Properties

Label 392.2.p.g.373.4
Level $392$
Weight $2$
Character 392.373
Analytic conductor $3.130$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [392,2,Mod(165,392)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("392.165"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(392, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-2,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.13013575923\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.951588245534976.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 2 x^{10} - 9 x^{9} + 8 x^{8} - 13 x^{7} + 35 x^{6} - 26 x^{5} + 32 x^{4} - 72 x^{3} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 373.4
Root \(1.41417 - 0.0105323i\) of defining polynomial
Character \(\chi\) \(=\) 392.373
Dual form 392.2.p.g.165.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.242117 + 1.39333i) q^{2} +(2.13038 - 1.22998i) q^{3} +(-1.88276 - 0.674701i) q^{4} +(-1.28690 - 0.742990i) q^{5} +(1.19797 + 3.26613i) q^{6} +(1.39593 - 2.45995i) q^{8} +(1.52569 - 2.64257i) q^{9} +(1.34681 - 1.61319i) q^{10} +(4.37021 - 2.52314i) q^{11} +(-4.84086 + 0.878379i) q^{12} -2.58633i q^{13} -3.65544 q^{15} +(3.08956 + 2.54060i) q^{16} +(0.629755 + 1.09077i) q^{17} +(3.31258 + 2.76560i) q^{18} +(2.68324 + 1.54917i) q^{19} +(1.92162 + 2.26714i) q^{20} +(2.45748 + 6.70006i) q^{22} +(0.697966 - 1.20891i) q^{23} +(-0.0518180 - 6.95761i) q^{24} +(-1.39593 - 2.41782i) q^{25} +(3.60362 + 0.626196i) q^{26} -0.126378i q^{27} -0.638384i q^{29} +(0.885046 - 5.09325i) q^{30} +(-1.82772 - 3.16571i) q^{31} +(-4.28794 + 3.68966i) q^{32} +(6.20682 - 10.7505i) q^{33} +(-1.67228 + 0.613365i) q^{34} +(-4.65544 + 3.94593i) q^{36} +(5.21370 + 3.01013i) q^{37} +(-2.80817 + 3.36357i) q^{38} +(-3.18113 - 5.50988i) q^{39} +(-3.62414 + 2.12854i) q^{40} -6.36226 q^{41} +1.02401i q^{43} +(-9.93042 + 1.80188i) q^{44} +(-3.92680 + 2.26714i) q^{45} +(1.51543 + 1.26520i) q^{46} +(-5.48316 + 9.49712i) q^{47} +(9.70682 + 1.61236i) q^{48} +(3.70682 - 1.35960i) q^{50} +(2.68324 + 1.54917i) q^{51} +(-1.74500 + 4.86944i) q^{52} +(-4.99481 + 2.88375i) q^{53} +(0.176087 + 0.0305984i) q^{54} -7.49868 q^{55} +7.62177 q^{57} +(0.889482 + 0.154564i) q^{58} +(-3.01720 + 1.74198i) q^{59} +(6.88231 + 2.46633i) q^{60} +(11.1614 + 6.44406i) q^{61} +(4.85341 - 1.78015i) q^{62} +(-4.10275 - 6.86786i) q^{64} +(-1.92162 + 3.32834i) q^{65} +(13.4763 + 11.2511i) q^{66} +(-0.443410 + 0.256003i) q^{67} +(-0.449735 - 2.47855i) q^{68} -3.43393i q^{69} -7.41363 q^{71} +(-4.37084 - 7.44196i) q^{72} +(4.94731 + 8.56899i) q^{73} +(-5.45644 + 6.53562i) q^{74} +(-5.94774 - 3.43393i) q^{75} +(-4.00667 - 