Properties

Label 1568.2.t.g.753.1
Level $1568$
Weight $2$
Character 1568.753
Analytic conductor $12.521$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1568,2,Mod(177,1568)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1568.177"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1568, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1568 = 2^{5} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1568.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,0,0,20,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5205430369\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.951588245534976.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 2 x^{10} - 9 x^{9} + 8 x^{8} - 13 x^{7} + 35 x^{6} - 26 x^{5} + 32 x^{4} - 72 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 753.1
Root \(1.41417 - 0.0105323i\) of defining polynomial
Character \(\chi\) \(=\) 1568.753
Dual form 1568.2.t.g.177.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.13038 - 1.22998i) q^{3} +(-1.28690 + 0.742990i) q^{5} +(1.52569 + 2.64257i) q^{9} +(-4.37021 - 2.52314i) q^{11} +2.58633i q^{13} +3.65544 q^{15} +(0.629755 - 1.09077i) q^{17} +(-2.68324 + 1.54917i) q^{19} +(-0.697966 - 1.20891i) q^{23} +(-1.39593 + 2.41782i) q^{25} -0.126378i q^{27} +0.638384i q^{29} +(1.82772 - 3.16571i) q^{31} +(6.20682 + 10.7505i) q^{33} +(5.21370 - 3.01013i) q^{37} +(3.18113 - 5.50988i) q^{39} -6.36226 q^{41} +1.02401i q^{43} +(-3.92680 - 2.26714i) q^{45} +(5.48316 + 9.49712i) q^{47} +(-2.68324 + 1.54917i) q^{51} +(-4.99481 - 2.88375i) q^{53} +7.49868 q^{55} +7.62177 q^{57} +(3.01720 + 1.74198i) q^{59} +(11.1614 - 6.44406i) q^{61} +(-1.92162 - 3.32834i) q^{65} +(0.443410 + 0.256003i) q^{67} +3.43393i q^{69} +7.41363 q^{71} +(4.94731 - 8.56899i) q^{73} +(5.94774 - 3.43393i) q^{75} +(4.35341 + 7.54032i) q^{79} +(4.42162 - 7.65847i) q^{81} -2.97196i q^{83} +1.87161i q^{85} +(0.785198 - 1.36000i) q^{87} +(-1.29186 - 2.23757i) q^{89} +(-7.78749 + 4.49611i) q^{93} +(2.30203 - 3.98724i) q^{95} +1.57040 q^{97} -15.3981i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 20 q^{15} + 2 q^{17} - 2 q^{23} - 4 q^{25} + 10 q^{31} + 14 q^{33} - 4 q^{39} + 8 q^{41} + 30 q^{47} + 4 q^{55} - 4 q^{57} + 8 q^{65} - 32 q^{71} + 10 q^{73} + 22 q^{79} + 22 q^{81} - 20 q^{87} + 10 q^{89}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1568\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(1471\) \(1473\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.13038 1.22998i −1.22998 0.710128i −0.262952 0.964809i \(-0.584696\pi\)
−0.967025 + 0.254681i \(0.918029\pi\)
\(4\) 0 0
\(5\) −1.28690 + 0.742990i −0.575518 + 0.332275i −0.759350 0.650682i \(-0.774483\pi\)
0.183832 + 0.982958i \(0.441150\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.52569 + 2.64257i 0.508562 + 0.880856i
\(10\) 0 0
\(11\) −4.37021 2.52314i −1.31767 0.760756i −0.334315 0.942461i \(-0.608505\pi\)
−0.983353 + 0.181705i \(0.941838\pi\)
\(12\) 0 0
\(13\) 2.58633i 0.717320i 0.933468 + 0.358660i \(0.116766\pi\)
−0.933468 + 0.358660i \(0.883234\pi\)
\(14\) 0 0
\(15\) 3.65544 0.943831
\(16\) 0 0
\(17\) 0.629755 1.09077i 0.152738 0.264550i −0.779495 0.626408i \(-0.784524\pi\)
0.932233 + 0.361858i \(0.117858\pi\)
\(18\) 0 0
\(19\) −2.68324 + 1.54917i −0.615577 + 0.355404i −0.775145 0.631783i \(-0.782323\pi\)
0.159568 + 0.987187i \(0.448990\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.697966 1.20891i −0.145536 0.252076i 0.784037 0.620714i \(-0.213157\pi\)
−0.929573 + 0.368639i \(0.879824\pi\)
\(24\) 0 0
\(25\) −1.39593 + 2.41782i −0.279186 + 0.483565i
\(26\) 0 0
\(27\) 0.126378i 0.0243215i
\(28\) 0 0
\(29\) 0.638384i 0.118545i 0.998242 + 0.0592725i \(0.0188781\pi\)
−0.998242 + 0.0592725i \(0.981122\pi\)
\(30\) 0 0
\(31\) 1.82772 3.16571i 0.328268 0.568578i −0.653900 0.756581i \(-0.726868\pi\)
0.982168 + 0.188003i \(0.0602016\pi\)
\(32\) 0 0
\(33\) 6.20682 + 10.7505i 1.08047 + 1.87143i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.21370 3.01013i 0.857127 0.494862i −0.00592229 0.999982i \(-0.501885\pi\)
0.863049 + 0.505120i \(0.168552\pi\)
\(38\) 0 0
\(39\) 3.18113 5.50988i 0.509388 0.882287i
\(40\) 0 0
\(41\) −6.36226 −0.993618 −0.496809 0.867860i \(-0.665495\pi\)
−0.496809 + 0.867860i \(0.665495\pi\)
\(42\) 0 0
\(43\) 1.02401i 0.156160i 0.996947 + 0.0780801i \(0.0248790\pi\)
−0.996947 + 0.0780801i \(0.975121\pi\)
\(44\) 0 0
\(45\) −3.92680 2.26714i −0.585373 0.337965i
\(46\) 0 0
\(47\) 5.48316 + 9.49712i 0.799802 + 1.38530i 0.919745 + 0.392516i \(0.128395\pi\)
−0.119943 + 0.992781i \(0.538271\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.68324 + 1.54917i −0.375729 + 0.216927i
\(52\) 0 0
\(53\) −4.99481 2.88375i −0.686089 0.396114i 0.116056 0.993243i \(-0.462975\pi\)
−0.802145 + 0.597129i \(0.796308\pi\)
\(54\) 0 0
\(55\) 7.49868 1.01112
\(56\) 0 0
\(57\) 7.62177 1.00953
\(58\) 0 0
\(59\) 3.01720 + 1.74198i 0.392806 + 0.226787i 0.683375 0.730067i \(-0.260511\pi\)
−0.290569 + 0.956854i \(0.593845\pi\)
\(60\) 0 0
\(61\) 11.1614 6.44406i 1.42908 0.825077i 0.432028 0.901860i \(-0.357798\pi\)
0.997048 + 0.0767831i \(0.0244649\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.92162 3.32834i −0.238348 0.412830i
\(66\) 0 0
