Properties

Label 392.2.b.f.197.5
Level $392$
Weight $2$
Character 392.197
Analytic conductor $3.130$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [392,2,Mod(197,392)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("392.197"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(392, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,2,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13013575923\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.1142512.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - x^{4} + 5x^{3} - 2x^{2} - 4x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 197.5
Root \(0.697966 - 1.22998i\) of defining polynomial
Character \(\chi\) \(=\) 392.197
Dual form 392.2.b.f.197.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.32772 - 0.486987i) q^{2} +2.45995i q^{3} +(1.52569 - 1.29317i) q^{4} +1.48598i q^{5} +(1.19797 + 3.26613i) q^{6} +(1.39593 - 2.45995i) q^{8} -3.05137 q^{9} +(0.723653 + 1.97297i) q^{10} +5.04629i q^{11} +(3.18113 + 3.75312i) q^{12} -2.58633i q^{13} -3.65544 q^{15} +(0.655442 - 3.94593i) q^{16} -1.25951 q^{17} +(-4.05137 + 1.48598i) q^{18} -3.09834i q^{19} +(1.92162 + 2.26714i) q^{20} +(2.45748 + 6.70006i) q^{22} -1.39593 q^{23} +(6.05137 + 3.43393i) q^{24} +2.79186 q^{25} +(-1.25951 - 3.43393i) q^{26} -0.126378i q^{27} -0.638384i q^{29} +(-4.85341 + 1.78015i) q^{30} +3.65544 q^{31} +(-1.05137 - 5.55829i) q^{32} -12.4136 q^{33} +(-1.67228 + 0.613365i) q^{34} +(-4.65544 + 3.94593i) q^{36} -6.02026i q^{37} +(-1.50885 - 4.11373i) q^{38} +6.36226 q^{39} +(3.65544 + 2.07433i) q^{40} -6.36226 q^{41} +1.02401i q^{43} +(6.52569 + 7.69905i) q^{44} -4.53428i q^{45} +(-1.85341 + 0.679801i) q^{46} +10.9663 q^{47} +(9.70682 + 1.61236i) q^{48} +(3.70682 - 1.35960i) q^{50} -3.09834i q^{51} +(-3.34456 - 3.94593i) q^{52} -5.76750i q^{53} +(-0.0615446 - 0.167795i) q^{54} -7.49868 q^{55} +7.62177 q^{57} +(-0.310885 - 0.847596i) q^{58} -3.48397i q^{59} +(-5.57706 + 4.72709i) q^{60} -12.8881i q^{61} +(4.85341 - 1.78015i) q^{62} +(-4.10275 - 6.86786i) q^{64} +3.84324 q^{65} +(-16.4818 + 6.04528i) q^{66} -0.512006i q^{67} +(-1.92162 + 1.62876i) q^{68} -3.43393i q^{69} -7.41363 q^{71} +(-4.25951 + 7.50624i) q^{72} -9.89461 q^{73} +(-2.93179 - 7.99323i) q^{74} +6.86786i q^{75} +(-4.00667 - 4.72709i) q^{76} +(8.44731 - 3.09834i) q^{78} +8.70682 q^{79} +(5.86358 + 0.973974i) q^{80} -8.84324 q^{81} +(-8.44731 + 3.09834i) q^{82} -2.97196i q^{83} -1.87161i q^{85} +(0.498680 + 1.35960i) q^{86} +1.57040 q^{87} +(12.4136 + 7.04427i) q^{88} +2.58373 q^{89} +(-2.20814 - 6.02026i) q^{90} +(-2.12976 + 1.80517i) q^{92} +8.99222i q^{93} +(14.5602 - 5.34046i) q^{94} +4.60407 q^{95} +(13.6731 - 2.58633i) q^{96} +1.57040 q^{97} -15.3981i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 4 q^{6} + 2 q^{8} - 8 q^{10} - 2 q^{12} - 10 q^{15} - 8 q^{16} - 2 q^{17} - 6 q^{18} - 4 q^{20} + 6 q^{22} - 2 q^{23} + 18 q^{24} + 4 q^{25} - 2 q^{26} - 14 q^{30} + 10 q^{31} + 12 q^{32}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.32772 0.486987i 0.938841 0.344352i
\(3\) 2.45995i 1.42026i 0.704073 + 0.710128i \(0.251363\pi\)
−0.704073 + 0.710128i \(0.748637\pi\)
\(4\) 1.52569 1.29317i 0.762844 0.646583i
\(5\) 1.48598i 0.664550i 0.943182 + 0.332275i \(0.107816\pi\)
−0.943182 + 0.332275i \(0.892184\pi\)
\(6\) 1.19797 + 3.26613i 0.489068 + 1.33339i
\(7\) 0 0
\(8\) 1.39593 2.45995i 0.493536 0.869725i
\(9\) −3.05137 −1.01712
\(10\) 0.723653 + 1.97297i 0.228839 + 0.623907i
\(11\) 5.04629i 1.52151i 0.649038 + 0.760756i \(0.275172\pi\)
−0.649038 + 0.760756i \(0.724828\pi\)
\(12\) 3.18113 + 3.75312i 0.918313 + 1.08343i
\(13\) 2.58633i 0.717320i −0.933468 0.358660i \(-0.883234\pi\)
0.933468 0.358660i \(-0.116766\pi\)
\(14\) 0 0
\(15\) −3.65544 −0.943831
\(16\) 0.655442 3.94593i 0.163861 0.986484i
\(17\) −1.25951 −0.305476 −0.152738 0.988267i \(-0.548809\pi\)
−0.152738 + 0.988267i \(0.548809\pi\)
\(18\) −4.05137 + 1.48598i −0.954918 + 0.350249i
\(19\) 3.09834i 0.710808i −0.934713 0.355404i \(-0.884343\pi\)
0.934713 0.355404i \(-0.115657\pi\)
\(20\) 1.92162 + 2.26714i 0.429687 + 0.506948i
\(21\) 0 0
\(22\) 2.45748 + 6.70006i 0.523936 + 1.42846i
\(23\) −1.39593 −0.291072 −0.145536 0.989353i \(-0.546491\pi\)
−0.145536 + 0.989353i \(0.546491\pi\)
\(24\) 6.05137 + 3.43393i 1.23523 + 0.700948i
\(25\) 2.79186 0.558373
\(26\) −1.25951 3.43393i −0.247010 0.673449i
\(27\) 0.126378i 0.0243215i
\(28\) 0 0
\(29\) 0.638384i 0.118545i −0.998242 0.0592725i \(-0.981122\pi\)
0.998242 0.0592725i \(-0.0188781\pi\)
\(30\) −4.85341 + 1.78015i −0.886107 + 0.325010i
\(31\) 3.65544 0.656537 0.328268 0.944584i \(-0.393535\pi\)
0.328268 + 0.944584i \(0.393535\pi\)
\(32\) −1.05137 5.55829i −0.185858 0.982577i
\(33\) −12.4136 −2.16094
\(34\) −1.67228 + 0.613365i −0.286793 + 0.105191i
\(35\) 0 0
\(36\) −4.65544 + 3.94593i −0.775907 + 0.657656i
\(37\) 6.02026i 0.989725i −0.868971 0.494862i \(-0.835218\pi\)
0.868971 0.494862i \(-0.164782\pi\)
\(38\) −1.50885 4.11373i −0.244768 0.667335i
\(39\) 6.36226 1.01878
\(40\) 3.65544 + 2.07433i 0.577976 + 0.327980i
\(41\) −6.36226 −0.993618 −0.496809 0.867860i \(-0.665495\pi\)
−0.496809 + 0.867860i \(0.665495\pi\)
\(42\) 0 0
\(43\) 1.02401i 0.156160i 0.996947 + 0.0780801i \(0.0248790\pi\)
−0.996947 + 0.0780801i \(0.975121\pi\)
\(44\) 6.52569 + 7.69905i 0.983784 + 1.16068i
\(45\) 4.53428i 0.675931i
\(46\) −1.85341 + 0.679801i −0.273270 + 0.100231i
\(47\) 10.9663 1.59960 0.799802 0.600264i \(-0.204938\pi\)
0.799802 + 0.600264i \(0.204938\pi\)
\(48\) 9.70682 + 1.61236i 1.40106 + 0.232724i
\(49\) 0 0
\(50\) 3.70682 1.35960i 0.524223 0.192277i
\(51\) 3.09834i 0.433854i
\(52\) −3.34456 3.94593i −0.463807 0.547203i
\(53\) 5.76750i 0.792228i −0.918201 0.396114i \(-0.870359\pi\)
0.918201 0.396114i \(-0.129641\pi\)
\(54\) −0.0615446 0.167795i −0.00837516 0.0228340i
\(55\) −7.49868 −1.01112
\(56\) 0 0
\(57\) 7.62177 1.00953
\(58\) −0.310885 0.847596i −0.0408212 0.111295i
\(59\) 3.48397i 0.453574i −0.973944 0.226787i \(-0.927178\pi\)
0.973944 0.226787i \(-0.0728221\pi\)
\(60\) −5.57706 + 4.72709i −0.719996 + 0.610265i
\(61\) 12.8881i 1.65015i −0.565020 0.825077i \(-0.691132\pi\)
0.565020 0.825077i \(-0.308868\pi\)
\(62\) 4.85341 1.78015i 0.616383 0.226080i
\(63\) 0 0
\(64\) −4.10275 6.86786i −0.512844 0.858482i
\(65\) 3.84324 0.476695
\(66\) −16.4818 + 6.04528i −2.02877 + 0.744122i