4.72709i) q^{76} +(8.44731 - 3.09834i) q^{78} +(-4.35341 + 7.54032i) q^{79} +(-2.08830 - 5.56500i) q^{80} +(4.42162 + 7.65847i) q^{81} +(1.54041 - 8.86475i) q^{82} -2.97196i q^{83} -1.87161i q^{85} +(-1.42679 - 0.247931i) q^{86} +(-0.785198 - 1.36000i) q^{87} +(-0.106298 - 14.2727i) q^{88} +(-1.29186 + 2.23757i) q^{89} +(-2.20814 - 6.02026i) q^{90} +(-2.12976 + 1.80517i) q^{92} +(-7.78749 - 4.49611i) q^{93} +(-11.9051 - 9.93929i) q^{94} +(-2.30203 - 3.98724i) q^{95} +(-4.59674 + 13.1345i) q^{96} +1.57040 q^{97} -15.3981i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} + 8 q^{6} + 4 q^{8} + 8 q^{10} + 2 q^{12} - 20 q^{15} + 8 q^{16} + 2 q^{17} + 6 q^{18} - 8 q^{20} + 12 q^{22} + 2 q^{23} - 18 q^{24} - 4 q^{25} + 2 q^{26} + 14 q^{30} - 10 q^{31} - 12 q^{32}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.242117 + 1.39333i −0.171203 + 0.985236i
\(3\) 2.13038 1.22998i 1.22998 0.710128i 0.262952 0.964809i \(-0.415304\pi\)
0.967025 + 0.254681i \(0.0819706\pi\)
\(4\) −1.88276 0.674701i −0.941379 0.337350i
\(5\) −1.28690 0.742990i −0.575518 0.332275i 0.183832 0.982958i \(-0.441150\pi\)
−0.759350 + 0.650682i \(0.774483\pi\)
\(6\) 1.19797 + 3.26613i 0.489068 + 1.33339i
\(7\) 0 0
\(8\) 1.39593 2.45995i 0.493536 0.869725i
\(9\) 1.52569 2.64257i 0.508562 0.880856i
\(10\) 1.34681 1.61319i 0.425900 0.510134i
\(11\) 4.37021 2.52314i 1.31767 0.760756i 0.334315 0.942461i \(-0.391495\pi\)
0.983353 + 0.181705i \(0.0581616\pi\)
\(12\) −4.84086 + 0.878379i −1.39744 + 0.253566i
\(13\) 2.58633i 0.717320i −0.933468 0.358660i \(-0.883234\pi\)
0.933468 0.358660i \(-0.116766\pi\)
\(14\) 0 0
\(15\) −3.65544 −0.943831
\(16\) 3.08956 + 2.54060i 0.772389 + 0.635149i
\(17\) 0.629755 + 1.09077i 0.152738 + 0.264550i 0.932233 0.361858i \(-0.117858\pi\)
−0.779495 + 0.626408i \(0.784524\pi\)
\(18\) 3.31258 + 2.76560i 0.780783 + 0.651859i
\(19\) 2.68324 + 1.54917i 0.615577 + 0.355404i 0.775145 0.631783i \(-0.217677\pi\)
−0.159568 + 0.987187i \(0.551010\pi\)
\(20\) 1.92162 + 2.26714i 0.429687 + 0.506948i
\(21\) 0 0
\(22\) 2.45748 + 6.70006i 0.523936 + 1.42846i
\(23\) 0.697966 1.20891i 0.145536 0.252076i −0.784037 0.620714i \(-0.786843\pi\)
0.929573 + 0.368639i \(0.120176\pi\)
\(24\) −0.0518180 6.95761i −0.0105773 1.42022i
\(25\) −1.39593 2.41782i −0.279186 0.483565i
\(26\) 3.60362 + 0.626196i 0.706729 + 0.122807i
\(27\) 0.126378i 0.0243215i
\(28\) 0 0
\(29\) 0.638384i 0.118545i −0.998242 0.0592725i \(-0.981122\pi\)
0.998242 0.0592725i \(-0.0188781\pi\)
\(30\) 0.885046 5.09325i 0.161587 0.929896i
\(31\) −1.82772 3.16571i −0.328268 0.568578i 0.653900 0.756581i \(-0.273132\pi\)
−0.982168 + 0.188003i \(0.939798\pi\)