\(67\) 0.443410 + 0.256003i 0.0541711 + 0.0312757i 0.526841 0.849964i \(-0.323376\pi\)
−0.472670 + 0.881240i \(0.656710\pi\)
\(68\) 0 0
\(69\) 3.43393i 0.413396i
\(70\) 0 0
\(71\) 7.41363 0.879836 0.439918 0.898038i \(-0.355007\pi\)
0.439918 + 0.898038i \(0.355007\pi\)
\(72\) 0 0
\(73\) 4.94731 8.56899i 0.579038 1.00292i −0.416552 0.909112i \(-0.636761\pi\)
0.995590 0.0938118i \(-0.0299052\pi\)
\(74\) 0 0
\(75\) 5.94774 3.43393i 0.686786 0.396516i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.35341 + 7.54032i 0.489797 + 0.848353i 0.999931 0.0117420i \(-0.00373767\pi\)
−0.510134 + 0.860095i \(0.670404\pi\)
\(80\) 0 0
\(81\) 4.42162 7.65847i 0.491291 0.850941i
\(82\) 0 0
\(83\) 2.97196i 0.326215i −0.986608 0.163107i \(-0.947848\pi\)
0.986608 0.163107i \(-0.0521517\pi\)
\(84\) 0 0
\(85\) 1.87161i 0.203004i
\(86\) 0 0
\(87\) 0.785198 1.36000i 0.0841820 0.145808i
\(88\) 0 0
\(89\) −1.29186 2.23757i −0.136937 0.237182i 0.789399 0.613881i \(-0.210393\pi\)
−0.926336 + 0.376699i \(0.877059\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −7.78749 + 4.49611i −0.807525 + 0.466225i
\(94\) 0 0
\(95\) 2.30203 3.98724i 0.236184 0.409082i
\(96\) 0 0
\(97\) 1.57040 0.159449 0.0797247 0.996817i \(-0.474596\pi\)
0.0797247 + 0.996817i \(0.474596\pi\)
\(98\) 0 0
\(99\) 15.3981i 1.54757i
\(100\) 0 0
\(101\) −0.181183 0.104606i −0.0180284 0.0104087i 0.490959 0.871183i \(-0.336647\pi\)
−0.508987 + 0.860774i \(0.669980\pi\)
\(102\) 0 0
\(103\) −3.43846 5.95558i −0.338801 0.586821i 0.645406 0.763839i \(-0.276688\pi\)
−0.984207 + 0.177019i \(0.943355\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.2048 6.46908i 1.08321 0.625389i 0.151447 0.988465i \(-0.451607\pi\)
0.931759 + 0.363076i \(0.118274\pi\)
\(108\) 0 0
\(109\) 16.6430 + 9.60883i 1.59411 + 0.920359i 0.992591 + 0.121500i \(0.0387703\pi\)
0.601517 + 0.798860i \(0.294563\pi\)
\(110\) 0 0
\(111\) −14.8096 −1.40566
\(112\) 0 0
\(113\) −1.05137 −0.0989050 −0.0494525 0.998776i \(-0.515748\pi\)
−0.0494525 + 0.998776i \(0.515748\pi\)
\(114\) 0 0
\(115\) 1.79642 + 1.03716i 0.167517 + 0.0967160i
\(116\) 0 0
\(117\) −6.83456 + 3.94593i −0.631855 + 0.364802i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.23250 + 12.5271i 0.657500 + 1.13882i
\(122\) 0 0
\(123\) 13.5540 + 7.82543i 1.22213 + 0.705595i
\(124\) 0 0
\(125\) 11.5786i 1.03562i
\(126\) 0 0
\(127\) 7.20814 0.639619 0.319809 0.947482i \(-0.396381\pi\)
0.319809 + 0.947482i \(0.396381\pi\)
\(128\) 0 0
\(129\) 1.25951 2.18154i 0.110894 0.192074i
\(130\) 0 0
\(131\) 12.7767 7.37662i 1.11630 0.644498i 0.175849 0.984417i \(-0.443733\pi\)
0.940455 + 0.339919i \(0.110400\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.0938978 + 0.162636i 0.00808144 + 0.0139975i
\(136\) 0 0
\(137\) 4.68113 8.10795i 0.399936 0.692709i −0.593782 0.804626i \(-0.702366\pi\)
0.993718 + 0.111917i \(0.0356991\pi\)
\(138\) 0 0
\(139\) 1.69519i 0.143784i −0.997412 0.0718921i \(-0.977096\pi\)
0.997412 0.0718921i \(-0.0229037\pi\)
\(140\) 0 0
\(141\) 26.9767i 2.27184i
\(142\) 0 0
\(143\) 6.52569 11.3028i 0.545705 0.945189i
\(144\) 0 0
\(145\) −0.474313 0.821534i −0.0393895 0.0682247i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.19276 + 1.84334i −0.261561 + 0.151012i −0.625047 0.780587i \(-0.714920\pi\)
0.363485 + 0.931600i \(0.381587\pi\)
\(150\) 0 0
\(151\) −7.13861 + 12.3644i −0.580932 + 1.00620i 0.414438 + 0.910078i \(0.363978\pi\)
−0.995369 + 0.0961252i \(0.969355\pi\)
\(152\) 0 0
\(153\) 3.84324 0.310707
\(154\) 0 0
\(155\) 5.43191i 0.436302i
\(156\) 0 0
\(157\) 11.1614 + 6.44406i 0.890780 + 0.514292i 0.874197 0.485571i \(-0.161388\pi\)
0.0165822 + 0.999863i \(0.494721\pi\)
\(158\) 0 0
\(159\) 7.09390 + 12.2870i 0.562583 + 0.974422i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −2.79831 + 1.61560i −0.219180 + 0.126544i −0.605571 0.795791i \(-0.707055\pi\)
0.386390 + 0.922335i \(0.373722\pi\)
\(164\) 0 0
\(165\) −15.9751 9.22320i −1.24366 0.718026i
\(166\) 0 0
\(167\) −14.0487 −1.08712 −0.543562 0.839369i \(-0.682925\pi\)
−0.543562 + 0.839369i \(0.682925\pi\)
\(168\) 0 0
\(169\) 6.31088 0.485453
\(170\) 0 0
\(171\) −8.18757 4.72709i −0.626119 0.361490i
\(172\) 0 0
\(173\) 5.66273 3.26938i 0.430529 0.248566i −0.269043 0.963128i \(-0.586707\pi\)
0.699572 + 0.714562i \(0.253374\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.28520 7.42218i −0.322095 0.557885i
\(178\) 0 0
\(179\) 0.109447 + 0.0631891i 0.00818044 + 0.00472298i 0.504085 0.863654i \(-0.331830\pi\)
−0.495904 + 0.868377i \(0.665163\pi\)
\(180\) 0 0
\(181\) 2.71920i 0.202117i 0.994880 + 0.101058i \(0.0322229\pi\)
−0.994880 + 0.101058i \(0.967777\pi\)
\(182\) 0 0
\(183\) −31.7042 −2.34364
\(184\) 0 0
\(185\) −4.47299 + 7.74745i −0.328861 + 0.569604i
\(186\) 0 0
\(187\) −5.50433 + 3.17793i −0.402516 + 0.232393i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.22365 2.11943i −0.0885404 0.153357i 0.818354 0.574715i \(-0.194887\pi\)
−0.906894 + 0.421358i \(0.861554\pi\)
\(192\) 0 0
\(193\) −1.97431 + 3.41961i −0.142114 + 0.246149i −0.928293 0.371851i \(-0.878723\pi\)
0.786178 + 0.618000i \(0.212057\pi\)
\(194\) 0 0
\(195\) 9.45419i 0.677029i
\(196\) 0 0
\(197\) 19.5468i 1.39265i 0.717727 + 0.696325i \(0.245183\pi\)
