Defining parameters
Level: | \( N \) | \(=\) | \( 1617 = 3 \cdot 7^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1617.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 32 \) | ||
Sturm bound: | \(896\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1617))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 688 | 206 | 482 |
Cusp forms | 656 | 206 | 450 |
Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | \(11\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(26\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(24\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(25\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(28\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(26\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(28\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(26\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(23\) |
Plus space | \(+\) | \(108\) | ||
Minus space | \(-\) | \(98\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1617))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1617))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1617)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(231))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(539))\)\(^{\oplus 2}\)