\(32\) −4.28794 + 3.68966i −0.758007 + 0.652246i
\(33\) 6.20682 10.7505i 1.08047 1.87143i
\(34\) −1.67228 + 0.613365i −0.286793 + 0.105191i
\(35\) 0 0
\(36\) −4.65544 + 3.94593i −0.775907 + 0.657656i
\(37\) 5.21370 + 3.01013i 0.857127 + 0.494862i 0.863049 0.505120i \(-0.168552\pi\)
−0.00592229 + 0.999982i \(0.501885\pi\)
\(38\) −2.80817 + 3.36357i −0.455545 + 0.545643i
\(39\) −3.18113 5.50988i −0.509388 0.882287i
\(40\) −3.62414 + 2.12854i −0.573027 + 0.336552i
\(41\) −6.36226 −0.993618 −0.496809 0.867860i \(-0.665495\pi\)
−0.496809 + 0.867860i \(0.665495\pi\)
\(42\) 0 0
\(43\) 1.02401i 0.156160i 0.996947 + 0.0780801i \(0.0248790\pi\)
−0.996947 + 0.0780801i \(0.975121\pi\)
\(44\) −9.93042 + 1.80188i −1.49707 + 0.271644i
\(45\) −3.92680 + 2.26714i −0.585373 + 0.337965i
\(46\) 1.51543 + 1.26520i 0.223438 + 0.186543i
\(47\) −5.48316 + 9.49712i −0.799802 + 1.38530i 0.119943 + 0.992781i \(0.461729\pi\)
−0.919745 + 0.392516i \(0.871605\pi\)
\(48\) 9.70682 + 1.61236i 1.40106 + 0.232724i
\(49\) 0 0
\(50\) 3.70682 1.35960i 0.524223 0.192277i
\(51\) 2.68324 + 1.54917i 0.375729 + 0.216927i
\(52\) −1.74500 + 4.86944i −0.241988 + 0.675270i
\(53\) −4.99481 + 2.88375i −0.686089 + 0.396114i −0.802145 0.597129i \(-0.796308\pi\)
0.116056 + 0.993243i \(0.462975\pi\)
\(54\) 0.176087 + 0.0305984i 0.0239624 + 0.00416391i
\(55\) −7.49868 −1.01112
\(56\) 0 0
\(57\) 7.62177 1.00953
\(58\) 0.889482 + 0.154564i 0.116795 + 0.0202952i
\(59\) −3.01720 + 1.74198i −0.392806 + 0.226787i −0.683375 0.730067i \(-0.739489\pi\)
0.290569 + 0.956854i \(0.406155\pi\)
\(60\) 6.88231 + 2.46633i 0.888503 + 0.318402i
\(61\) 11.1614 + 6.44406i 1.42908 + 0.825077i 0.997048 0.0767831i \(-0.0244649\pi\)
0.432028 + 0.901860i \(0.357798\pi\)
\(62\) 4.85341 1.78015i 0.616383 0.226080i
\(63\) 0 0
\(64\) −4.10275 6.86786i −0.512844 0.858482i
\(65\) −1.92162 + 3.32834i −0.238348 + 0.412830i
\(66\) 13.4763 + 11.2511i 1.65882 + 1.38491i
\(67\) −0.443410 + 0.256003i −0.0541711 + 0.0312757i −0.526841 0.849964i \(-0.676624\pi\)
0.472670 + 0.881240i \(0.343290\pi\)
\(68\) −0.449735 2.47855i −0.0545384 0.300568i
\(69\) 3.43393i 0.413396i
\(70\) 0 0
\(71\) −7.41363 −0.879836 −0.439918 0.898038i \(-0.644993\pi\)
−0.439918 + 0.898038i \(0.644993\pi\)
\(72\) −4.37084 7.44196i −0.515108 0.877044i
\(73\) 4.94731 + 8.56899i 0.579038 + 1.00292i 0.995590 + 0.0938118i \(0.0299052\pi\)
−0.416552 + 0.909112i \(0.636761\pi\)
\(74\) −5.45644 + 6.53562i −0.634299 + 0.759750i
\(75\) −5.94774 3.43393i −0.686786 0.396516i
\(76\) −4.00667 4.72709i −0.459596 0.542235i
\(77\) 0 0
\(78\) 8.44731 3.09834i 0.956469 0.350818i