−0.717727 + 0.696325i \(0.754817\pi\)
\(198\) 0 0
\(199\) −10.3981 + 18.0101i −0.737103 + 1.27670i 0.216692 + 0.976240i \(0.430473\pi\)
−0.953795 + 0.300460i \(0.902860\pi\)
\(200\) 0 0
\(201\) −0.629755 1.09077i −0.0444195 0.0769369i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 8.18757 4.72709i 0.571845 0.330155i
\(206\) 0 0
\(207\) 2.12976 3.68884i 0.148028 0.256392i
\(208\) 0 0
\(209\) 15.6351 1.08150
\(210\) 0 0
\(211\) 17.2132i 1.18500i 0.805569 + 0.592502i \(0.201860\pi\)
−0.805569 + 0.592502i \(0.798140\pi\)
\(212\) 0 0
\(213\) −15.7939 9.11860i −1.08218 0.624796i
\(214\) 0 0
\(215\) −0.760830 1.31780i −0.0518882 0.0898730i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −21.0793 + 12.1701i −1.42441 + 0.822382i
\(220\) 0 0
\(221\) 2.82109 + 1.62876i 0.189767 + 0.109562i
\(222\) 0 0
\(223\) 17.5164 1.17298 0.586492 0.809955i \(-0.300509\pi\)
0.586492 + 0.809955i \(0.300509\pi\)
\(224\) 0 0
\(225\) −8.51902 −0.567935
\(226\) 0 0
\(227\) −11.4237 6.59546i −0.758215 0.437756i 0.0704394 0.997516i \(-0.477560\pi\)
−0.828655 + 0.559760i \(0.810893\pi\)
\(228\) 0 0
\(229\) −14.8693 + 8.58482i −0.982594 + 0.567301i −0.903052 0.429531i \(-0.858679\pi\)
−0.0795417 + 0.996832i \(0.525346\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.4393 21.5455i −0.814927 1.41149i −0.909380 0.415966i \(-0.863444\pi\)
0.0944534 0.995529i \(-0.469890\pi\)
\(234\) 0 0
\(235\) −14.1125 8.14787i −0.920600 0.531508i
\(236\) 0 0
\(237\) 21.4184i 1.39127i
\(238\) 0 0
\(239\) 13.3242 0.861872 0.430936 0.902383i \(-0.358183\pi\)
0.430936 + 0.902383i \(0.358183\pi\)
\(240\) 0 0
\(241\) −11.1218 + 19.2635i −0.716416 + 1.24087i 0.245995 + 0.969271i \(0.420885\pi\)
−0.962411 + 0.271598i \(0.912448\pi\)
\(242\) 0 0
\(243\) −19.1678 + 11.0665i −1.22962 + 0.709919i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.00667 6.93975i −0.254938 0.441566i
\(248\) 0 0
\(249\) −3.65544 + 6.33141i −0.231654 + 0.401237i
\(250\) 0 0
\(251\) 27.4386i 1.73191i 0.500121 + 0.865955i \(0.333289\pi\)
−0.500121 + 0.865955i \(0.666711\pi\)
\(252\) 0 0
\(253\) 7.04427i 0.442870i
\(254\) 0 0
\(255\) 2.30203 3.98724i 0.144159 0.249691i
\(256\) 0 0
\(257\) −12.0948 20.9487i −0.754451 1.30675i −0.945647 0.325195i \(-0.894570\pi\)
0.191196 0.981552i \(-0.438763\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.68697 + 0.973974i −0.104421 + 0.0602875i
\(262\) 0 0
\(263\) −5.43846 + 9.41968i −0.335350 + 0.580842i −0.983552 0.180626i \(-0.942188\pi\)
0.648202 + 0.761468i \(0.275521\pi\)
\(264\) 0 0
\(265\) 8.57040 0.526475
\(266\) 0 0
\(267\) 6.35585i 0.388972i
\(268\) 0 0
\(269\) 20.7887 + 12.0024i 1.26751 + 0.731796i 0.974516 0.224319i \(-0.0720156\pi\)
0.292992 + 0.956115i \(0.405349\pi\)
\(270\) 0 0
\(271\) −3.11160 5.38945i −0.189016 0.327386i 0.755906 0.654680i \(-0.227197\pi\)
−0.944922 + 0.327294i \(0.893863\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 12.2010 7.04427i 0.735750 0.424786i
\(276\) 0 0
\(277\) −24.2493 14.0003i −1.45700 0.841199i −0.458136 0.888882i \(-0.651483\pi\)
−0.998863 + 0.0476832i \(0.984816\pi\)
\(278\) 0 0
\(279\) 11.1541 0.667780
\(280\) 0 0
\(281\) −16.7112 −0.996906 −0.498453 0.866917i \(-0.666098\pi\)
−0.498453 + 0.866917i \(0.666098\pi\)
\(282\) 0 0
\(283\) 24.1193 + 13.9253i 1.43374 + 0.827772i 0.997404 0.0720102i \(-0.0229414\pi\)
0.436339 + 0.899782i \(0.356275\pi\)
\(284\) 0 0
\(285\) −9.80843 + 5.66290i −0.581001 + 0.335441i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.70682 + 13.3486i 0.453342 + 0.785212i
\(290\) 0 0
\(291\) −3.34554 1.93155i −0.196119 0.113229i
\(292\) 0 0
\(293\) 20.1851i 1.17923i 0.807685 + 0.589614i \(0.200720\pi\)
−0.807685 + 0.589614i \(0.799280\pi\)
\(294\) 0 0
\(295\) −5.17710 −0.301423
\(296\) 0 0
\(297\) −0.318870 + 0.552300i −0.0185027 + 0.0320477i
\(298\) 0 0
\(299\) 3.12665 1.80517i 0.180819 0.104396i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0.257326 + 0.445702i 0.0147830 + 0.0256049i
\(304\) 0 0
\(305\) −9.57574 + 16.5857i −0.548305 + 0.949693i
\(306\) 0 0
\(307\) 17.8844i 1.02071i −0.859962 0.510357i \(-0.829513\pi\)
0.859962 0.510357i \(-0.170487\pi\)
\(308\) 0 0
\(309\) 16.9169i 0.962368i
\(310\) 0 0
\(311\) 0.715667 1.23957i 0.0405818 0.0702897i −0.845021 0.534733i \(-0.820412\pi\)
0.885603 + 0.464443i \(0.153746\pi\)
\(312\) 0 0
\(313\) 2.42829 + 4.20591i 0.137255 + 0.237732i 0.926457 0.376402i \(-0.122839\pi\)
−0.789202 + 0.614134i \(0.789505\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.78002 5.64650i 0.549301 0.317139i −0.199539 0.979890i \(-0.563944\pi\)
0.748840 + 0.662751i \(0.230611\pi\)
\(318\) 0 0
\(319\) 1.61073 2.78987i 0.0901838 0.156203i
\(320\) 0 0
\(321\) −31.8273 −1.77642
\(322\) 0 0
\(323\) 3.90239i 0.217135i
\(324\) 0 0
\(325\) −6.25330 3.61034i −0.346871 0.200266i
\(326\) 0 0
\(327\) −23.6373 40.9410i −1.30714 2.26404i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 20.6415 11.9174i 1.13456 0.655039i 0.189483 0.981884i \(-0.439319\pi\)
0.945078 + 0.326845i \(0.105986\pi\)
\(332\) 0 0
\(333\) 15.9089 + 9.18503i 0.871805 + 0.503337i
\(334\) 0 0
\(335\) −0.760830 −0.0415686
\(336\) 0 0
\(337\) 16.4650 0.896906 0.448453 0.893806i \(-0.351975\pi\)
0.448453 + 0.893806i \(0.351975\pi\)
\(338\) 0 0