\(67\) 0.512006i 0.0625515i −0.999511 0.0312757i \(-0.990043\pi\)
0.999511 0.0312757i \(-0.00995700\pi\)
\(68\) −1.92162 + 1.62876i −0.233031 + 0.197516i
\(69\) 3.43393i 0.413396i
\(70\) 0 0
\(71\) −7.41363 −0.879836 −0.439918 0.898038i \(-0.644993\pi\)
−0.439918 + 0.898038i \(0.644993\pi\)
\(72\) −4.25951 + 7.50624i −0.501988 + 0.884619i
\(73\) −9.89461 −1.15808 −0.579038 0.815300i \(-0.696572\pi\)
−0.579038 + 0.815300i \(0.696572\pi\)
\(74\) −2.93179 7.99323i −0.340814 0.929194i
\(75\) 6.86786i 0.793032i
\(76\) −4.00667 4.72709i −0.459596 0.542235i
\(77\) 0 0
\(78\) 8.44731 3.09834i 0.956469 0.350818i
\(79\) 8.70682 0.979593 0.489797 0.871837i \(-0.337071\pi\)
0.489797 + 0.871837i \(0.337071\pi\)
\(80\) 5.86358 + 0.973974i 0.655568 + 0.108894i
\(81\) −8.84324 −0.982582
\(82\) −8.44731 + 3.09834i −0.932849 + 0.342154i
\(83\) 2.97196i 0.326215i −0.986608 0.163107i \(-0.947848\pi\)
0.986608 0.163107i \(-0.0521517\pi\)
\(84\) 0 0
\(85\) 1.87161i 0.203004i
\(86\) 0.498680 + 1.35960i 0.0537741 + 0.146610i
\(87\) 1.57040 0.168364
\(88\) 12.4136 + 7.04427i 1.32330 + 0.750922i
\(89\) 2.58373 0.273875 0.136937 0.990580i \(-0.456274\pi\)
0.136937 + 0.990580i \(0.456274\pi\)
\(90\) −2.20814 6.02026i −0.232758 0.634591i
\(91\) 0 0
\(92\) −2.12976 + 1.80517i −0.222042 + 0.188202i
\(93\) 8.99222i 0.932450i
\(94\) 14.5602 5.34046i 1.50177 0.550826i
\(95\) 4.60407 0.472367
\(96\) 13.6731 2.58633i 1.39551 0.263966i
\(97\) 1.57040 0.159449 0.0797247 0.996817i \(-0.474596\pi\)
0.0797247 + 0.996817i \(0.474596\pi\)
\(98\) 0 0
\(99\) 15.3981i 1.54757i
\(100\) 4.25951 3.61034i 0.425951 0.361034i
\(101\) 0.209212i 0.0208174i −0.999946 0.0104087i \(-0.996687\pi\)
0.999946 0.0104087i \(-0.00331325\pi\)
\(102\) −1.50885 4.11373i −0.149398 0.407320i
\(103\) −6.87691 −0.677602 −0.338801 0.940858i \(-0.610021\pi\)
−0.338801 + 0.940858i \(0.610021\pi\)
\(104\) −6.36226 3.61034i −0.623871 0.354023i
\(105\) 0 0
\(106\) −2.80870 7.65764i −0.272805 0.743776i
\(107\) 12.9382i 1.25078i 0.780313 + 0.625389i \(0.215060\pi\)
−0.780313 + 0.625389i \(0.784940\pi\)
\(108\) −0.163428 0.192814i −0.0157259 0.0185535i
\(109\) 19.2177i 1.84072i 0.391074 + 0.920359i \(0.372104\pi\)
−0.391074 + 0.920359i \(0.627896\pi\)
\(110\) −9.95616 + 3.65176i −0.949282 + 0.348182i
\(111\) 14.8096 1.40566
\(112\) 0 0
\(113\) −1.05137 −0.0989050 −0.0494525 0.998776i \(-0.515748\pi\)
−0.0494525 + 0.998776i \(0.515748\pi\)
\(114\) 10.1196 3.71170i 0.947786 0.347633i
\(115\) 2.07433i 0.193432i
\(116\) −0.825537 0.973974i −0.0766491 0.0904312i
\(117\) 7.89187i 0.729603i
\(118\) −1.69665 4.62573i −0.156189 0.425833i
\(119\) 0 0
\(120\) −5.10275 + 8.99222i −0.465815 + 0.820874i
\(121\) −14.4650 −1.31500
\(122\) −6.27635 17.1118i −0.568234 1.54923i
\(123\) 15.6509i 1.41119i
\(124\) 5.57706 4.72709i 0.500835 0.424506i
\(125\) 11.5786i 1.03562i
\(126\) 0 0
\(127\) −7.20814 −0.639619 −0.319809 0.947482i \(-0.603619\pi\)
−0.319809 + 0.947482i \(0.603619\pi\)
\(128\) −8.79186 7.12061i −0.777098 0.629379i
\(129\) −2.51902 −0.221787
\(130\) 5.10275 1.87161i 0.447541 0.164151i
\(131\) 14.7532i 1.28900i 0.764606 + 0.644498i \(0.222934\pi\)
−0.764606 + 0.644498i \(0.777066\pi\)
\(132\) −18.9393 + 16.0529i −1.64846 + 1.39722i
\(133\) 0 0
\(134\) −0.249340 0.679801i −0.0215397 0.0587258i
\(135\) 0.187796 0.0161629
\(136\) −1.75819 + 3.09834i −0.150764 + 0.265680i
\(137\) −9.36226 −0.799872 −0.399936 0.916543i \(-0.630968\pi\)
−0.399936 + 0.916543i \(0.630968\pi\)
\(138\) −1.67228 4.55930i −0.142354 0.388113i
\(139\) 1.69519i 0.143784i −0.997412 0.0718921i \(-0.977096\pi\)
0.997412 0.0718921i \(-0.0229037\pi\)
\(140\) 0 0
\(141\) 26.9767i 2.27184i
\(142\) −9.84324 + 3.61034i −0.826026 + 0.302973i
\(143\) 13.0514 1.09141
\(144\) −2.00000 + 12.0405i −0.166667 + 1.00338i
\(145\) 0.948626 0.0787791
\(146\) −13.1373 + 4.81855i −1.08725 + 0.398786i
\(147\) 0 0
\(148\) −7.78520 9.18503i −0.639939 0.755005i
\(149\) 3.68668i 0.302025i 0.988532 + 0.151012i \(0.0482534\pi\)
−0.988532 + 0.151012i \(0.951747\pi\)
\(150\) 3.34456 + 9.11860i 0.273082 + 0.744530i
\(151\) −14.2772 −1.16186 −0.580932 0.813952i \(-0.697312\pi\)
−0.580932 + 0.813952i \(0.697312\pi\)
\(152\) −7.62177 4.32507i −0.618207 0.350809i
\(153\) 3.84324 0.310707
\(154\) 0 0
\(155\) 5.43191i 0.436302i
\(156\) 9.70682 8.22746i 0.777167 0.658724i
\(157\) 12.8881i 1.02858i 0.857615 + 0.514292i \(0.171945\pi\)
−0.857615 + 0.514292i \(0.828055\pi\)
\(158\) 11.5602 4.24011i 0.919682 0.337325i
\(159\) 14.1878 1.12517
\(160\) 8.25951 1.56232i 0.652972 0.123512i
\(161\) 0 0
\(162\) −11.7414 + 4.30654i −0.922488 + 0.338354i
\(163\) 3.23121i 0.253088i −0.991961 0.126544i \(-0.959612\pi\)
0.991961 0.126544i \(-0.0403885\pi\)
\(164\) −9.70682 + 8.22746i −0.757975 + 0.642457i
\(165\) 18.4464i 1.43605i
\(166\) −1.44731 3.94593i −0.112333 0.306264i
\(167\) 14.0487 1.08712 0.543562 0.839369i \(-0.317075\pi\)
0.543562 + 0.839369i \(0.317075\pi\)
\(168\) 0 0
\(169\) 6.31088 0.485453
\(170\) −0.911449 2.48497i −0.0699049 0.190589i
\(171\) 9.45419i 0.722980i
\(172\) 1.32422 + 1.56232i 0.100971 + 0.119126i
\(173\) 6.53876i 0.497133i −0.968615 0.248566i \(-0.920041\pi\)
0.968615 0.248566i \(-0.0799594\pi\)
\(174\) 2.08505 0.764762i 0.158067 0.0579765i
\(175\) 0 0
\(176\) 19.9123 + 3.30755i 1.50095 + 0.249316i
\(177\) 8.57040 0.644190
\(178\) 3.43047 1.25824i 0.257125 0.0943092i
\(179\) 0.126378i 0.00944596i −0.999989 0.00472298i \(-0.998497\pi\)
0.999989 0.00472298i \(-0.00150338\pi\)
\(180\) −5.86358 6.91789i −0.437045 0.515629i
\(181\) 2.71920i 0.202117i −0.994880 0.101058i \(-0.967777\pi\)
0.994880 0.101058i \(-0.0322229\pi\)
\(182\) 0 0
\(183\) 31.7042 2.34364
\(184\) −1.94863 + 3.43393i −0.143655 + 0.253153i
\(185\) 8.94599 0.657722
\(186\) 4.37910 + 11.9392i 0.321091 + 0.875422i
\(187\) 6.35585i 0.464786i
\(188\) 16.7312 14.1813i 1.22025 1.03428i
\(189\) 0 0
\(190\) 6.11292 2.24212i 0.443478 0.162661i
\(191\) −2.44731 −0.177081 −0.0885404 0.996073i \(-0.528220\pi\)
−0.0885404 + 0.996073i \(0.528220\pi\)
\(192\) 16.8946 10.0926i 1.21926 0.728369i
\(193\) 3.94863 0.284228 0.142114 0.989850i \(-0.454610\pi\)
0.142114 + 0.989850i \(0.454610\pi\)
\(194\) 2.08505 0.764762i 0.149698 0.0549067i
\(195\) 9.45419i 0.677029i
\(196\) 0 0
\(197\) 19.5468i 1.39265i −0.717727 0.696325i \(-0.754817\pi\)
0.717727 0.696325i \(-0.245183\pi\)
