965\) −7846.58 −0.261752
\(966\) 10525.5 + 4418.14i 0.350571 + 0.147155i
\(967\) 24037.9 0.799386 0.399693 0.916649i \(-0.369117\pi\)
0.399693 + 0.916649i \(0.369117\pi\)
\(968\) 595.257 1031.02i 0.0197648 0.0342336i
\(969\) −11711.2 20284.4i −0.388253 0.672474i
\(970\) −4846.92 8395.11i −0.160438 0.277887i
\(971\) −12501.6 + 21653.4i −0.413177 + 0.715644i −0.995235 0.0975032i \(-0.968914\pi\)
0.582058 + 0.813147i \(0.302248\pi\)
\(972\) −1288.47 −0.0425183
\(973\) −231.785 1827.21i −0.00763687 0.0602032i
\(974\) 20432.1 0.672162
\(975\) −7031.93 + 12179.7i −0.230977 + 0.400063i
\(976\) −9333.09 16165.4i −0.306091 0.530165i
\(977\) −6010.27 10410.1i −0.196812 0.340889i 0.750681 0.660665i \(-0.229726\pi\)
−0.947493 + 0.319776i \(0.896392\pi\)
\(978\) 14630.7 25341.0i 0.478361 0.828545i
\(979\) −8332.35 −0.272015
\(980\) 5720.95 1475.16i 0.186479 0.0480840i
\(981\) −13197.7 −0.429530
\(982\) −32582.7 + 56434.9i −1.05881 + 1.83392i
\(983\) −19943.5 34543.2i −0.647100 1.12081i −0.983812 0.179202i \(-0.942648\pi\)
0.336712 0.941608i \(-0.390685\pi\)
\(984\) 450.140 + 779.666i 0.0145833 + 0.0252590i
\(985\) −5491.75 + 9512.00i −0.177647 + 0.307693i
\(986\) 4168.37 0.134633
\(987\) 1327.72 + 10466.7i 0.0428184 + 0.337548i
\(988\) −17810.3 −0.573505
\(989\) 7578.08 13125.6i 0.243649 0.422012i
\(990\) 586.479 + 1015.81i 0.0188278 + 0.0326107i
\(991\) −14152.3 24512.5i −0.453645 0.785735i 0.544965 0.838459i \(-0.316543\pi\)
−0.998609 + 0.0527236i \(0.983210\pi\)
\(992\) 21019.6 36406.9i 0.672753 1.16524i
\(993\) 31789.8 1.01593
\(994\) −47902.5 20107.4i −1.52855 0.641618i
\(995\) 15552.8 0.495534
\(996\) −2799.04 + 4848.09i −0.0890473 + 0.154234i
\(997\) 16912.8 + 29293.8i 0.537244 + 0.930534i 0.999051 + 0.0435536i \(0.0138679\pi\)
−0.461807 + 0.886980i \(0.652799\pi\)
\(998\) 7860.92 + 13615.5i 0.249332 + 0.431855i
\(999\) −2010.99 + 3483.15i −0.0636887 + 0.110312i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.i.a.100.2 yes 16
7.2 even 3 1617.4.a.u.1.7 8
7.4 even 3 inner 231.4.i.a.67.2 16
7.5 odd 6 1617.4.a.v.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.i.a.67.2 16 7.4 even 3 inner
231.4.i.a.100.2 yes 16 1.1 even 1 trivial
1617.4.a.u.1.7 8 7.2 even 3
1617.4.a.v.1.7 8 7.5 odd 6