\(339\) 2.23983 + 1.29317i 0.121651 + 0.0702351i
\(340\) 0 0
\(341\) −15.9751 + 9.22320i −0.865098 + 0.499465i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −2.55137 4.41911i −0.137361 0.237917i
\(346\) 0 0
\(347\) −2.78706 1.60911i −0.149617 0.0863817i 0.423322 0.905979i \(-0.360864\pi\)
−0.572940 + 0.819597i \(0.694197\pi\)
\(348\) 0 0
\(349\) 22.8716i 1.22429i 0.790747 + 0.612143i \(0.209692\pi\)
−0.790747 + 0.612143i \(0.790308\pi\)
\(350\) 0 0
\(351\) 0.326856 0.0174463
\(352\) 0 0
\(353\) 11.6608 20.1971i 0.620641 1.07498i −0.368725 0.929538i \(-0.620206\pi\)
0.989367 0.145444i \(-0.0464609\pi\)
\(354\) 0 0
\(355\) −9.54058 + 5.50826i −0.506361 + 0.292348i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.55488 4.42518i −0.134841 0.233552i 0.790696 0.612210i \(-0.209719\pi\)
−0.925537 + 0.378658i \(0.876386\pi\)
\(360\) 0 0
\(361\) −4.70015 + 8.14090i −0.247376 + 0.428468i
\(362\) 0 0
\(363\) 35.5833i 1.86764i
\(364\) 0 0
\(365\) 14.7032i 0.769600i
\(366\) 0 0
\(367\) −14.0779 + 24.3837i −0.734862 + 1.27282i 0.219922 + 0.975517i \(0.429420\pi\)
−0.954784 + 0.297301i \(0.903914\pi\)
\(368\) 0 0
\(369\) −9.70682 16.8127i −0.505317 0.875234i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −6.10052 + 3.52214i −0.315873 + 0.182369i −0.649551 0.760318i \(-0.725043\pi\)
0.333679 + 0.942687i \(0.391710\pi\)
\(374\) 0 0
\(375\) −14.2414 + 24.6667i −0.735420 + 1.27379i
\(376\) 0 0
\(377\) −1.65107 −0.0850346
\(378\) 0 0
\(379\) 13.1974i 0.677905i −0.940803 0.338953i \(-0.889927\pi\)
0.940803 0.338953i \(-0.110073\pi\)
\(380\) 0 0
\(381\) −15.3561 8.86584i −0.786716 0.454211i
\(382\) 0 0
\(383\) 2.46546 + 4.27031i 0.125979 + 0.218202i 0.922115 0.386915i \(-0.126459\pi\)
−0.796136 + 0.605118i \(0.793126\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.70602 + 1.56232i −0.137555 + 0.0794172i
\(388\) 0 0
\(389\) 19.8735 + 11.4739i 1.00762 + 0.581752i 0.910495 0.413520i \(-0.135701\pi\)
0.0971291 + 0.995272i \(0.469034\pi\)
\(390\) 0 0
\(391\) −1.75819 −0.0889155
\(392\) 0 0
\(393\) −36.2923 −1.83070
\(394\) 0 0
\(395\) −11.2048 6.46908i −0.563773 0.325495i
\(396\) 0 0
\(397\) 25.9079 14.9579i 1.30028 0.750716i 0.319827 0.947476i \(-0.396375\pi\)
0.980452 + 0.196760i \(0.0630420\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.83525 + 13.5711i 0.391274 + 0.677706i 0.992618 0.121284i \(-0.0387012\pi\)
−0.601344 + 0.798990i \(0.705368\pi\)
\(402\) 0 0
\(403\) 8.18757 + 4.72709i 0.407852 + 0.235473i
\(404\) 0 0
\(405\) 13.1409i 0.652975i
\(406\) 0 0
\(407\) −30.3800 −1.50588
\(408\) 0 0
\(409\) −13.0434 + 22.5918i −0.644954 + 1.11709i 0.339358 + 0.940657i \(0.389790\pi\)
−0.984312 + 0.176436i \(0.943543\pi\)
\(410\) 0 0
\(411\) −19.9452 + 11.5154i −0.983824 + 0.568011i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.20814 + 3.82460i 0.108393 + 0.187742i
\(416\) 0 0
\(417\) −2.08505 + 3.61141i −0.102105 + 0.176851i
\(418\) 0 0
\(419\) 0.252757i 0.0123480i −0.999981 0.00617398i \(-0.998035\pi\)
0.999981 0.00617398i \(-0.00196525\pi\)
\(420\) 0 0
\(421\) 18.3701i 0.895302i −0.894208 0.447651i \(-0.852261\pi\)
0.894208 0.447651i \(-0.147739\pi\)
\(422\) 0 0
\(423\) −16.7312 + 28.9793i −0.813498 + 1.40902i
\(424\) 0 0
\(425\) 1.75819 + 3.04528i 0.0852848 + 0.147718i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −27.8044 + 16.0529i −1.34241 + 0.775041i
\(430\) 0 0
\(431\) 13.7223 23.7678i 0.660982 1.14485i −0.319377 0.947628i \(-0.603473\pi\)
0.980358 0.197226i \(-0.0631932\pi\)
\(432\) 0 0
\(433\) 7.26215 0.348997 0.174498 0.984657i \(-0.444170\pi\)
0.174498 + 0.984657i \(0.444170\pi\)
\(434\) 0 0
\(435\) 2.33358i 0.111886i
\(436\) 0 0
\(437\) 3.74562 + 2.16253i 0.179177 + 0.103448i
\(438\) 0 0
\(439\) −15.0022 25.9845i −0.716015 1.24017i −0.962567 0.271045i \(-0.912631\pi\)
0.246551 0.969130i \(-0.420703\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −30.3838 + 17.5421i −1.44358 + 0.833451i −0.998086 0.0618342i \(-0.980305\pi\)
−0.445493 + 0.895285i \(0.646972\pi\)
\(444\) 0 0
\(445\) 3.32499 + 1.91968i 0.157620 + 0.0910017i
\(446\) 0 0
\(447\) 9.06908 0.428953
\(448\) 0 0
\(449\) −21.0107 −0.991556 −0.495778 0.868449i \(-0.665117\pi\)
−0.495778 + 0.868449i \(0.665117\pi\)
\(450\) 0 0
\(451\) 27.8044 + 16.0529i 1.30926 + 0.755901i
\(452\) 0 0
\(453\) 30.4159 17.5606i 1.42906 0.825071i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.68780 11.5836i −0.312842 0.541858i 0.666135 0.745832i \(-0.267948\pi\)
−0.978976 + 0.203974i \(0.934614\pi\)
\(458\) 0 0
\(459\) −0.137849 0.0795874i −0.00643426 0.00371482i
\(460\) 0 0
\(461\) 2.68641i 0.125118i −0.998041 0.0625592i \(-0.980074\pi\)
0.998041 0.0625592i \(-0.0199262\pi\)
\(462\) 0 0
\(463\) 21.0380 0.977721 0.488860 0.872362i \(-0.337413\pi\)
0.488860 + 0.872362i \(0.337413\pi\)
\(464\) 0 0
\(465\) 6.68113 11.5721i 0.309830 0.536641i
\(466\) 0 0
\(467\) 21.3849 12.3466i 0.989574 0.571331i 0.0844270 0.996430i \(-0.473094\pi\)
0.905147 + 0.425099i \(0.139761\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −15.8521 27.4566i −0.730426 1.26513i
\(472\) 0 0
\(473\) 2.58373 4.47515i 0.118800 0.205767i
\(474\) 0 0
\(475\) 8.65014i 0.396896i
\(476\) 0 0
\(477\) 17.5988i 0.805794i
\(478\) 0 0