\(198\) −7.49868 20.4444i −0.532908 1.45292i
\(199\) −20.7962 −1.47421 −0.737103 0.675780i \(-0.763807\pi\)
−0.737103 + 0.675780i \(0.763807\pi\)
\(200\) 3.89725 6.86786i 0.275577 0.485631i
\(201\) 1.25951 0.0888390
\(202\) −0.101884 0.277775i −0.00716850 0.0195442i
\(203\) 0 0
\(204\) −4.00667 4.72709i −0.280523 0.330963i
\(205\) 9.45419i 0.660309i
\(206\) −9.13062 + 3.34897i −0.636160 + 0.233334i
\(207\) 4.25951 0.296056
\(208\) −10.2055 1.69519i −0.707624 0.117540i
\(209\) 15.6351 1.08150
\(210\) 0 0
\(211\) 17.2132i 1.18500i 0.805569 + 0.592502i \(0.201860\pi\)
−0.805569 + 0.592502i \(0.798140\pi\)
\(212\) −7.45834 8.79941i −0.512241 0.604346i
\(213\) 18.2372i 1.24959i
\(214\) 6.30071 + 17.1783i 0.430708 + 1.17428i
\(215\) −1.52166 −0.103776
\(216\) −0.310885 0.176415i −0.0211530 0.0120036i
\(217\) 0 0
\(218\) 9.35875 + 25.5157i 0.633855 + 1.72814i
\(219\) 24.3403i 1.64476i
\(220\) −11.4406 + 9.69704i −0.771328 + 0.653774i
\(221\) 3.25751i 0.219124i
\(222\) 19.6630 7.21207i 1.31969 0.484042i
\(223\) −17.5164 −1.17298 −0.586492 0.809955i \(-0.699491\pi\)
−0.586492 + 0.809955i \(0.699491\pi\)
\(224\) 0 0
\(225\) −8.51902 −0.567935
\(226\) −1.39593 + 0.512006i −0.0928560 + 0.0340581i
\(227\) 13.1909i 0.875512i 0.899094 + 0.437756i \(0.144227\pi\)
−0.899094 + 0.437756i \(0.855773\pi\)
\(228\) 11.6284 9.85621i 0.770112 0.652744i
\(229\) 17.1696i 1.13460i 0.823511 + 0.567301i \(0.192012\pi\)
−0.823511 + 0.567301i \(0.807988\pi\)
\(230\) −1.01017 2.75413i −0.0666087 0.181602i
\(231\) 0 0
\(232\) −1.57040 0.891141i −0.103102 0.0585062i
\(233\) 24.8786 1.62985 0.814927 0.579564i \(-0.196777\pi\)
0.814927 + 0.579564i \(0.196777\pi\)
\(234\) 3.84324 + 10.4782i 0.251240 + 0.684981i
\(235\) 16.2957i 1.06302i
\(236\) −4.50535 5.31544i −0.293273 0.346006i
\(237\) 21.4184i 1.39127i
\(238\) 0 0
\(239\) −13.3242 −0.861872 −0.430936 0.902383i \(-0.641817\pi\)
−0.430936 + 0.902383i \(0.641817\pi\)
\(240\) −2.39593 + 14.4241i −0.154657 + 0.931074i
\(241\) 22.2435 1.43283 0.716416 0.697673i \(-0.245781\pi\)
0.716416 + 0.697673i \(0.245781\pi\)
\(242\) −19.2055 + 7.04427i −1.23458 + 0.452823i
\(243\) 22.1331i 1.41984i
\(244\) −16.6665 19.6632i −1.06696 1.25881i
\(245\) 0 0
\(246\) −7.62177 20.7800i −0.485946 1.32488i
\(247\) −8.01333 −0.509876
\(248\) 5.10275 8.99222i 0.324025 0.571007i
\(249\) 7.31088 0.463308
\(250\) 5.63861 + 15.3731i 0.356617 + 0.972280i
\(251\) 27.4386i 1.73191i 0.500121 + 0.865955i \(0.333289\pi\)
−0.500121 + 0.865955i \(0.666711\pi\)
\(252\) 0 0
\(253\) 7.04427i 0.442870i
\(254\) −9.57040 + 3.51027i −0.600500 + 0.220254i
\(255\) 4.60407 0.288318
\(256\) −15.1408 5.17266i −0.946299 0.323292i
\(257\) 24.1895 1.50890 0.754451 0.656357i \(-0.227903\pi\)
0.754451 + 0.656357i \(0.227903\pi\)
\(258\) −3.34456 + 1.22673i −0.208223 + 0.0763729i
\(259\) 0 0
\(260\) 5.86358 4.96995i 0.363644 0.308223i
\(261\) 1.94795i 0.120575i
\(262\) 7.18463 + 19.5882i 0.443868 + 1.21016i
\(263\) −10.8769 −0.670699 −0.335350 0.942094i \(-0.608854\pi\)
−0.335350 + 0.942094i \(0.608854\pi\)
\(264\) −17.3286 + 30.5370i −1.06650 + 1.87942i
\(265\) 8.57040 0.526475
\(266\) 0 0
\(267\) 6.35585i 0.388972i
\(268\) −0.662108 0.781160i −0.0404447 0.0477170i
\(269\) 24.0047i 1.46359i 0.681523 + 0.731796i \(0.261318\pi\)
−0.681523 + 0.731796i \(0.738682\pi\)
\(270\) 0.249340 0.0914540i 0.0151744 0.00556571i
\(271\) −6.22320 −0.378032 −0.189016 0.981974i \(-0.560530\pi\)
−0.189016 + 0.981974i \(0.560530\pi\)
\(272\) −0.825537 + 4.96995i −0.0500555 + 0.301347i
\(273\) 0 0
\(274\) −12.4305 + 4.55930i −0.750952 + 0.275437i
\(275\) 14.0885i 0.849571i
\(276\) −4.44064 5.23910i −0.267295 0.315357i
\(277\) 28.0007i 1.68240i −0.540726 0.841199i \(-0.681850\pi\)
0.540726 0.841199i \(-0.318150\pi\)
\(278\) −0.825537 2.25074i −0.0495124 0.134991i
\(279\) −11.1541 −0.667780
\(280\) 0 0
\(281\) −16.7112 −0.996906 −0.498453 0.866917i \(-0.666098\pi\)
−0.498453 + 0.866917i \(0.666098\pi\)
\(282\) 13.1373 + 35.8175i 0.782314 + 2.13290i
\(283\) 27.8506i 1.65554i −0.561065 0.827772i \(-0.689608\pi\)
0.561065 0.827772i \(-0.310392\pi\)
\(284\) −11.3109 + 9.58706i −0.671178 + 0.568887i
\(285\) 11.3258i 0.670882i
\(286\) 17.3286 6.35585i 1.02466 0.375829i
\(287\) 0 0
\(288\) 3.20814 + 16.9604i 0.189041 + 0.999403i
\(289\) −15.4136 −0.906684
\(290\) 1.25951 0.461969i 0.0739610 0.0271277i
\(291\) 3.86310i 0.226459i
\(292\) −15.0961 + 12.7954i −0.883431 + 0.748793i
\(293\) 20.1851i 1.17923i −0.807685 0.589614i \(-0.799280\pi\)
0.807685 0.589614i \(-0.200720\pi\)
\(294\) 0 0
\(295\) 5.17710 0.301423
\(296\) −14.8096 8.40387i −0.860788 0.488465i
\(297\) 0.637741 0.0370055
\(298\) 1.79537 + 4.89489i 0.104003 + 0.283553i
\(299\) 3.61034i 0.208792i
\(300\) 8.88128 + 10.4782i 0.512761 + 0.604959i
\(301\) 0 0
\(302\) −18.9562 + 6.95282i −1.09080 + 0.400090i
\(303\) 0.514652 0.0295660
\(304\) −12.2258 2.03078i −0.701200 0.116473i
\(305\) 19.1515 1.09661
\(306\) 5.10275 1.87161i 0.291705 0.106993i
\(307\) 17.8844i 1.02071i −0.859962 0.510357i \(-0.829513\pi\)
0.859962 0.510357i \(-0.170487\pi\)
\(308\) 0 0
\(309\) 16.9169i 0.962368i
\(310\) 2.64527 + 7.21207i 0.150241 + 0.409618i
\(311\) 1.43133 0.0811635 0.0405818 0.999176i \(-0.487079\pi\)
0.0405818 + 0.999176i \(0.487079\pi\)
\(312\) 8.88128 15.6509i 0.502803 0.886056i
\(313\) −4.85657 −0.274510 −0.137255 0.990536i \(-0.543828\pi\)
−0.137255 + 0.990536i \(0.543828\pi\)
\(314\) 6.27635 + 17.1118i 0.354195 + 0.965676i
\(315\) 0 0
\(316\) 13.2839 11.2594i 0.747277 0.633389i
\(317\) 11.2930i 0.634278i −0.948379 0.317139i \(-0.897278\pi\)
0.948379 0.317139i \(-0.102722\pi\)
\(318\) 18.8374 6.90927i 1.05635 0.387453i
\(319\) 3.22147 0.180368
\(320\) 10.2055 6.09660i 0.570505 0.340810i
\(321\) −31.8273 −1.77642
\(322\) 0 0
\(323\) 3.90239i 0.217135i
\(324\) −13.4920 + 11.4358i −0.749556 + 0.635321i
\(325\) 7.22069i 0.400532i
\(326\) −1.57356 4.29014i −0.0871513 0.237609i
\(327\) −47.2746 −2.61429
\(328\) −8.88128 + 15.6509i −0.490387 + 0.864174i
\(329\) 0 0
\(330\) −8.98316 24.4917i −0.494507 1.34822i
\(331\) 23.8348i 1.31008i 0.755595 + 0.655039i \(0.227348\pi\)
−0.755595 + 0.655039i \(0.772652\pi\)
\(332\) −3.84324 4.53428i −0.210925 0.248851i
\(333\) 18.3701i 1.00667i
\(334\) 18.6528 6.84155i 1.02064 0.374353i
\(335\) 0.760830 0.0415686
\(336\) 0 0
\(337\) 16.4650 0.896906 0.448453 0.893806i \(-0.351975\pi\)