\(79\) −4.35341 + 7.54032i −0.489797 + 0.848353i −0.999931 0.0117420i \(-0.996262\pi\)
0.510134 + 0.860095i \(0.329596\pi\)
\(80\) −2.08830 5.56500i −0.233479 0.622185i
\(81\) 4.42162 + 7.65847i 0.491291 + 0.850941i
\(82\) 1.54041 8.86475i 0.170110 0.978948i
\(83\) 2.97196i 0.326215i −0.986608 0.163107i \(-0.947848\pi\)
0.986608 0.163107i \(-0.0521517\pi\)
\(84\) 0 0
\(85\) 1.87161i 0.203004i
\(86\) −1.42679 0.247931i −0.153855 0.0267351i
\(87\) −0.785198 1.36000i −0.0841820 0.145808i
\(88\) −0.106298 14.2727i −0.0113314 1.52147i
\(89\) −1.29186 + 2.23757i −0.136937 + 0.237182i −0.926336 0.376699i \(-0.877059\pi\)
0.789399 + 0.613881i \(0.210393\pi\)
\(90\) −2.20814 6.02026i −0.232758 0.634591i
\(91\) 0 0
\(92\) −2.12976 + 1.80517i −0.222042 + 0.188202i
\(93\) −7.78749 4.49611i −0.807525 0.466225i
\(94\) −11.9051 9.93929i −1.22792 1.02516i
\(95\) −2.30203 3.98724i −0.236184 0.409082i
\(96\) −4.59674 + 13.1345i −0.469153 + 1.34053i
\(97\) 1.57040 0.159449 0.0797247 0.996817i \(-0.474596\pi\)
0.0797247 + 0.996817i \(0.474596\pi\)
\(98\) 0 0
\(99\) 15.3981i 1.54757i
\(100\) 0.996894 + 5.49402i 0.0996894 + 0.549402i
\(101\) −0.181183 + 0.104606i −0.0180284 + 0.0104087i −0.508987 0.860774i \(-0.669980\pi\)
0.490959 + 0.871183i \(0.336647\pi\)
\(102\) −2.80817 + 3.36357i −0.278050 + 0.333043i
\(103\) 3.43846 5.95558i 0.338801 0.586821i −0.645406 0.763839i \(-0.723312\pi\)
0.984207 + 0.177019i \(0.0566453\pi\)
\(104\) −6.36226 3.61034i −0.623871 0.354023i
\(105\) 0 0
\(106\) −2.80870 7.65764i −0.272805 0.743776i
\(107\) −11.2048 6.46908i −1.08321 0.625389i −0.151447 0.988465i \(-0.548393\pi\)
−0.931759 + 0.363076i \(0.881726\pi\)
\(108\) −0.0852675 + 0.237940i −0.00820487 + 0.0228958i
\(109\) 16.6430 9.60883i 1.59411 0.920359i 0.601517 0.798860i \(-0.294563\pi\)
0.992591 0.121500i \(-0.0387703\pi\)
\(110\) 1.81556 10.4482i 0.173107 0.996193i
\(111\) 14.8096 1.40566
\(112\) 0 0
\(113\) −1.05137 −0.0989050 −0.0494525 0.998776i \(-0.515748\pi\)
−0.0494525 + 0.998776i \(0.515748\pi\)
\(114\) −1.84536 + 10.6197i −0.172834 + 0.994623i
\(115\) −1.79642 + 1.03716i −0.167517 + 0.0967160i
\(116\) −0.430718 + 1.20192i −0.0399912 + 0.111596i
\(117\) −6.83456 3.94593i −0.631855 0.364802i
\(118\) −1.69665 4.62573i −0.156189 0.425833i
\(119\) 0 0
\(120\) −5.10275 + 8.99222i −0.465815 + 0.820874i
\(121\) 7.23250 12.5271i 0.657500 1.13882i
\(122\) −11.6811 + 13.9914i −1.05756 + 1.26672i
\(123\) −13.5540 + 7.82543i −1.22213 + 0.705595i
\(124\) 1.30525 + 7.19342i 0.117215 + 0.645989i
\(125\) 11.5786i 1.03562i
\(126\) 0 0
\(127\) −7.20814 −0.639619 −0.319809 0.947482i \(-0.603619\pi\)
−0.319809 + 0.947482i \(0.603619\pi\)
\(128\) 10.5626 4.05367i 0.933608 0.358297i