\(479\) 20.4562 35.4311i 0.934666 1.61889i 0.159437 0.987208i \(-0.449032\pi\)
0.775229 0.631680i \(-0.217634\pi\)
\(480\) 0 0
\(481\) 7.78520 + 13.4844i 0.354974 + 0.614834i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.02094 + 1.16679i −0.0917660 + 0.0529811i
\(486\) 0 0
\(487\) 8.76704 15.1850i 0.397273 0.688096i −0.596116 0.802898i \(-0.703290\pi\)
0.993388 + 0.114802i \(0.0366234\pi\)
\(488\) 0 0
\(489\) 7.94863 0.359449
\(490\) 0 0
\(491\) 15.7509i 0.710830i −0.934709 0.355415i \(-0.884340\pi\)
0.934709 0.355415i \(-0.115660\pi\)
\(492\) 0 0
\(493\) 0.696329 + 0.402026i 0.0313611 + 0.0181063i
\(494\) 0 0
\(495\) 11.4406 + 19.8158i 0.514219 + 0.890653i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −8.82147 + 5.09308i −0.394903 + 0.227997i −0.684282 0.729217i \(-0.739884\pi\)
0.289379 + 0.957215i \(0.406551\pi\)
\(500\) 0 0
\(501\) 29.9292 + 17.2796i 1.33714 + 0.771997i
\(502\) 0 0
\(503\) 27.1001 1.20833 0.604167 0.796858i \(-0.293506\pi\)
0.604167 + 0.796858i \(0.293506\pi\)
\(504\) 0 0
\(505\) 0.310885 0.0138342
\(506\) 0 0
\(507\) −13.4446 7.76224i −0.597096 0.344733i
\(508\) 0 0
\(509\) −19.4357 + 11.2212i −0.861471 + 0.497371i −0.864505 0.502625i \(-0.832368\pi\)
0.00303361 + 0.999995i \(0.499034\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0.195781 + 0.339103i 0.00864396 + 0.0149718i
\(514\) 0 0
\(515\) 8.84987 + 5.10948i 0.389972 + 0.225150i
\(516\) 0 0
\(517\) 55.3392i 2.43382i
\(518\) 0 0
\(519\) −16.0850 −0.706055
\(520\) 0 0
\(521\) −5.13510 + 8.89426i −0.224973 + 0.389664i −0.956311 0.292350i \(-0.905563\pi\)
0.731338 + 0.682015i \(0.238896\pi\)
\(522\) 0 0
\(523\) 15.4655 8.92903i 0.676261 0.390439i −0.122184 0.992507i \(-0.538990\pi\)
0.798445 + 0.602068i \(0.205656\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.30203 3.98724i −0.100278 0.173687i
\(528\) 0 0
\(529\) 10.5257 18.2310i 0.457639 0.792653i
\(530\) 0 0
\(531\) 10.6309i 0.461341i
\(532\) 0 0
\(533\) 16.4549i 0.712742i
\(534\) 0 0
\(535\) −9.61292 + 16.6501i −0.415603 + 0.719845i
\(536\) 0 0
\(537\) −0.155442 0.269234i −0.00670783 0.0116183i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 19.9303 11.5067i 0.856869 0.494714i −0.00609356 0.999981i \(-0.501940\pi\)
0.862963 + 0.505268i \(0.168606\pi\)
\(542\) 0 0
\(543\) 3.34456 5.79294i 0.143529 0.248599i
\(544\) 0 0
\(545\) −28.5571 −1.22325
\(546\) 0 0
\(547\) 9.10136i 0.389146i −0.980888 0.194573i \(-0.937668\pi\)
0.980888 0.194573i \(-0.0623321\pi\)
\(548\) 0 0
\(549\) 34.0577 + 19.6632i 1.45355 + 0.839206i
\(550\) 0 0
\(551\) −0.988965 1.71294i −0.0421313 0.0729736i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 19.0584 11.0034i 0.808983 0.467067i
\(556\) 0 0
\(557\) −15.0016 8.66116i −0.635637 0.366985i 0.147295 0.989093i \(-0.452943\pi\)
−0.782932 + 0.622107i \(0.786277\pi\)
\(558\) 0 0
\(559\) −2.64843 −0.112017
\(560\) 0 0
\(561\) 15.6351 0.660115
\(562\) 0 0
\(563\) 6.91560 + 3.99272i 0.291458 + 0.168273i 0.638599 0.769540i \(-0.279514\pi\)
−0.347141 + 0.937813i \(0.612848\pi\)
\(564\) 0 0
\(565\) 1.35301 0.781160i 0.0569215 0.0328637i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.98535 10.3669i −0.250919 0.434604i 0.712860 0.701306i \(-0.247399\pi\)
−0.963779 + 0.266702i \(0.914066\pi\)
\(570\) 0 0
\(571\) 36.9016 + 21.3051i 1.54428 + 0.891592i 0.998561 + 0.0536265i \(0.0170780\pi\)
0.545722 + 0.837966i \(0.316255\pi\)
\(572\) 0 0
\(573\) 6.02026i 0.251500i
\(574\) 0 0
\(575\) 3.89725 0.162527
\(576\) 0 0
\(577\) −14.9650 + 25.9202i −0.623001 + 1.07907i 0.365922 + 0.930645i \(0.380754\pi\)
−0.988924 + 0.148425i \(0.952580\pi\)
\(578\) 0 0
\(579\) 8.41208 4.85672i 0.349594 0.201838i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 14.5522 + 25.2052i 0.602692 + 1.04389i
\(584\) 0 0
\(585\) 5.86358 10.1560i 0.242429 0.419900i
\(586\) 0 0
\(587\) 19.4269i 0.801833i −0.916115 0.400916i \(-0.868692\pi\)
0.916115 0.400916i \(-0.131308\pi\)
\(588\) 0 0
\(589\) 11.3258i 0.466671i
\(590\) 0 0
\(591\) 24.0421 41.6421i 0.988959 1.71293i
\(592\) 0 0
\(593\) −9.07706 15.7219i −0.372750 0.645622i 0.617237 0.786777i \(-0.288252\pi\)
−0.989988 + 0.141155i \(0.954919\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 44.3039 25.5789i 1.81324 1.04687i
\(598\) 0 0
\(599\) 5.59258 9.68663i 0.228507 0.395785i −0.728859 0.684664i \(-0.759949\pi\)
0.957366 + 0.288879i \(0.0932824\pi\)
\(600\) 0 0
\(601\) 4.21883 0.172090 0.0860448 0.996291i \(-0.472577\pi\)
0.0860448 + 0.996291i \(0.472577\pi\)
\(602\) 0 0
\(603\) 1.56232i 0.0636226i
\(604\) 0 0
\(605\) −18.6150 10.7474i −0.756806 0.436942i
\(606\) 0 0
\(607\) 13.6196 + 23.5898i 0.552802 + 0.957481i 0.998071 + 0.0620841i \(0.0197747\pi\)
−0.445269 + 0.895397i \(0.646892\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −24.5627 + 14.1813i −0.993701 + 0.573713i
\(612\) 0 0
\(613\) 3.20401 + 1.84984i 0.129409 + 0.0747141i 0.563307 0.826248i \(-0.309529\pi\)
−0.433898 + 0.900962i \(0.642862\pi\)
\(614\) 0 0
\(615\) −23.2569 −0.937808
\(616\) 0 0
\(617\) 26.0487 1.04868 0.524341 0.851508i \(-0.324312\pi\)
0.524341 + 0.851508i \(0.324312\pi\)
\(618\) 0 0
\(619\) −27.7816 16.0397i −1.11664 0.644692i −0.176098 0.984373i \(-0.556348\pi\)
−0.940541 + 0.339681i \(0.889681\pi\)