0.448453 + 0.893806i \(0.351975\pi\)
\(338\) 8.37910 3.07332i 0.455763 0.167167i
\(339\) 2.58633i 0.140470i
\(340\) −2.42030 2.85549i −0.131259 0.154861i
\(341\) 18.4464i 0.998929i
\(342\) 4.60407 + 12.5525i 0.248959 + 0.678763i
\(343\) 0 0
\(344\) 2.51902 + 1.42945i 0.135817 + 0.0770708i
\(345\) 5.10275 0.274723
\(346\) −3.18429 8.68165i −0.171189 0.466728i
\(347\) 3.21822i 0.172763i 0.996262 + 0.0863817i \(0.0275304\pi\)
−0.996262 + 0.0863817i \(0.972470\pi\)
\(348\) 2.39593 2.03078i 0.128435 0.108861i
\(349\) 22.8716i 1.22429i −0.790747 0.612143i \(-0.790308\pi\)
0.790747 0.612143i \(-0.209692\pi\)
\(350\) 0 0
\(351\) −0.326856 −0.0174463
\(352\) 28.0487 5.30554i 1.49500 0.282786i
\(353\) −23.3216 −1.24128 −0.620641 0.784095i \(-0.713128\pi\)
−0.620641 + 0.784095i \(0.713128\pi\)
\(354\) 11.3791 4.17367i 0.604792 0.221828i
\(355\) 11.0165i 0.584696i
\(356\) 3.94196 3.34119i 0.208923 0.177083i
\(357\) 0 0
\(358\) −0.0615446 0.167795i −0.00325273 0.00886825i
\(359\) −5.10976 −0.269683 −0.134841 0.990867i \(-0.543052\pi\)
−0.134841 + 0.990867i \(0.543052\pi\)
\(360\) −11.1541 6.32955i −0.587874 0.333596i
\(361\) 9.40030 0.494753
\(362\) −1.32422 3.61034i −0.0695993 0.189755i
\(363\) 35.5833i 1.86764i
\(364\) 0 0
\(365\) 14.7032i 0.769600i
\(366\) 42.0943 15.4395i 2.20030 0.807037i
\(367\) −28.1559 −1.46972 −0.734862 0.678217i \(-0.762753\pi\)
−0.734862 + 0.678217i \(0.762753\pi\)
\(368\) −0.914953 + 5.50826i −0.0476952 + 0.287138i
\(369\) 19.4136 1.01063
\(370\) 11.8778 4.35658i 0.617496 0.226488i
\(371\) 0 0
\(372\) 11.6284 + 13.7193i 0.602906 + 0.711313i
\(373\) 7.04427i 0.364739i 0.983230 + 0.182369i \(0.0583766\pi\)
−0.983230 + 0.182369i \(0.941623\pi\)
\(374\) −3.09522 8.43880i −0.160050 0.436360i
\(375\) −28.4827 −1.47084
\(376\) 15.3082 26.9767i 0.789462 1.39122i
\(377\) −1.65107 −0.0850346
\(378\) 0 0
\(379\) 13.1974i 0.677905i −0.940803 0.338953i \(-0.889927\pi\)
0.940803 0.338953i \(-0.110073\pi\)
\(380\) 7.02437 5.95383i 0.360342 0.305425i
\(381\) 17.7317i 0.908422i
\(382\) −3.24934 + 1.19181i −0.166251 + 0.0609781i
\(383\) 4.93092 0.251958 0.125979 0.992033i \(-0.459793\pi\)
0.125979 + 0.992033i \(0.459793\pi\)
\(384\) 17.5164 21.6276i 0.893879 1.10368i
\(385\) 0 0
\(386\) 5.24267 1.92293i 0.266845 0.0978746i
\(387\) 3.12464i 0.158834i
\(388\) 2.39593 2.03078i 0.121635 0.103097i
\(389\) 22.9479i 1.16350i 0.813366 + 0.581752i \(0.197633\pi\)
−0.813366 + 0.581752i \(0.802367\pi\)
\(390\) 4.60407 + 12.5525i 0.233136 + 0.635622i
\(391\) 1.75819 0.0889155
\(392\) 0 0
\(393\) −36.2923 −1.83070
\(394\) −9.51902 25.9527i −0.479561 1.30748i
\(395\) 12.9382i 0.650989i
\(396\) −19.9123 23.4927i −1.00063 1.18055i
\(397\) 29.9158i 1.50143i −0.660625 0.750716i \(-0.729709\pi\)
0.660625 0.750716i \(-0.270291\pi\)
\(398\) −27.6116 + 10.1275i −1.38404 + 0.507646i
\(399\) 0 0
\(400\) 1.82991 11.0165i 0.0914953 0.550826i
\(401\) −15.6705 −0.782548 −0.391274 0.920274i \(-0.627965\pi\)
−0.391274 + 0.920274i \(0.627965\pi\)
\(402\) 1.67228 0.613365i 0.0834057 0.0305919i
\(403\) 9.45419i 0.470947i
\(404\) −0.270546 0.319192i −0.0134602 0.0158804i
\(405\) 13.1409i 0.652975i
\(406\) 0 0
\(407\) 30.3800 1.50588
\(408\) −7.62177 4.32507i −0.377334 0.214123i
\(409\) 26.0868 1.28991 0.644954 0.764221i \(-0.276876\pi\)
0.644954 + 0.764221i \(0.276876\pi\)
\(410\) −4.60407 12.5525i −0.227379 0.619925i
\(411\) 23.0307i 1.13602i
\(412\) −10.4920 + 8.89299i −0.516904 + 0.438126i
\(413\) 0 0
\(414\) 5.65544 2.07433i 0.277950 0.101948i
\(415\) 4.41627 0.216786
\(416\) −14.3756 + 2.71920i −0.704821 + 0.133320i
\(417\) 4.17009 0.204210
\(418\) 20.7591 7.61409i 1.01536 0.372417i
\(419\) 0.252757i 0.0123480i −0.999981 0.00617398i \(-0.998035\pi\)
0.999981 0.00617398i \(-0.00196525\pi\)
\(420\) 0 0
\(421\) 18.3701i 0.895302i 0.894208 + 0.447651i \(0.147739\pi\)
−0.894208 + 0.447651i \(0.852261\pi\)
\(422\) 8.38260 + 22.8543i 0.408059 + 1.11253i
\(423\) −33.4624 −1.62700
\(424\) −14.1878 8.05104i −0.689020 0.390993i
\(425\) −3.51638 −0.170570
\(426\) −8.88128 24.2139i −0.430299 1.17317i
\(427\) 0 0
\(428\) 16.7312 + 19.7396i 0.808732 + 0.954148i
\(429\) 32.1058i 1.55008i
\(430\) −2.02034 + 0.741029i −0.0974295 + 0.0357356i
\(431\) 27.4447 1.32196 0.660982 0.750402i \(-0.270140\pi\)
0.660982 + 0.750402i \(0.270140\pi\)
\(432\) −0.498680 0.0828337i −0.0239928 0.00398534i
\(433\) 7.26215 0.348997 0.174498 0.984657i \(-0.444170\pi\)
0.174498 + 0.984657i \(0.444170\pi\)
\(434\) 0 0
\(435\) 2.33358i 0.111886i
\(436\) 24.8516 + 29.3201i 1.19018 + 1.40418i
\(437\) 4.32507i 0.206896i
\(438\) −11.8534 32.3171i −0.566378 1.54417i
\(439\) −30.0044 −1.43203 −0.716015 0.698085i \(-0.754036\pi\)
−0.716015 + 0.698085i \(0.754036\pi\)
\(440\) −10.4676 + 18.4464i −0.499025 + 0.879398i
\(441\) 0 0
\(442\) 1.58637 + 4.32507i 0.0754558 + 0.205723i
\(443\) 35.0842i 1.66690i −0.552593 0.833451i \(-0.686362\pi\)
0.552593 0.833451i \(-0.313638\pi\)
\(444\) 22.5948 19.1512i 1.07230 0.908877i
\(445\) 3.83937i 0.182003i
\(446\) −23.2569 + 8.53025i −1.10124 + 0.403919i
\(447\) −9.06908 −0.428953
\(448\) 0 0
\(449\) −21.0107 −0.991556 −0.495778 0.868449i \(-0.665117\pi\)
−0.495778 + 0.868449i \(0.665117\pi\)
\(450\) −11.3109 + 4.14865i −0.533200 + 0.195569i
\(451\) 32.1058i 1.51180i
\(452\) −1.60407 + 1.35960i −0.0754490 + 0.0639503i
\(453\) 35.1213i 1.65014i
\(454\) 6.42380 + 17.5139i 0.301484 + 0.821966i
\(455\) 0 0
\(456\) 10.6395 18.7492i 0.498239 0.878012i
\(457\) 13.3756 0.625684 0.312842 0.949805i \(-0.398719\pi\)
0.312842 + 0.949805i \(0.398719\pi\)
\(458\) 8.36139 + 22.7965i 0.390702 + 1.06521i
\(459\) 0.159175i 0.00742964i
\(460\) −2.68245 3.16477i −0.125070 0.147558i
\(461\) 2.68641i 0.125118i 0.998041 + 0.0625592i \(0.0199262\pi\)
−0.998041 + 0.0625592i \(0.980074\pi\)
\(462\) 0 0
\(463\) −21.0380 −0.977721 −0.488860 0.872362i \(-0.662587\pi\)
−0.488860 + 0.872362i \(0.662587\pi\)
\(464\) −2.51902 0.418424i −0.116943 0.0194248i
\(465\) −13.3623 −0.619660
\(466\) 33.0319 12.1156i 1.53017 0.561243i
\(467\) 24.6931i 1.14266i 0.820720 + 0.571331i \(0.193573\pi\)
−0.820720 + 0.571331i \(0.806427\pi\)
\(468\) 10.2055 + 12.0405i 0.471749 + 0.556573i
\(469\) 0 0
\(470\) 7.93582 + 21.6362i 0.366052 + 0.998004i
\(471\) −31.7042 −1.46085
\(472\) −8.57040 4.86338i −0.394484 0.223855i
\(473\) −5.16745 −0.237600
\(474\) 10.4305 + 28.4376i 0.479087 + 1.30618i