\(129\) 1.25951 + 2.18154i 0.110894 + 0.192074i
\(130\) −4.17223 3.48331i −0.365929 0.305506i
\(131\) −12.7767 7.37662i −1.11630 0.644498i −0.175849 0.984417i \(-0.556267\pi\)
−0.940455 + 0.339919i \(0.889600\pi\)
\(132\) −18.9393 + 16.0529i −1.64846 + 1.39722i
\(133\) 0 0
\(134\) −0.249340 0.679801i −0.0215397 0.0587258i
\(135\) −0.0938978 + 0.162636i −0.00808144 + 0.0139975i
\(136\) 3.56233 0.0265311i 0.305468 0.00227502i
\(137\) 4.68113 + 8.10795i 0.399936 + 0.692709i 0.993718 0.111917i \(-0.0356991\pi\)
−0.593782 + 0.804626i \(0.702366\pi\)
\(138\) 4.78461 + 0.831414i 0.407293 + 0.0707746i
\(139\) 1.69519i 0.143784i −0.997412 0.0718921i \(-0.977096\pi\)
0.997412 0.0718921i \(-0.0229037\pi\)
\(140\) 0 0
\(141\) 26.9767i 2.27184i
\(142\) 1.79497 10.3297i 0.150630 0.866846i
\(143\) −6.52569 11.3028i −0.545705 0.945189i
\(144\) 11.4274 4.28821i 0.952283 0.357351i
\(145\) −0.474313 + 0.821534i −0.0393895 + 0.0682247i
\(146\) −13.1373 + 4.81855i −1.08725 + 0.398786i
\(147\) 0 0
\(148\) −7.78520 9.18503i −0.639939 0.755005i
\(149\) −3.19276 1.84334i −0.261561 0.151012i 0.363485 0.931600i \(-0.381587\pi\)
−0.625047 + 0.780587i \(0.714920\pi\)
\(150\) 6.22466 7.45577i 0.508241 0.608761i
\(151\) 7.13861 + 12.3644i 0.580932 + 1.00620i 0.995369 + 0.0961252i \(0.0306449\pi\)
−0.414438 + 0.910078i \(0.636022\pi\)
\(152\) 7.55650 4.43811i 0.612913 0.359978i
\(153\) 3.84324 0.310707
\(154\) 0 0
\(155\) 5.43191i 0.436302i
\(156\) 2.27178 + 12.5201i 0.181888 + 1.00241i
\(157\) 11.1614 6.44406i 0.890780 0.514292i 0.0165822 0.999863i \(-0.494721\pi\)
0.874197 + 0.485571i \(0.161388\pi\)
\(158\) −9.45215 7.89139i −0.751973 0.627806i
\(159\) −7.09390 + 12.2870i −0.562583 + 0.974422i
\(160\) 8.25951 1.56232i 0.652972 0.123512i
\(161\) 0 0
\(162\) −11.7414 + 4.30654i −0.922488 + 0.338354i
\(163\) 2.79831 + 1.61560i 0.219180 + 0.126544i 0.605571 0.795791i \(-0.292945\pi\)
−0.386390 + 0.922335i \(0.626278\pi\)
\(164\) 11.9786 + 4.29262i 0.935371 + 0.335197i
\(165\) −15.9751 + 9.22320i −1.24366 + 0.718026i
\(166\) 4.14093 + 0.719563i 0.321399 + 0.0558489i
\(167\) 14.0487 1.08712 0.543562 0.839369i \(-0.317075\pi\)
0.543562 + 0.839369i \(0.317075\pi\)
\(168\) 0 0
\(169\) 6.31088 0.485453
\(170\) 2.60777 + 0.453149i 0.200007 + 0.0347549i
\(171\) 8.18757 4.72709i 0.626119 0.361490i
\(172\) 0.690901 1.92797i 0.0526807 0.147006i
\(173\) 5.66273 + 3.26938i 0.430529 + 0.248566i 0.699572 0.714562i \(-0.253374\pi\)
−0.269043 + 0.963128i \(0.586707\pi\)
\(174\) 2.08505 0.764762i 0.158067 0.0579765i
\(175\) 0 0
\(176\) 19.9123 + 3.30755i 1.50095 + 0.249316i
\(177\) −4.28520 + 7.42218i −0.322095 + 0.557885i