\(620\) 0 0
\(621\) −0.152780 + 0.0882077i −0.00613086 + 0.00353965i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.62309 + 2.81127i 0.0649236 + 0.112451i
\(626\) 0 0
\(627\) −33.3088 19.2308i −1.33022 0.768005i
\(628\) 0 0
\(629\) 7.58258i 0.302337i
\(630\) 0 0
\(631\) −11.7538 −0.467912 −0.233956 0.972247i \(-0.575167\pi\)
−0.233956 + 0.972247i \(0.575167\pi\)
\(632\) 0 0
\(633\) 21.1718 36.6707i 0.841504 1.45753i
\(634\) 0 0
\(635\) −9.27612 + 5.35557i −0.368112 + 0.212529i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 11.3109 + 19.5910i 0.447452 + 0.775009i
\(640\) 0 0
\(641\) −20.9136 + 36.2235i −0.826039 + 1.43074i 0.0750839 + 0.997177i \(0.476078\pi\)
−0.901123 + 0.433564i \(0.857256\pi\)
\(642\) 0 0
\(643\) 42.9368i 1.69326i 0.532180 + 0.846631i \(0.321373\pi\)
−0.532180 + 0.846631i \(0.678627\pi\)
\(644\) 0 0
\(645\) 3.74321i 0.147389i
\(646\) 0 0
\(647\) 4.55891 7.89626i 0.179229 0.310434i −0.762388 0.647121i \(-0.775973\pi\)
0.941617 + 0.336687i \(0.109306\pi\)
\(648\) 0 0
\(649\) −8.79054 15.2257i −0.345059 0.597660i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.8716 + 10.8955i −0.738502 + 0.426374i −0.821524 0.570174i \(-0.806876\pi\)
0.0830227 + 0.996548i \(0.473543\pi\)
\(654\) 0 0
\(655\) −10.9615 + 18.9859i −0.428301 + 0.741840i
\(656\) 0 0
\(657\) 30.1922 1.17791
\(658\) 0 0
\(659\) 0.152682i 0.00594765i −0.999996 0.00297383i \(-0.999053\pi\)
0.999996 0.00297383i \(-0.000946600\pi\)
\(660\) 0 0
\(661\) 24.6004 + 14.2031i 0.956845 + 0.552435i 0.895201 0.445663i \(-0.147032\pi\)
0.0616446 + 0.998098i \(0.480365\pi\)
\(662\) 0 0
\(663\) −4.00667 6.93975i −0.155606 0.269518i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.771750 0.445570i 0.0298823 0.0172525i
\(668\) 0 0
\(669\) −37.3166 21.5447i −1.44274 0.832968i
\(670\) 0 0
\(671\) −65.0371 −2.51073
\(672\) 0 0
\(673\) 26.2542 1.01203 0.506013 0.862526i \(-0.331119\pi\)
0.506013 + 0.862526i \(0.331119\pi\)
\(674\) 0 0
\(675\) 0.305561 + 0.176415i 0.0117610 + 0.00679023i
\(676\) 0 0
\(677\) 4.00416 2.31180i 0.153892 0.0888498i −0.421076 0.907025i \(-0.638348\pi\)
0.574969 + 0.818175i \(0.305014\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 16.2245 + 28.1017i 0.621725 + 1.07686i
\(682\) 0 0
\(683\) −16.8469 9.72659i −0.644631 0.372178i 0.141765 0.989900i \(-0.454722\pi\)
−0.786396 + 0.617723i \(0.788055\pi\)
\(684\) 0 0
\(685\) 13.9121i 0.531555i
\(686\) 0 0
\(687\) 42.2365 1.61142
\(688\) 0 0
\(689\) 7.45834 12.9182i 0.284140 0.492145i
\(690\) 0 0
\(691\) 15.0449 8.68618i 0.572335 0.330438i −0.185746 0.982598i \(-0.559470\pi\)
0.758081 + 0.652160i \(0.226137\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.25951 + 2.18154i 0.0477760 + 0.0827504i
\(696\) 0 0
\(697\) −4.00667 + 6.93975i −0.151763 + 0.262862i
\(698\) 0 0
\(699\) 61.2003i 2.31481i
\(700\) 0 0
\(701\) 25.1180i 0.948695i 0.880338 + 0.474348i \(0.157316\pi\)
−0.880338 + 0.474348i \(0.842684\pi\)
\(702\) 0 0
\(703\) −9.32640 + 16.1538i −0.351752 + 0.609252i
\(704\) 0 0
\(705\) 20.0434 + 34.7162i 0.754878 + 1.30749i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −17.4147 + 10.0544i −0.654024 + 0.377601i −0.789996 0.613112i \(-0.789918\pi\)
0.135972 + 0.990713i \(0.456584\pi\)
\(710\) 0 0
\(711\) −13.2839 + 23.0084i −0.498184 + 0.862881i
\(712\) 0 0
\(713\) −5.10275 −0.191099
\(714\) 0 0
\(715\) 19.3941i 0.725297i
\(716\) 0 0
\(717\) −28.3857 16.3885i −1.06008 0.612039i
\(718\) 0 0
\(719\) 19.1966 + 33.2496i 0.715914 + 1.24000i 0.962606 + 0.270906i \(0.0873231\pi\)
−0.246692 + 0.969094i \(0.579344\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 47.3873 27.3590i 1.76235 1.01749i
\(724\) 0 0
\(725\) −1.54350 0.891141i −0.0573242 0.0330961i
\(726\) 0 0
\(727\) 14.8679 0.551422 0.275711 0.961241i \(-0.411087\pi\)
0.275711 + 0.961241i \(0.411087\pi\)
\(728\) 0 0
\(729\) 27.9167 1.03395
\(730\) 0 0
\(731\) 1.11696 + 0.644877i 0.0413122 + 0.0238516i
\(732\) 0 0
\(733\) −36.4503 + 21.0446i −1.34632 + 0.777300i −0.987727 0.156192i \(-0.950078\pi\)
−0.358597 + 0.933492i \(0.616745\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.29186 2.23757i −0.0475864 0.0824221i
\(738\) 0 0
\(739\) 10.9859 + 6.34270i 0.404122 + 0.233320i 0.688261 0.725463i \(-0.258374\pi\)
−0.284139 + 0.958783i \(0.591708\pi\)
\(740\) 0 0
\(741\) 19.7124i 0.724154i
\(742\) 0 0
\(743\) 25.7219 0.943644 0.471822 0.881694i \(-0.343596\pi\)
0.471822 + 0.881694i \(0.343596\pi\)
\(744\) 0 0
\(745\) 2.73917 4.74438i 0.100355 0.173821i
\(746\) 0 0
\(747\) 7.85360 4.53428i 0.287348 0.165901i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 17.9305 + 31.0565i 0.654292 + 1.13327i 0.982071 + 0.188513i \(0.0603667\pi\)
−0.327779 + 0.944755i \(0.606300\pi\)
\(752\) 0 0
\(753\) 33.7489 58.4548i 1.22988 2.13021i
\(754\) 0 0
\(755\) 21.2157i 0.772117i
\(756\) 0 0
\(757\) 30.7289i 1.11686i −0.829551 0.558431i \(-0.811403\pi\)
0.829551 0.558431i \(-0.188597\pi\)
\(758\) 0 0
\(759\) 8.66429 15.0070i 0.314494 0.544719i
\(760\) 0 0
\(761\) 22.5624 + 39.0792i 0.817887 + 1.41662i 0.907236 + 0.420621i \(0.138188\pi\)
−0.0893497 + 0.996000i \(0.528479\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −4.94585 + 2.85549i −0.178818 + 0.103240i
\(766\) 0 0