\(475\) 8.65014i 0.396896i
\(476\) 0 0
\(477\) 17.5988i 0.805794i
\(478\) −17.6908 + 6.48872i −0.809160 + 0.296787i
\(479\) 40.9123 1.86933 0.934666 0.355528i \(-0.115699\pi\)
0.934666 + 0.355528i \(0.115699\pi\)
\(480\) 3.84324 + 20.3180i 0.175419 + 0.927386i
\(481\) −15.5704 −0.709949
\(482\) 29.5332 10.8323i 1.34520 0.493399i
\(483\) 0 0
\(484\) −22.0691 + 18.7057i −1.00314 + 0.850257i
\(485\) 2.33358i 0.105962i
\(486\) −10.7785 29.3866i −0.488924 1.33300i
\(487\) 17.5341 0.794545 0.397273 0.917701i \(-0.369957\pi\)
0.397273 + 0.917701i \(0.369957\pi\)
\(488\) −31.7042 17.9909i −1.43518 0.814411i
\(489\) 7.94863 0.359449
\(490\) 0 0
\(491\) 15.7509i 0.710830i −0.934709 0.355415i \(-0.884340\pi\)
0.934709 0.355415i \(-0.115660\pi\)
\(492\) −20.2392 23.8783i −0.912452 1.07652i
\(493\) 0.804051i 0.0362127i
\(494\) −10.6395 + 3.90239i −0.478692 + 0.175577i
\(495\) 22.8813 1.02844
\(496\) 2.39593 14.4241i 0.107581 0.647663i
\(497\) 0 0
\(498\) 9.70682 3.56031i 0.434973 0.159541i
\(499\) 10.1862i 0.455995i −0.973662 0.227997i \(-0.926782\pi\)
0.973662 0.227997i \(-0.0732178\pi\)
\(500\) 14.9730 + 17.6652i 0.669613 + 0.790014i
\(501\) 34.5592i 1.54399i
\(502\) 13.3623 + 36.4309i 0.596387 + 1.62599i
\(503\) −27.1001 −1.20833 −0.604167 0.796858i \(-0.706494\pi\)
−0.604167 + 0.796858i \(0.706494\pi\)
\(504\) 0 0
\(505\) 0.310885 0.0138342
\(506\) −3.43047 9.35283i −0.152503 0.415784i
\(507\) 15.5245i 0.689467i
\(508\) −10.9974 + 9.32132i −0.487929 + 0.413567i
\(509\) 22.4424i 0.994741i 0.867538 + 0.497371i \(0.165701\pi\)
−0.867538 + 0.497371i \(0.834299\pi\)
\(510\) 6.11292 2.24212i 0.270685 0.0992828i
\(511\) 0 0
\(512\) −22.6218 + 0.505513i −0.999750 + 0.0223407i
\(513\) −0.391563 −0.0172879
\(514\) 32.1169 11.7800i 1.41662 0.519593i
\(515\) 10.2190i 0.450301i
\(516\) −3.84324 + 3.25751i −0.169189 + 0.143404i
\(517\) 55.3392i 2.43382i
\(518\) 0 0
\(519\) 16.0850 0.706055
\(520\) 5.36490 9.45419i 0.235266 0.414594i
\(521\) 10.2702 0.449946 0.224973 0.974365i \(-0.427771\pi\)
0.224973 + 0.974365i \(0.427771\pi\)
\(522\) 0.948626 + 2.58633i 0.0415202 + 0.113201i
\(523\) 17.8581i 0.780879i 0.920629 + 0.390439i \(0.127677\pi\)
−0.920629 + 0.390439i \(0.872323\pi\)
\(524\) 19.0784 + 22.5088i 0.833443 + 0.983302i
\(525\) 0 0
\(526\) −14.4415 + 5.29692i −0.629680 + 0.230956i
\(527\) −4.60407 −0.200556
\(528\) −8.13642 + 48.9834i −0.354092 + 2.13173i
\(529\) −21.0514 −0.915277
\(530\) 11.3791 4.17367i 0.494276 0.181293i
\(531\) 10.6309i 0.461341i
\(532\) 0 0
\(533\) 16.4549i 0.712742i
\(534\) 3.09522 + 8.43880i 0.133943 + 0.365183i
\(535\) −19.2258 −0.831205
\(536\) −1.25951 0.714725i −0.0544026 0.0308714i
\(537\) 0.310885 0.0134157
\(538\) 11.6900 + 31.8716i 0.503991 + 1.37408i
\(539\) 0 0
\(540\) 0.286517 0.242851i 0.0123297 0.0104506i
\(541\) 23.0135i 0.989427i −0.869056 0.494714i \(-0.835273\pi\)
0.869056 0.494714i \(-0.164727\pi\)
\(542\) −8.26267 + 3.03062i −0.354912 + 0.130176i
\(543\) 6.68912 0.287057
\(544\) 1.32422 + 7.00073i 0.0567753 + 0.300154i
\(545\) −28.5571 −1.22325
\(546\) 0 0
\(547\) 9.10136i 0.389146i −0.980888 0.194573i \(-0.937668\pi\)
0.980888 0.194573i \(-0.0623321\pi\)
\(548\) −14.2839 + 12.1070i −0.610177 + 0.517184i
\(549\) 39.3265i 1.67841i
\(550\) 6.86094 + 18.7057i 0.292551 + 0.797612i
\(551\) −1.97793 −0.0842626
\(552\) −8.44731 4.79353i −0.359541 0.204026i
\(553\) 0 0
\(554\) −13.6360 37.1771i −0.579337 1.57950i
\(555\) 22.0067i 0.934133i
\(556\) −2.19216 2.58633i −0.0929685 0.109685i
\(557\) 17.3223i 0.733970i −0.930227 0.366985i \(-0.880390\pi\)
0.930227 0.366985i \(-0.119610\pi\)
\(558\) −14.8096 + 5.43191i −0.626939 + 0.229951i
\(559\) 2.64843 0.112017
\(560\) 0 0
\(561\) 15.6351 0.660115
\(562\) −22.1878 + 8.13813i −0.935936 + 0.343286i
\(563\) 7.98545i 0.336547i −0.985740 0.168273i \(-0.946181\pi\)
0.985740 0.168273i \(-0.0538191\pi\)
\(564\) 34.8853 + 41.1579i 1.46894 + 1.73306i
\(565\) 1.56232i 0.0657273i
\(566\) −13.5629 36.9778i −0.570090 1.55429i
\(567\) 0 0
\(568\) −10.3489 + 18.2372i −0.434231 + 0.765216i
\(569\) 11.9707 0.501838 0.250919 0.968008i \(-0.419267\pi\)
0.250919 + 0.968008i \(0.419267\pi\)
\(570\) 5.51552 + 15.0375i 0.231020 + 0.629852i
\(571\) 42.6103i 1.78318i −0.452839 0.891592i \(-0.649589\pi\)
0.452839 0.891592i \(-0.350411\pi\)
\(572\) 19.9123 16.8776i 0.832576 0.705688i
\(573\) 6.02026i 0.251500i
\(574\) 0 0
\(575\) −3.89725 −0.162527
\(576\) 12.5190 + 20.9564i 0.521626 + 0.873183i
\(577\) 29.9300 1.24600 0.623001 0.782221i \(-0.285913\pi\)
0.623001 + 0.782221i \(0.285913\pi\)
\(578\) −20.4650 + 7.50624i −0.851232 + 0.312218i
\(579\) 9.71344i 0.403677i
\(580\) 1.44731 1.22673i 0.0600961 0.0509372i
\(581\) 0 0
\(582\) 1.88128 + 5.12912i 0.0779816 + 0.212609i
\(583\) 29.1045 1.20538
\(584\) −13.8122 + 24.3403i −0.571553 + 1.00721i
\(585\) −11.7272 −0.484858
\(586\) −9.82991 26.8002i −0.406070 1.10711i
\(587\) 19.4269i 0.801833i −0.916115 0.400916i \(-0.868692\pi\)
0.916115 0.400916i \(-0.131308\pi\)
\(588\) 0 0
\(589\) 11.3258i 0.466671i
\(590\) 6.87375 2.52118i 0.282988 0.103795i
\(591\) 48.0841 1.97792
\(592\) −23.7556 3.94593i −0.976347 0.162177i
\(593\) 18.1541 0.745500 0.372750 0.927932i \(-0.378415\pi\)
0.372750 + 0.927932i \(0.378415\pi\)
\(594\) 0.846742 0.310572i 0.0347423 0.0127429i
\(595\) 0 0
\(596\) 4.76750 + 5.62473i 0.195284 + 0.230398i
\(597\) 51.1578i 2.09375i
\(598\) 1.75819 + 4.79353i 0.0718978 + 0.196022i
\(599\) 11.1852 0.457013 0.228507 0.973542i \(-0.426616\pi\)
0.228507 + 0.973542i \(0.426616\pi\)
\(600\) 16.8946 + 9.58706i 0.689720 + 0.391390i
\(601\) 4.21883 0.172090 0.0860448 0.996291i \(-0.472577\pi\)
0.0860448 + 0.996291i \(0.472577\pi\)
\(602\) 0 0
\(603\) 1.56232i 0.0636226i
\(604\) −21.7826 + 18.4628i −0.886320 + 0.751241i
\(605\) 21.4947i 0.873884i
\(606\) 0.683314 0.250629i 0.0277577 0.0101811i
\(607\) 27.2392 1.10560 0.552802 0.833313i \(-0.313559\pi\)
0.552802 + 0.833313i \(0.313559\pi\)
\(608\) −17.2215 + 3.25751i −0.698423 + 0.132110i
\(609\) 0 0
\(610\) 25.4278 9.32653i 1.02954 0.377620i
\(611\) 28.3626i 1.14743i
\(612\) 5.86358 4.96995i 0.237021 0.200898i
\(613\) 3.69967i 0.149428i 0.997205 + 0.0747141i \(0.0238044\pi\)
−0.997205 + 0.0747141i \(0.976196\pi\)
\(614\) −8.70946 23.7455i −0.351485 0.958288i
\(615\) 23.2569 0.937808
\(616\) 0 0
\(617\) 26.0487 1.04868 0.524341 0.851508i \(-0.324312\pi\)