\(178\) −2.80490 2.34175i −0.210236 0.175522i
\(179\) −0.109447 + 0.0631891i −0.00818044 + 0.00472298i −0.504085 0.863654i \(-0.668170\pi\)
0.495904 + 0.868377i \(0.334837\pi\)
\(180\) 8.92286 1.61906i 0.665071 0.120678i
\(181\) 2.71920i 0.202117i −0.994880 0.101058i \(-0.967777\pi\)
0.994880 0.101058i \(-0.0322229\pi\)
\(182\) 0 0
\(183\) 31.7042 2.34364
\(184\) −1.99956 3.40452i −0.147409 0.250985i
\(185\) −4.47299 7.74745i −0.328861 0.569604i
\(186\) 8.15007 9.76199i 0.597592 0.715784i
\(187\) 5.50433 + 3.17793i 0.402516 + 0.232393i
\(188\) 16.7312 14.1813i 1.22025 1.03428i
\(189\) 0 0
\(190\) 6.11292 2.24212i 0.443478 0.162661i
\(191\) 1.22365 2.11943i 0.0885404 0.153357i −0.818354 0.574715i \(-0.805113\pi\)
0.906894 + 0.421358i \(0.138446\pi\)
\(192\) −17.1877 9.58488i −1.24042 0.691729i
\(193\) −1.97431 3.41961i −0.142114 0.246149i 0.786178 0.618000i \(-0.212057\pi\)
−0.928293 + 0.371851i \(0.878723\pi\)
\(194\) −0.380220 + 2.18808i −0.0272982 + 0.157095i
\(195\) 9.45419i 0.677029i
\(196\) 0 0
\(197\) 19.5468i 1.39265i −0.717727 0.696325i \(-0.754817\pi\)
0.717727 0.696325i \(-0.245183\pi\)
\(198\) 21.4547 + 3.72815i 1.52472 + 0.264948i
\(199\) 10.3981 + 18.0101i 0.737103 + 1.27670i 0.953795 + 0.300460i \(0.0971401\pi\)
−0.216692 + 0.976240i \(0.569527\pi\)
\(200\) −7.89636 + 0.0588095i −0.558357 + 0.00415846i
\(201\) −0.629755 + 1.09077i −0.0444195 + 0.0769369i
\(202\) −0.101884 0.277775i −0.00716850 0.0195442i
\(203\) 0 0
\(204\) −4.00667 4.72709i −0.280523 0.330963i
\(205\) 8.18757 + 4.72709i 0.571845 + 0.330155i
\(206\) 7.46560 + 6.23287i 0.520153 + 0.434264i
\(207\) −2.12976 3.68884i −0.148028 0.256392i
\(208\) 6.57083 7.99062i 0.455605 0.554050i
\(209\) 15.6351 1.08150
\(210\) 0 0
\(211\) 17.2132i 1.18500i 0.805569 + 0.592502i \(0.201860\pi\)
−0.805569 + 0.592502i \(0.798140\pi\)
\(212\) 11.3497 2.05941i 0.779499 0.141441i
\(213\) −15.7939 + 9.11860i −1.08218 + 0.624796i
\(214\) 11.7265 14.0457i 0.801604 0.960145i
\(215\) 0.760830 1.31780i 0.0518882 0.0898730i
\(216\) −0.310885 0.176415i −0.0211530 0.0120036i
\(217\) 0 0
\(218\) 9.35875 + 25.5157i 0.633855 + 1.72814i
\(219\) 21.0793 + 12.1701i 1.42441 + 0.822382i
\(220\) 14.1182 + 5.05936i 0.951849 + 0.341102i
\(221\) 2.82109 1.62876i 0.189767 0.109562i
\(222\) −3.58565 + 20.6347i −0.240653 + 1.38491i
\(223\) −17.5164 −1.17298 −0.586492 0.809955i \(-0.699491\pi\)
−0.586492 + 0.809955i \(0.699491\pi\)
\(224\) 0 0
\(225\) −8.51902 −0.567935
\(226\) 0.254556 1.46492i 0.0169328 0.0974447i
\(227\) 11.4237 6.59546i 0.758215 0.437756i −0.0704394 0.997516i \(-0.522440\pi\)
0.828655 + 0.559760i \(0.189107\pi\)