\(767\) −4.50535 + 7.80349i −0.162679 + 0.281768i
\(768\) 0 0
\(769\) 28.0168 1.01031 0.505156 0.863028i \(-0.331435\pi\)
0.505156 + 0.863028i \(0.331435\pi\)
\(770\) 0 0
\(771\) 59.5051i 2.14302i
\(772\) 0 0
\(773\) −29.9953 17.3178i −1.07886 0.622878i −0.148268 0.988947i \(-0.547370\pi\)
−0.930588 + 0.366069i \(0.880703\pi\)
\(774\) 0 0
\(775\) 5.10275 + 8.83822i 0.183296 + 0.317478i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 17.0715 9.85621i 0.611649 0.353136i
\(780\) 0 0
\(781\) −32.3992 18.7057i −1.15933 0.669341i
\(782\) 0 0
\(783\) 0.0806779 0.00288319
\(784\) 0 0
\(785\) −19.1515 −0.683546
\(786\) 0 0
\(787\) −29.6763 17.1336i −1.05784 0.610747i −0.133009 0.991115i \(-0.542464\pi\)
−0.924835 + 0.380368i \(0.875797\pi\)
\(788\) 0 0
\(789\) 23.1720 13.3784i 0.824944 0.476282i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 16.6665 + 28.8672i 0.591844 + 1.02510i
\(794\) 0 0
\(795\) −18.2582 10.5414i −0.647552 0.373865i
\(796\) 0 0
\(797\) 20.5838i 0.729114i 0.931181 + 0.364557i \(0.118780\pi\)
−0.931181 + 0.364557i \(0.881220\pi\)
\(798\) 0 0
\(799\) 13.8122 0.488641
\(800\) 0 0
\(801\) 3.94196 6.82767i 0.139282 0.241244i
\(802\) 0 0
\(803\) −43.2416 + 24.9655i −1.52596 + 0.881014i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −29.5252 51.1392i −1.03934 1.80019i
\(808\) 0 0
\(809\) 23.4504 40.6172i 0.824471 1.42802i −0.0778526 0.996965i \(-0.524806\pi\)
0.902323 0.431060i \(-0.141860\pi\)
\(810\) 0 0
\(811\) 22.2462i 0.781168i −0.920567 0.390584i \(-0.872273\pi\)
0.920567 0.390584i \(-0.127727\pi\)
\(812\) 0 0
\(813\) 15.3088i 0.536902i
\(814\) 0 0
\(815\) 2.40076 4.15823i 0.0840948 0.145656i
\(816\) 0 0
\(817\) −1.58637 2.74767i −0.0554999 0.0961287i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −28.4062 + 16.4003i −0.991384 + 0.572376i −0.905688 0.423945i \(-0.860645\pi\)
−0.0856966 + 0.996321i \(0.527312\pi\)
\(822\) 0 0
\(823\) −6.88576 + 11.9265i −0.240023 + 0.415731i −0.960720 0.277518i \(-0.910488\pi\)
0.720698 + 0.693249i \(0.243822\pi\)
\(824\) 0 0
\(825\) −34.6572 −1.20661
\(826\) 0 0
\(827\) 22.0460i 0.766615i −0.923621 0.383307i \(-0.874785\pi\)
0.923621 0.383307i \(-0.125215\pi\)
\(828\) 0 0
\(829\) −4.74751 2.74098i −0.164888 0.0951980i 0.415285 0.909691i \(-0.363682\pi\)
−0.580173 + 0.814493i \(0.697015\pi\)
\(830\) 0 0
\(831\) 34.4402 + 59.6522i 1.19472 + 2.06931i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 18.0793 10.4381i 0.625659 0.361224i
\(836\) 0 0
\(837\) −0.400076 0.230984i −0.0138287 0.00798398i
\(838\) 0 0
\(839\) 28.7512 0.992601 0.496301 0.868151i \(-0.334691\pi\)
0.496301 + 0.868151i \(0.334691\pi\)
\(840\) 0 0
\(841\) 28.5925 0.985947
\(842\) 0 0
\(843\) 35.6012 + 20.5544i 1.22617 + 0.707930i
\(844\) 0 0
\(845\) −8.12145 + 4.68892i −0.279387 + 0.161304i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −34.2556 59.3324i −1.17565 2.03628i
\(850\) 0 0
\(851\) −7.27797 4.20194i −0.249486 0.144041i
\(852\) 0 0
\(853\) 21.7605i 0.745064i −0.928019 0.372532i \(-0.878490\pi\)
0.928019 0.372532i \(-0.121510\pi\)
\(854\) 0 0
\(855\) 14.0487 0.480457
\(856\) 0 0
\(857\) 5.89593 10.2121i 0.201401 0.348837i −0.747579 0.664173i \(-0.768784\pi\)
0.948980 + 0.315336i \(0.102117\pi\)
\(858\) 0 0
\(859\) 4.15132 2.39676i 0.141641 0.0817766i −0.427505 0.904013i \(-0.640607\pi\)
0.569146 + 0.822237i \(0.307274\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.0628642 0.108884i −0.00213992 0.00370646i 0.864953 0.501852i \(-0.167348\pi\)
−0.867093 + 0.498146i \(0.834014\pi\)
\(864\) 0 0
\(865\) −4.85823 + 8.41471i −0.165185 + 0.286109i
\(866\) 0 0
\(867\) 37.9168i 1.28772i
\(868\) 0 0
\(869\) 43.9371i 1.49046i
\(870\) 0 0
\(871\) −0.662108 + 1.14681i −0.0224347 + 0.0388580i
\(872\) 0 0
\(873\) 2.39593 + 4.14988i 0.0810900 + 0.140452i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 25.9534 14.9842i 0.876385 0.505981i 0.00692013 0.999976i \(-0.497797\pi\)
0.869465 + 0.493995i \(0.164464\pi\)
\(878\) 0 0
\(879\) 24.8273 43.0021i 0.837403 1.45042i
\(880\) 0 0
\(881\) 30.2728 1.01992 0.509959 0.860199i \(-0.329661\pi\)
0.509959 + 0.860199i \(0.329661\pi\)
\(882\) 0 0
\(883\) 43.3423i 1.45858i −0.684203 0.729291i \(-0.739850\pi\)
0.684203 0.729291i \(-0.260150\pi\)
\(884\) 0 0
\(885\) 11.0292 + 6.36772i 0.370743 + 0.214048i
\(886\) 0 0
\(887\) −7.56821 13.1085i −0.254116 0.440141i 0.710539 0.703658i \(-0.248451\pi\)
−0.964655 + 0.263516i \(0.915118\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −38.6468 + 22.3128i −1.29472 + 0.747505i
\(892\) 0 0
\(893\) −29.4253 16.9887i −0.984680 0.568505i
\(894\) 0 0
\(895\) −0.187796 −0.00627731
\(896\) 0 0
\(897\) −8.88128 −0.296537
\(898\) 0 0
\(899\) 2.02094 + 1.16679i 0.0674020 + 0.0389146i
\(900\) 0 0
\(901\) −6.29101 + 3.63212i −0.209584 + 0.121003i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.02034 3.49933i −0.0671584 0.116322i
\(906\) 0 0
\(907\) −27.4761 15.8633i −0.912328 0.526733i −0.0311488 0.999515i \(-0.509917\pi\)
−0.881180 + 0.472782i \(0.843250\pi\)
\(908\) 0 0
\(909\) 0.638384i 0.0211739i
\(910\) 0 0
\(911\) −29.4757 −0.976574 −0.488287 0.872683i \(-0.662378\pi\)
−0.488287 + 0.872683i \(0.662378\pi\)
\(912\) 0 0
\(913\) −7.49868 + 12.9881i −0.248170 + 0.429843i