0.524341 + 0.851508i \(0.324312\pi\)
\(618\) −8.23830 22.4609i −0.331393 0.903510i
\(619\) 32.0795i 1.28938i 0.764443 + 0.644692i \(0.223014\pi\)
−0.764443 + 0.644692i \(0.776986\pi\)
\(620\) 7.02437 + 8.28740i 0.282105 + 0.332830i
\(621\) 0.176415i 0.00707931i
\(622\) 1.90041 0.697042i 0.0761996 0.0279488i
\(623\) 0 0
\(624\) 4.17009 25.1051i 0.166937 1.00501i
\(625\) −3.24618 −0.129847
\(626\) −6.44817 + 2.36509i −0.257721 + 0.0945279i
\(627\) 38.4616i 1.53601i
\(628\) 16.6665 + 19.6632i 0.665065 + 0.784648i
\(629\) 7.58258i 0.302337i
\(630\) 0 0
\(631\) 11.7538 0.467912 0.233956 0.972247i \(-0.424833\pi\)
0.233956 + 0.972247i \(0.424833\pi\)
\(632\) 12.1541 21.4184i 0.483465 0.851977i
\(633\) −42.3436 −1.68301
\(634\) −5.49955 14.9940i −0.218415 0.595486i
\(635\) 10.7111i 0.425059i
\(636\) 21.6461 18.3472i 0.858325 0.727513i
\(637\) 0 0
\(638\) 4.27721 1.56881i 0.169336 0.0621099i
\(639\) 22.6218 0.894903
\(640\) 10.5811 13.0645i 0.418254 0.516421i
\(641\) 41.8273 1.65208 0.826039 0.563613i \(-0.190589\pi\)
0.826039 + 0.563613i \(0.190589\pi\)
\(642\) −42.2577 + 15.4995i −1.66778 + 0.611715i
\(643\) 42.9368i 1.69326i 0.532180 + 0.846631i \(0.321373\pi\)
−0.532180 + 0.846631i \(0.678627\pi\)
\(644\) 0 0
\(645\) 3.74321i 0.147389i
\(646\) 1.90041 + 5.18129i 0.0747708 + 0.203855i
\(647\) 9.11781 0.358458 0.179229 0.983807i \(-0.442640\pi\)
0.179229 + 0.983807i \(0.442640\pi\)
\(648\) −12.3446 + 21.7540i −0.484940 + 0.854576i
\(649\) 17.5811 0.690118
\(650\) −3.51638 9.58706i −0.137924 0.376035i
\(651\) 0 0
\(652\) −4.17849 4.92981i −0.163642 0.193066i
\(653\) 21.7910i 0.852748i 0.904547 + 0.426374i \(0.140209\pi\)
−0.904547 + 0.426374i \(0.859791\pi\)
\(654\) −62.7675 + 23.0221i −2.45440 + 0.900236i
\(655\) −21.9230 −0.856603
\(656\) −4.17009 + 25.1051i −0.162815 + 0.980188i
\(657\) 30.1922 1.17791
\(658\) 0 0
\(659\) 0.152682i 0.00594765i −0.999996 0.00297383i \(-0.999053\pi\)
0.999996 0.00297383i \(-0.000946600\pi\)
\(660\) −23.8543 28.1434i −0.928526 1.09548i
\(661\) 28.4061i 1.10487i 0.833556 + 0.552435i \(0.186301\pi\)
−0.833556 + 0.552435i \(0.813699\pi\)
\(662\) 11.6072 + 31.6459i 0.451128 + 1.22995i
\(663\) −8.01333 −0.311212
\(664\) −7.31088 4.14865i −0.283717 0.160999i
\(665\) 0 0
\(666\) 8.94599 + 24.3903i 0.346650 + 0.945106i
\(667\) 0.891141i 0.0345051i
\(668\) 21.4340 18.1673i 0.829305 0.702916i
\(669\) 43.0895i 1.66594i
\(670\) 1.01017 0.370514i 0.0390263 0.0143142i
\(671\) 65.0371 2.51073
\(672\) 0 0
\(673\) 26.2542 1.01203 0.506013 0.862526i \(-0.331119\pi\)
0.506013 + 0.862526i \(0.331119\pi\)
\(674\) 21.8609 8.01825i 0.842052 0.308851i
\(675\) 0.352831i 0.0135805i
\(676\) 9.62844 8.16102i 0.370324 0.313885i
\(677\) 4.62361i 0.177700i −0.996045 0.0888498i \(-0.971681\pi\)
0.996045 0.0888498i \(-0.0283191\pi\)
\(678\) −1.25951 3.43393i −0.0483712 0.131879i
\(679\) 0 0
\(680\) −4.60407 2.61264i −0.176558 0.100190i
\(681\) −32.4490 −1.24345
\(682\) 8.98316 + 24.4917i 0.343983 + 0.937835i
\(683\) 19.4532i 0.744355i 0.928162 + 0.372178i \(0.121389\pi\)
−0.928162 + 0.372178i \(0.878611\pi\)
\(684\) 12.2258 + 14.4241i 0.467467 + 0.551521i
\(685\) 13.9121i 0.531555i
\(686\) 0 0
\(687\) −42.2365 −1.61142
\(688\) 4.04068 + 0.671180i 0.154050 + 0.0255885i
\(689\) −14.9167 −0.568280
\(690\) 6.77503 2.48497i 0.257921 0.0946013i
\(691\) 17.3724i 0.660876i 0.943828 + 0.330438i \(0.107196\pi\)
−0.943828 + 0.330438i \(0.892804\pi\)
\(692\) −8.45570 9.97610i −0.321438 0.379234i
\(693\) 0 0
\(694\) 1.56723 + 4.27290i 0.0594914 + 0.162197i
\(695\) 2.51902 0.0955519
\(696\) 2.19216 3.86310i 0.0830938 0.146430i
\(697\) 8.01333 0.303527
\(698\) −11.1382 30.3670i −0.421585 1.14941i
\(699\) 61.2003i 2.31481i
\(700\) 0 0
\(701\) 25.1180i 0.948695i −0.880338 0.474348i \(-0.842684\pi\)
0.880338 0.474348i \(-0.157316\pi\)
\(702\) −0.433974 + 0.159175i −0.0163793 + 0.00600766i
\(703\) −18.6528 −0.703504
\(704\) 34.6572 20.7036i 1.30619 0.780298i
\(705\) −40.0868 −1.50976
\(706\) −30.9646 + 11.3573i −1.16537 + 0.427438i
\(707\) 0 0
\(708\) 13.0757 11.0829i 0.491416 0.416523i
\(709\) 20.1088i 0.755202i 0.925968 + 0.377601i \(0.123251\pi\)
−0.925968 + 0.377601i \(0.876749\pi\)
\(710\) −5.36490 14.6269i −0.201341 0.548936i
\(711\) −26.5678 −0.996369
\(712\) 3.60671 6.35585i 0.135167 0.238196i
\(713\) −5.10275 −0.191099
\(714\) 0 0
\(715\) 19.3941i 0.725297i
\(716\) −0.163428 0.192814i −0.00610760 0.00720579i
\(717\) 32.7770i 1.22408i
\(718\) −6.78433 + 2.48839i −0.253189 + 0.0928657i
\(719\) 38.3933 1.43183 0.715914 0.698188i \(-0.246010\pi\)
0.715914 + 0.698188i \(0.246010\pi\)
\(720\) −17.8920 2.97196i −0.666794 0.110758i
\(721\) 0 0
\(722\) 12.4810 4.57783i 0.464494 0.170369i
\(723\) 54.7181i 2.03499i
\(724\) −3.51638 4.14865i −0.130685 0.154183i
\(725\) 1.78228i 0.0661923i
\(726\) −17.3286 47.2446i −0.643124 1.75341i
\(727\) −14.8679 −0.551422 −0.275711 0.961241i \(-0.588913\pi\)
−0.275711 + 0.961241i \(0.588913\pi\)
\(728\) 0 0
\(729\) 27.9167 1.03395
\(730\) −7.16027 19.5217i −0.265013 0.722532i
\(731\) 1.28975i 0.0477032i
\(732\) 48.3707 40.9988i 1.78783 1.51536i
\(733\) 42.0892i 1.55460i 0.629130 + 0.777300i \(0.283411\pi\)
−0.629130 + 0.777300i \(0.716589\pi\)
\(734\) −37.3831 + 13.7115i −1.37984 + 0.506102i
\(735\) 0 0
\(736\) 1.46765 + 7.75900i 0.0540982 + 0.286000i
\(737\) 2.58373 0.0951728
\(738\) 25.7759 9.45419i 0.948824 0.348014i
\(739\) 12.6854i 0.466640i −0.972400 0.233320i \(-0.925041\pi\)
0.972400 0.233320i \(-0.0749589\pi\)
\(740\) 13.6488 11.5686i 0.501739 0.425272i
\(741\) 19.7124i 0.724154i
\(742\) 0 0
\(743\) −25.7219 −0.943644 −0.471822 0.881694i \(-0.656404\pi\)
−0.471822 + 0.881694i \(0.656404\pi\)
\(744\) 22.1204 + 12.5525i 0.810975 + 0.460198i
\(745\) −5.47834 −0.200711
\(746\) 3.43047 + 9.35283i 0.125598 + 0.342431i
\(747\) 9.06856i 0.331801i
\(748\) −8.21917 9.69704i −0.300523 0.354559i
\(749\) 0 0
\(750\) −37.8171 + 13.8707i −1.38089 + 0.506487i
\(751\) 35.8609 1.30858 0.654292 0.756242i \(-0.272967\pi\)
0.654292 + 0.756242i \(0.272967\pi\)
\(752\) 7.18780 43.2724i 0.262112 1.57798i
\(753\) −67.4978 −2.45976
\(754\) −2.19216 + 0.804051i −0.0798339 + 0.0292818i
\(755\) 21.2157i 0.772117i
\(756\) 0 0
\(757\) 30.7289i 1.11686i 0.829551 + 0.558431i \(0.188597\pi\)
−0.829551 + 0.558431i \(0.811403\pi\)
\(758\) −6.42697 17.5225i −0.233438 0.636445i
\(759\) 17.3286 0.628988