\(228\) −14.3500 5.14241i −0.950349 0.340565i
\(229\) −14.8693 8.58482i −0.982594 0.567301i −0.0795417 0.996832i \(-0.525346\pi\)
−0.903052 + 0.429531i \(0.858679\pi\)
\(230\) −1.01017 2.75413i −0.0666087 0.181602i
\(231\) 0 0
\(232\) −1.57040 0.891141i −0.103102 0.0585062i
\(233\) −12.4393 + 21.5455i −0.814927 + 1.41149i 0.0944534 + 0.995529i \(0.469890\pi\)
−0.909380 + 0.415966i \(0.863444\pi\)
\(234\) 7.15277 8.56744i 0.467591 0.560071i
\(235\) 14.1125 8.14787i 0.920600 0.531508i
\(236\) 6.85598 1.24402i 0.446286 0.0809791i
\(237\) 21.4184i 1.39127i
\(238\) 0 0
\(239\) −13.3242 −0.861872 −0.430936 0.902383i \(-0.641817\pi\)
−0.430936 + 0.902383i \(0.641817\pi\)
\(240\) −11.2937 9.28701i −0.729005 0.599474i
\(241\) −11.1218 19.2635i −0.716416 1.24087i −0.962411 0.271598i \(-0.912448\pi\)
0.245995 0.969271i \(-0.420885\pi\)
\(242\) 15.7033 + 13.1103i 1.00944 + 0.842763i
\(243\) 19.1678 + 11.0665i 1.22962 + 0.709919i
\(244\) −16.6665 19.6632i −1.06696 1.25881i
\(245\) 0 0
\(246\) −7.62177 20.7800i −0.485946 1.32488i
\(247\) 4.00667 6.93975i 0.254938 0.441566i
\(248\) −10.3389 + 0.0770004i −0.656519 + 0.00488953i
\(249\) −3.65544 6.33141i −0.231654 0.401237i
\(250\) −16.1328 2.80337i −1.02033 0.177301i
\(251\) 27.4386i 1.73191i 0.500121 + 0.865955i \(0.333289\pi\)
−0.500121 + 0.865955i \(0.666711\pi\)
\(252\) 0 0
\(253\) 7.04427i 0.442870i
\(254\) 1.74522 10.0433i 0.109505 0.630175i
\(255\) −2.30203 3.98724i −0.144159 0.249691i
\(256\) 3.09074 + 15.6986i 0.193171 + 0.981165i
\(257\) −12.0948 + 20.9487i −0.754451 + 1.30675i 0.191196 + 0.981552i \(0.438763\pi\)
−0.945647 + 0.325195i \(0.894570\pi\)
\(258\) −3.34456 + 1.22673i −0.208223 + 0.0763729i
\(259\) 0 0
\(260\) 5.86358 4.96995i 0.363644 0.308223i
\(261\) −1.68697 0.973974i −0.104421 0.0602875i
\(262\) 13.3715 16.0162i 0.826097 0.989482i
\(263\) 5.43846 + 9.41968i 0.335350 + 0.580842i 0.983552 0.180626i \(-0.0578123\pi\)
−0.648202 + 0.761468i \(0.724479\pi\)
\(264\) −17.7815 30.2755i −1.09438 1.86333i
\(265\) 8.57040 0.526475
\(266\) 0 0
\(267\) 6.35585i 0.388972i
\(268\) 1.00756 0.182822i 0.0615465 0.0111677i
\(269\) 20.7887 12.0024i 1.26751 0.731796i 0.292992 0.956115i \(-0.405349\pi\)
0.974516 + 0.224319i \(0.0720156\pi\)
\(270\) −0.203872 0.170208i −0.0124072 0.0103585i
\(271\) 3.11160 5.38945i 0.189016 0.327386i −0.755906 0.654680i \(-0.772803\pi\)
0.944922 + 0.327294i \(0.106137\pi\)
\(272\) −0.825537 + 4.96995i −0.0500555 + 0.301347i
\(273\) 0 0
\(274\) −12.4305 + 4.55930i −0.750952 + 0.275437i
\(275\) −12.2010 7.04427i −0.735750 0.424786i
\(276\) −2.31687 + 6.46526i −0.139459 + 0.389163i