\(914\) 0 0
\(915\) 40.8000 23.5559i 1.34881 0.778734i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 8.85875 + 15.3438i 0.292223 + 0.506146i 0.974335 0.225102i \(-0.0722716\pi\)
−0.682112 + 0.731248i \(0.738938\pi\)
\(920\) 0 0
\(921\) −21.9974 + 38.1005i −0.724838 + 1.25546i
\(922\) 0 0
\(923\) 19.1741i 0.631124i
\(924\) 0 0
\(925\) 16.8077i 0.552635i
\(926\) 0 0
\(927\) 10.4920 18.1727i 0.344603 0.596870i
\(928\) 0 0
\(929\) 26.6338 + 46.1311i 0.873826 + 1.51351i 0.858008 + 0.513636i \(0.171702\pi\)
0.0158180 + 0.999875i \(0.494965\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −3.04929 + 1.76051i −0.0998293 + 0.0576365i
\(934\) 0 0
\(935\) 4.72233 8.17932i 0.154437 0.267492i
\(936\) 0 0
\(937\) 38.2055 1.24812 0.624060 0.781377i \(-0.285482\pi\)
0.624060 + 0.781377i \(0.285482\pi\)
\(938\) 0 0
\(939\) 11.9469i 0.389874i
\(940\) 0 0
\(941\) 8.31195 + 4.79890i 0.270962 + 0.156440i 0.629325 0.777143i \(-0.283332\pi\)
−0.358363 + 0.933582i \(0.616665\pi\)
\(942\) 0 0
\(943\) 4.44064 + 7.69141i 0.144607 + 0.250467i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14.3314 8.27425i 0.465709 0.268877i −0.248733 0.968572i \(-0.580014\pi\)
0.714442 + 0.699695i \(0.246681\pi\)
\(948\) 0 0
\(949\) 22.1622 + 12.7954i 0.719417 + 0.415356i
\(950\) 0 0
\(951\) −27.7803 −0.900837
\(952\) 0 0
\(953\) 6.08942 0.197256 0.0986278 0.995124i \(-0.468555\pi\)
0.0986278 + 0.995124i \(0.468555\pi\)
\(954\) 0 0
\(955\) 3.14943 + 1.81832i 0.101913 + 0.0588396i
\(956\) 0 0
\(957\) −6.86296 + 3.96233i −0.221848 + 0.128084i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 8.81887 + 15.2747i 0.284480 + 0.492733i
\(962\) 0 0
\(963\) 34.1899 + 19.7396i 1.10176 + 0.636099i
\(964\) 0 0
\(965\) 5.86758i 0.188884i
\(966\) 0 0
\(967\) −21.5430 −0.692778 −0.346389 0.938091i \(-0.612592\pi\)
−0.346389 + 0.938091i \(0.612592\pi\)
\(968\) 0 0
\(969\) 4.79985 8.31358i 0.154193 0.267071i
\(970\) 0 0
\(971\) 2.27385 1.31281i 0.0729715 0.0421301i −0.463070 0.886322i \(-0.653252\pi\)
0.536042 + 0.844191i \(0.319919\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 8.88128 + 15.3828i 0.284429 + 0.492645i
\(976\) 0 0
\(977\) 17.2338 29.8499i 0.551359 0.954982i −0.446818 0.894625i \(-0.647443\pi\)
0.998177 0.0603567i \(-0.0192238\pi\)
\(978\) 0 0
\(979\) 13.0382i 0.416704i
\(980\) 0 0
\(981\) 58.6403i 1.87224i
\(982\) 0 0
\(983\) −26.2210 + 45.4161i −0.836320 + 1.44855i 0.0566303 + 0.998395i \(0.481964\pi\)
−0.892951 + 0.450154i \(0.851369\pi\)
\(984\) 0 0
\(985\) −14.5230 25.1547i −0.462743 0.801494i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.23794 0.714725i 0.0393642 0.0227269i
\(990\) 0 0
\(991\) −8.08057 + 13.9960i −0.256688 + 0.444596i −0.965353 0.260949i \(-0.915964\pi\)
0.708665 + 0.705545i \(0.249298\pi\)
\(992\) 0 0
\(993\) −58.6325 −1.86064
\(994\) 0 0
\(995\) 30.9028i 0.979684i
\(996\) 0 0
\(997\) −34.0954 19.6850i −1.07981 0.623430i −0.148967 0.988842i \(-0.547595\pi\)
−0.930846 + 0.365412i \(0.880928\pi\)
\(998\) 0 0
\(999\) −0.380415 0.658898i −0.0120358 0.0208466i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1568.2.t.g.753.1 12
4.3 odd 2 392.2.p.g.165.4 12
7.2 even 3 inner 1568.2.t.g.177.6 12
7.3 odd 6 1568.2.b.f.785.1 6
7.4 even 3 1568.2.b.e.785.6 6
7.5 odd 6 224.2.t.a.177.1 12
7.6 odd 2 224.2.t.a.81.6 12
8.3 odd 2 392.2.p.g.165.2 12
8.5 even 2 inner 1568.2.t.g.753.6 12
21.5 even 6 2016.2.cr.c.1297.5 12
21.20 even 2 2016.2.cr.c.1873.2 12
28.3 even 6 392.2.b.e.197.6 6
28.11 odd 6 392.2.b.f.197.6 6
28.19 even 6 56.2.p.a.37.2 12
28.23 odd 6 392.2.p.g.373.2 12
28.27 even 2 56.2.p.a.53.4 yes 12
56.3 even 6 392.2.b.e.197.5 6
56.5 odd 6 224.2.t.a.177.6 12
56.11 odd 6 392.2.b.f.197.5 6
56.13 odd 2 224.2.t.a.81.1 12
56.19 even 6 56.2.p.a.37.4 yes 12
56.27 even 2 56.2.p.a.53.2 yes 12
56.37 even 6 inner 1568.2.t.g.177.1 12
56.45 odd 6 1568.2.b.f.785.6 6
56.51 odd 6 392.2.p.g.373.4 12
56.53 even 6 1568.2.b.e.785.1 6
84.47 odd 6 504.2.cj.c.37.5 12
84.83 odd 2 504.2.cj.c.109.3 12
168.5 even 6 2016.2.cr.c.1297.2 12
168.83 odd 2 504.2.cj.c.109.5 12
168.125 even 2 2016.2.cr.c.1873.5 12
168.131 odd 6 504.2.cj.c.37.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.p.a.37.2 12 28.19 even 6
56.2.p.a.37.4 yes 12 56.19 even 6
56.2.p.a.53.2 yes 12 56.27 even 2
56.2.p.a.53.4 yes 12 28.27 even 2
224.2.t.a.81.1 12 56.13 odd 2
224.2.t.a.81.6 12 7.6 odd 2
224.2.t.a.177.1 12 7.5 odd 6
224.2.t.a.177.6 12 56.5 odd 6
392.2.b.e.197.5 6 56.3 even 6
392.2.b.e.197.6 6 28.3 even 6
392.2.b.f.197.5 6 56.11 odd 6
392.2.b.f.197.6 6 28.11 odd 6
392.2.p.g.165.2 12 8.3 odd 2
392.2.p.g.165.4 12 4.3 odd 2
392.2.p.g.373.2 12 28.23 odd 6
392.2.p.g.373.4 12 56.51 odd 6
504.2.cj.c.37.3 12 168.131 odd 6
504.2.cj.c.37.5 12 84.47 odd 6
504.2.cj.c.109.3 12 84.83 odd 2
504.2.cj.c.109.5 12 168.83 odd 2
1568.2.b.e.785.1 6 56.53 even 6
1568.2.b.e.785.6 6 7.4 even 3
1568.2.b.f.785.1 6 7.3 odd 6
1568.2.b.f.785.6 6 56.45 odd 6
1568.2.t.g.177.1 12 56.37 even 6 inner
1568.2.t.g.177.6 12 7.2 even 3 inner
1568.2.t.g.753.1 12 1.1 even 1 trivial
1568.2.t.g.753.6 12 8.5 even 2 inner
2016.2.cr.c.1297.2 12 168.5 even 6
2016.2.cr.c.1297.5 12 21.5 even 6
2016.2.cr.c.1873.2 12 21.20 even 2
2016.2.cr.c.1873.5 12 168.125 even 2