\(760\) 6.42697 11.3258i 0.233131 0.410830i
\(761\) −45.1248 −1.63577 −0.817887 0.575379i \(-0.804854\pi\)
−0.817887 + 0.575379i \(0.804854\pi\)
\(762\) −8.63510 23.5427i −0.312817 0.852863i
\(763\) 0 0
\(764\) −3.73382 + 3.16477i −0.135085 + 0.114497i
\(765\) 5.71097i 0.206481i
\(766\) 6.54689 2.40130i 0.236549 0.0867624i
\(767\) −9.01069 −0.325357
\(768\) 12.7245 37.2457i 0.459156 1.34399i
\(769\) 28.0168 1.01031 0.505156 0.863028i \(-0.331435\pi\)
0.505156 + 0.863028i \(0.331435\pi\)
\(770\) 0 0
\(771\) 59.5051i 2.14302i
\(772\) 6.02437 5.10623i 0.216822 0.183777i
\(773\) 34.6356i 1.24576i −0.782319 0.622878i \(-0.785963\pi\)
0.782319 0.622878i \(-0.214037\pi\)
\(774\) −1.52166 4.14865i −0.0546950 0.149120i
\(775\) 10.2055 0.366592
\(776\) 2.19216 3.86310i 0.0786941 0.138677i
\(777\) 0 0
\(778\) 11.1753 + 30.4684i 0.400655 + 1.09235i
\(779\) 19.7124i 0.706271i
\(780\) 12.2258 + 14.4241i 0.437755 + 0.516467i
\(781\) 37.4113i 1.33868i
\(782\) 2.33439 0.856216i 0.0834775 0.0306182i
\(783\) −0.0806779 −0.00288319
\(784\) 0 0
\(785\) −19.1515 −0.683546
\(786\) −48.1860 + 17.6739i −1.71874 + 0.630406i
\(787\) 34.2672i 1.22149i 0.791826 + 0.610747i \(0.209131\pi\)
−0.791826 + 0.610747i \(0.790869\pi\)
\(788\) −25.2772 29.8222i −0.900463 1.06237i
\(789\) 26.7567i 0.952564i
\(790\) 6.30071 + 17.1783i 0.224169 + 0.611175i
\(791\) 0 0
\(792\) −37.8786 21.4947i −1.34596 0.763781i
\(793\) −33.3330 −1.18369
\(794\) −14.5686 39.7199i −0.517021 1.40961i
\(795\) 21.0828i 0.747729i
\(796\) −31.7285 + 26.8930i −1.12459 + 0.953197i
\(797\) 20.5838i 0.729114i −0.931181 0.364557i \(-0.881220\pi\)
0.931181 0.364557i \(-0.118780\pi\)
\(798\) 0 0
\(799\) −13.8122 −0.488641
\(800\) −2.93529 15.5180i −0.103778 0.548644i
\(801\) −7.88392 −0.278565
\(802\) −20.8061 + 7.63133i −0.734688 + 0.269472i
\(803\) 49.9310i 1.76203i
\(804\) 1.92162 1.62876i 0.0677703 0.0574418i
\(805\) 0 0
\(806\) −4.60407 12.5525i −0.162171 0.442144i
\(807\) −59.0505 −2.07867
\(808\) −0.514652 0.292046i −0.0181054 0.0102741i
\(809\) −46.9007 −1.64894 −0.824471 0.565905i \(-0.808527\pi\)
−0.824471 + 0.565905i \(0.808527\pi\)
\(810\) −6.39944 17.4474i −0.224853 0.613040i
\(811\) 22.2462i 0.781168i −0.920567 0.390584i \(-0.872273\pi\)
0.920567 0.390584i \(-0.127727\pi\)
\(812\) 0 0
\(813\) 15.3088i 0.536902i
\(814\) 40.3361 14.7946i 1.41378 0.518552i
\(815\) 4.80151 0.168190
\(816\) −12.2258 2.03078i −0.427990 0.0710916i
\(817\) 3.17273 0.111000
\(818\) 34.6360 12.7039i 1.21102 0.444182i
\(819\) 0 0
\(820\) −12.2258 14.4241i −0.426945 0.503713i
\(821\) 32.8007i 1.14475i 0.819991 + 0.572376i \(0.193978\pi\)
−0.819991 + 0.572376i \(0.806022\pi\)
\(822\) −11.2157 30.5784i −0.391191 1.06654i
\(823\) −13.7715 −0.480045 −0.240023 0.970767i \(-0.577155\pi\)
−0.240023 + 0.970767i \(0.577155\pi\)
\(824\) −9.59970 + 16.9169i −0.334421 + 0.589328i
\(825\) −34.6572 −1.20661
\(826\) 0 0
\(827\) 22.0460i 0.766615i −0.923621 0.383307i \(-0.874785\pi\)
0.923621 0.383307i \(-0.125215\pi\)
\(828\) 6.49868 5.50826i 0.225845 0.191425i
\(829\) 5.48195i 0.190396i −0.995458 0.0951980i \(-0.969652\pi\)
0.995458 0.0951980i \(-0.0303484\pi\)
\(830\) 5.86358 2.15067i 0.203528 0.0746508i
\(831\) 68.8804 2.38943
\(832\) −17.7626 + 10.6111i −0.615806 + 0.367873i
\(833\) 0 0
\(834\) 5.53672 2.03078i 0.191721 0.0703202i
\(835\) 20.8761i 0.722449i
\(836\) 23.8543 20.2188i 0.825017 0.699281i
\(837\) 0.461969i 0.0159680i
\(838\) −0.123089 0.335590i −0.00425205 0.0115928i
\(839\) −28.7512 −0.992601 −0.496301 0.868151i \(-0.665309\pi\)
−0.496301 + 0.868151i \(0.665309\pi\)
\(840\) 0 0
\(841\) 28.5925 0.985947
\(842\) 8.94599 + 24.3903i 0.308299 + 0.840546i
\(843\) 41.1088i 1.41586i
\(844\) 22.2595 + 26.2619i 0.766204 + 0.903973i
\(845\) 9.37785i 0.322608i
\(846\) −44.4287 + 16.2957i −1.52749 + 0.560259i
\(847\) 0 0
\(848\) −22.7582 3.78027i −0.781519 0.129815i
\(849\) 68.5111 2.35129
\(850\) −4.66877 + 1.71243i −0.160138 + 0.0587360i
\(851\) 8.40387i 0.288081i
\(852\) −23.5837 27.8243i −0.807965 0.953243i
\(853\) 21.7605i 0.745064i 0.928019 + 0.372532i \(0.121510\pi\)
−0.928019 + 0.372532i \(0.878490\pi\)
\(854\) 0 0
\(855\) −14.0487 −0.480457
\(856\) 31.8273 + 18.0608i 1.08783 + 0.617305i
\(857\) −11.7919 −0.402802 −0.201401 0.979509i \(-0.564549\pi\)
−0.201401 + 0.979509i \(0.564549\pi\)
\(858\) 15.6351 + 42.6275i 0.533774 + 1.45528i
\(859\) 4.79353i 0.163553i 0.996651 + 0.0817766i \(0.0260594\pi\)
−0.996651 + 0.0817766i \(0.973941\pi\)
\(860\) −2.32158 + 1.96776i −0.0791651 + 0.0671000i
\(861\) 0 0
\(862\) 36.4389 13.3652i 1.24111 0.455220i
\(863\) −0.125728 −0.00427985 −0.00213992 0.999998i \(-0.500681\pi\)
−0.00213992 + 0.999998i \(0.500681\pi\)
\(864\) −0.702447 + 0.132871i −0.0238977 + 0.00452036i
\(865\) 9.71646 0.330370
\(866\) 9.64211 3.53657i 0.327652 0.120178i
\(867\) 37.9168i 1.28772i
\(868\) 0 0
\(869\) 43.9371i 1.49046i
\(870\) 1.13642 + 3.09834i 0.0385283 + 0.105043i
\(871\) −1.32422 −0.0448694
\(872\) 47.2746 + 26.8266i 1.60092 + 0.908462i
\(873\) −4.79186 −0.162180
\(874\) 2.10625 + 5.74249i 0.0712451 + 0.194242i
\(875\) 0 0
\(876\) −31.4760 37.1357i −1.06348 1.25470i
\(877\) 29.9684i 1.01196i −0.862545 0.505981i \(-0.831131\pi\)
0.862545 0.505981i \(-0.168869\pi\)
\(878\) −39.8374 + 14.6117i −1.34445 + 0.493122i
\(879\) 49.6545 1.67481
\(880\) −4.91495 + 29.5893i −0.165683 + 0.997455i
\(881\) 30.2728 1.01992 0.509959 0.860199i \(-0.329661\pi\)
0.509959 + 0.860199i \(0.329661\pi\)
\(882\) 0 0
\(883\) 43.3423i 1.45858i −0.684203 0.729291i \(-0.739850\pi\)
0.684203 0.729291i \(-0.260150\pi\)
\(884\) 4.21251 + 4.96995i 0.141682 + 0.167157i
\(885\) 12.7354i 0.428097i
\(886\) −17.0856 46.5821i −0.574001 1.56496i
\(887\) −15.1364 −0.508231 −0.254116 0.967174i \(-0.581784\pi\)
−0.254116 + 0.967174i \(0.581784\pi\)
\(888\) 20.6731 36.4309i 0.693745 1.22254i
\(889\) 0 0
\(890\) 1.86972 + 5.09761i 0.0626732 + 0.170872i
\(891\) 44.6255i 1.49501i
\(892\) −26.7245 + 22.6516i −0.894803 + 0.758431i
\(893\) 33.9774i 1.13701i
\(894\) −12.0412 + 4.41652i −0.402718 + 0.147711i
\(895\) 0.187796 0.00627731
\(896\) 0 0
\(897\) −8.88128 −0.296537
\(898\) −27.8963 + 10.2319i −0.930913 + 0.341444i
\(899\) 2.33358i 0.0778291i
\(900\) −12.9974 + 11.0165i −0.433245 + 0.367217i
\(901\) 7.26423i 0.242007i
\(902\) −15.6351 42.6275i −0.520592 1.41934i
\(903\) 0 0
\(904\) −1.46765 + 2.58633i −0.0488132 + 0.0860201i
\(905\) 4.04068 0.134317
\(906\) −17.1036 46.6313i −0.568229 1.54922i
\(907\) 31.7266i 1.05347i 0.850031 + 0.526733i \(0.176583\pi\)
−0.850031 + 0.526733i \(0.823417\pi\)
\(908\) 17.0580 + 20.1252i 0.566091 + 0.667878i
\(909\) 0.638384i 0.0211739i
\(910\) 0 0
\(911\) 29.4757 0.976574 0.488287 0.872683i \(-0.337622\pi\)
0.488287 + 0.872683i \(0.337622\pi\)
\(912\) 4.99563 30.0750i 0.165422 0.995883i
\(913\) 14.9974 0.496340
\(914\) 17.7591 6.51374i 0.587417 0.215455i
\(915\) 47.1118i 1.55747i
\(916\) 22.2032 + 26.1955i 0.733614 + 0.865524i
\(917\) 0 0
\(918\) 0.0775161 + 0.211340i 0.00255841 + 0.00697525i
\(919\) 17.7175 0.584447 0.292223 0.956350i \(-0.405605\pi\)
0.292223 + 0.956350i \(0.405605\pi\)
\(920\) −5.10275 2.89562i −0.168233 0.0954657i
\(921\) 43.9947 1.44968
\(922\) 1.30825 + 3.56680i 0.0430848 + 0.117466i
\(923\) 19.1741i 0.631124i
\(924\) 0 0
\(925\) 16.8077i 0.552635i
\(926\) −27.9327 + 10.2453i −0.917924 + 0.336680i
\(927\) 20.9840 0.689206
\(928\) −3.54832 + 0.671180i −0.116479 + 0.0220326i
\(929\) −53.2676 −1.74765 −0.873826 0.486239i \(-0.838369\pi\)
−0.873826 + 0.486239i \(0.838369\pi\)
\(930\) −17.7414 + 6.50725i −0.581762 + 0.213381i
\(931\) 0 0
\(932\) 37.9570 32.1722i 1.24332 1.05384i
\(933\) 3.52102i 0.115273i
\(934\) 12.0252 + 32.7856i 0.393478 + 1.07278i
\(935\) 9.44467 0.308874
\(936\) 19.4136 + 11.0165i 0.634554 + 0.360086i
\(937\) 38.2055 1.24812 0.624060 0.781377i \(-0.285482\pi\)
0.624060 + 0.781377i \(0.285482\pi\)
\(938\) 0 0
\(939\) 11.9469i 0.389874i
\(940\) 21.0731 + 24.8622i 0.687329 + 0.810916i
\(941\) 9.59781i 0.312880i 0.987687 + 0.156440i \(0.0500017\pi\)
−0.987687 + 0.156440i \(0.949998\pi\)
\(942\) −42.0943 + 15.4395i −1.37151 + 0.503047i
\(943\) 8.88128 0.289214
\(944\) −13.7475 2.28354i −0.447443 0.0743229i
\(945\) 0 0
\(946\) −6.86094 + 2.51648i −0.223068 + 0.0818179i
\(947\) 16.5485i 0.537754i 0.963175 + 0.268877i \(0.0866525\pi\)
−0.963175 + 0.268877i \(0.913347\pi\)
\(948\) 27.6975 + 32.6777i 0.899573 + 1.06132i
\(949\) 25.5908i 0.830711i
\(950\) −4.21251 11.4850i −0.136672 0.372622i
\(951\) 27.7803 0.900837
\(952\) 0 0
\(953\) 6.08942 0.197256 0.0986278 0.995124i \(-0.468555\pi\)
0.0986278 + 0.995124i \(0.468555\pi\)
\(954\) 8.57040 + 23.3663i 0.277477 + 0.756512i
\(955\) 3.63665i 0.117679i
\(956\) −20.3286 + 17.2304i −0.657473 + 0.557272i
\(957\) 7.92466i 0.256168i
\(958\) 54.3201 19.9238i 1.75500 0.643708i
\(959\) 0 0
\(960\) 14.9974 + 25.1051i 0.484038 + 0.810262i
\(961\) −17.6377 −0.568959
\(962\) −20.6731 + 7.58258i −0.666529 + 0.244472i
\(963\) 39.4792i 1.27220i
\(964\) 33.9367 28.7646i 1.09303 0.926445i
\(965\) 5.86758i 0.188884i
\(966\) 0 0
\(967\) 21.5430 0.692778 0.346389 0.938091i \(-0.387408\pi\)
0.346389 + 0.938091i \(0.387408\pi\)
\(968\) −20.1922 + 35.5833i −0.649001 + 1.14369i
\(969\) −9.59970 −0.308387
\(970\) 1.13642 + 3.09834i 0.0364883 + 0.0994816i
\(971\) 2.62562i 0.0842602i 0.999112 + 0.0421301i \(0.0134144\pi\)
−0.999112 + 0.0421301i \(0.986586\pi\)
\(972\) −28.6218 33.7682i −0.918044 1.08311i
\(973\) 0 0
\(974\) 23.2804 8.53887i 0.745951 0.273603i
\(975\) 17.7626 0.568857
\(976\) −50.8557 8.44742i −1.62785 0.270395i
\(977\) −34.4676 −1.10272 −0.551359 0.834268i \(-0.685890\pi\)
−0.551359 + 0.834268i \(0.685890\pi\)
\(978\) 10.5536 3.87088i 0.337466 0.123777i
\(979\) 13.0382i 0.416704i
\(980\) 0 0
\(981\) 58.6403i 1.87224i
\(982\) −7.67050 20.9129i −0.244776 0.667356i
\(983\) −52.4420 −1.67264 −0.836320 0.548241i \(-0.815298\pi\)
−0.836320 + 0.548241i \(0.815298\pi\)
\(984\) −38.5004 21.8475i −1.22735 0.696474i
\(985\) 29.0461 0.925486
\(986\) 0.391563 + 1.06756i 0.0124699 + 0.0339979i
\(987\) 0 0
\(988\) −12.2258 + 10.3626i −0.388956 + 0.329677i
\(989\) 1.42945i 0.0454539i
\(990\) 30.3800 11.1429i 0.965539 0.354144i
\(991\) −16.1611 −0.513375 −0.256688 0.966494i \(-0.582631\pi\)
−0.256688 + 0.966494i \(0.582631\pi\)
\(992\) −3.84324 20.3180i −0.122023 0.645098i
\(993\) −58.6325 −1.86064
\(994\) 0 0
\(995\) 30.9028i 0.979684i
\(996\) 11.1541 9.45419i 0.353432 0.299567i
\(997\) 39.3700i 1.24686i −0.781879 0.623430i \(-0.785738\pi\)
0.781879 0.623430i \(-0.214262\pi\)
\(998\) −4.96053 13.5244i −0.157023 0.428107i
\(999\) −0.760830 −0.0240716
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.2.b.f.197.5 6
4.3 odd 2 1568.2.b.e.785.1 6
7.2 even 3 392.2.p.g.165.2 12
7.3 odd 6 56.2.p.a.37.4 yes 12
7.4 even 3 392.2.p.g.373.4 12
7.5 odd 6 56.2.p.a.53.2 yes 12
7.6 odd 2 392.2.b.e.197.5 6
8.3 odd 2 1568.2.b.e.785.6 6
8.5 even 2 inner 392.2.b.f.197.6 6
21.5 even 6 504.2.cj.c.109.5 12
21.17 even 6 504.2.cj.c.37.3 12
28.3 even 6 224.2.t.a.177.6 12
28.11 odd 6 1568.2.t.g.177.1 12
28.19 even 6 224.2.t.a.81.1 12
28.23 odd 6 1568.2.t.g.753.6 12
28.27 even 2 1568.2.b.f.785.6 6
56.3 even 6 224.2.t.a.177.1 12
56.5 odd 6 56.2.p.a.53.4 yes 12
56.11 odd 6 1568.2.t.g.177.6 12
56.13 odd 2 392.2.b.e.197.6 6
56.19 even 6 224.2.t.a.81.6 12
56.27 even 2 1568.2.b.f.785.1 6
56.37 even 6 392.2.p.g.165.4 12
56.45 odd 6 56.2.p.a.37.2 12
56.51 odd 6 1568.2.t.g.753.1 12
56.53 even 6 392.2.p.g.373.2 12
84.47 odd 6 2016.2.cr.c.1873.5 12
84.59 odd 6 2016.2.cr.c.1297.2 12
168.5 even 6 504.2.cj.c.109.3 12
168.59 odd 6 2016.2.cr.c.1297.5 12
168.101 even 6 504.2.cj.c.37.5 12
168.131 odd 6 2016.2.cr.c.1873.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.p.a.37.2 12 56.45 odd 6
56.2.p.a.37.4 yes 12 7.3 odd 6
56.2.p.a.53.2 yes 12 7.5 odd 6
56.2.p.a.53.4 yes 12 56.5 odd 6
224.2.t.a.81.1 12 28.19 even 6
224.2.t.a.81.6 12 56.19 even 6
224.2.t.a.177.1 12 56.3 even 6
224.2.t.a.177.6 12 28.3 even 6
392.2.b.e.197.5 6 7.6 odd 2
392.2.b.e.197.6 6 56.13 odd 2
392.2.b.f.197.5 6 1.1 even 1 trivial
392.2.b.f.197.6 6 8.5 even 2 inner
392.2.p.g.165.2 12 7.2 even 3
392.2.p.g.165.4 12 56.37 even 6
392.2.p.g.373.2 12 56.53 even 6
392.2.p.g.373.4 12 7.4 even 3
504.2.cj.c.37.3 12 21.17 even 6
504.2.cj.c.37.5 12 168.101 even 6
504.2.cj.c.109.3 12 168.5 even 6
504.2.cj.c.109.5 12 21.5 even 6
1568.2.b.e.785.1 6 4.3 odd 2
1568.2.b.e.785.6 6 8.3 odd 2
1568.2.b.f.785.1 6 56.27 even 2
1568.2.b.f.785.6 6 28.27 even 2
1568.2.t.g.177.1 12 28.11 odd 6
1568.2.t.g.177.6 12 56.11 odd 6
1568.2.t.g.753.1 12 56.51 odd 6
1568.2.t.g.753.6 12 28.23 odd 6
2016.2.cr.c.1297.2 12 84.59 odd 6
2016.2.cr.c.1297.5 12 168.59 odd 6
2016.2.cr.c.1873.2 12 168.131 odd 6
2016.2.cr.c.1873.5 12 84.47 odd 6