\(277\) −24.2493 + 14.0003i −1.45700 + 0.841199i −0.998863 0.0476832i \(-0.984816\pi\)
−0.458136 + 0.888882i \(0.651483\pi\)
\(278\) 2.36197 + 0.410435i 0.141661 + 0.0246163i
\(279\) −11.1541 −0.667780
\(280\) 0 0
\(281\) −16.7112 −0.996906 −0.498453 0.866917i \(-0.666098\pi\)
−0.498453 + 0.866917i \(0.666098\pi\)
\(282\) −37.5875 6.53152i −2.23830 0.388946i
\(283\) −24.1193 + 13.9253i −1.43374 + 0.827772i −0.997404 0.0720102i \(-0.977059\pi\)
−0.436339 + 0.899782i \(0.643725\pi\)
\(284\) 13.9581 + 5.00198i 0.828260 + 0.296813i
\(285\) −9.80843 5.66290i −0.581001 0.335441i
\(286\) 17.3286 6.35585i 1.02466 0.375829i
\(287\) 0 0
\(288\) 3.20814 + 16.9604i 0.189041 + 0.999403i
\(289\) 7.70682 13.3486i 0.453342 0.785212i
\(290\) −1.02983 0.859784i −0.0604738 0.0504882i
\(291\) 3.34554 1.93155i 0.196119 0.113229i
\(292\) −3.53308 19.4713i −0.206758 1.13947i
\(293\) 20.1851i 1.17923i −0.807685 0.589614i \(-0.799280\pi\)
0.807685 0.589614i \(-0.200720\pi\)
\(294\) 0 0
\(295\) 5.17710 0.301423
\(296\) 14.6828 8.62352i 0.853418 0.501232i
\(297\) −0.318870 0.552300i −0.0185027 0.0320477i
\(298\) 3.34141 4.00228i 0.193563 0.231846i
\(299\) −3.12665 1.80517i −0.180819 0.104396i
\(300\) 8.88128 + 10.4782i 0.512761 + 0.604959i
\(301\) 0 0
\(302\) −18.9562 + 6.95282i −1.09080 + 0.400090i
\(303\) −0.257326 + 0.445702i −0.0147830 + 0.0256049i
\(304\) 4.35421 + 11.6033i 0.249731 + 0.665494i
\(305\) −9.57574 16.5857i −0.548305 0.949693i
\(306\) −0.930515 + 5.35491i −0.0531940 + 0.306120i
\(307\) 17.8844i 1.02071i −0.859962 0.510357i \(-0.829513\pi\)
0.859962 0.510357i \(-0.170487\pi\)
\(308\) 0 0
\(309\) 16.9169i 0.962368i
\(310\) −7.56847 1.31516i −0.429860 0.0746961i
\(311\) −0.715667 1.23957i −0.0405818 0.0702897i 0.845021 0.534733i \(-0.179588\pi\)
−0.885603 + 0.464443i \(0.846254\pi\)
\(312\) −17.9947 + 0.134018i −1.01875 + 0.00758730i
\(313\) 2.42829 4.20591i 0.137255 0.237732i −0.789202 0.614134i \(-0.789505\pi\)
0.926457 + 0.376402i \(0.122839\pi\)
\(314\) 6.27635 + 17.1118i 0.354195 + 0.965676i
\(315\) 0 0
\(316\) 13.2839 11.2594i 0.747277 0.633389i
\(317\) 9.78002 + 5.64650i 0.549301 + 0.317139i 0.748840 0.662751i \(-0.230611\pi\)
−0.199539 + 0.979890i \(0.563944\pi\)
\(318\) −15.4023 12.8591i −0.863719 0.721100i
\(319\) −1.61073 2.78987i −0.0901838 0.156203i
\(320\) 0.177064 + 11.8865i 0.00989815 + 0.664477i
\(321\) −31.8273 −1.77642
\(322\) 0 0
\(323\) 3.90239i 0.217135i
\(324\) −3.15767 17.4023i −0.175426 0.966795i
\(325\) −6.25330 + 3.61034i −0.346871 + 0.200266i
\(326\) −2.92860 + 3.50781i −0.162200 + 0.194280i
\(327\) 23.6373 40.9410i 1.30714 2.26404i
\(328\) −8.88128 + 15.6509i −0.490387 + 0.864174i
\(329\) 0 0
\(330\) −8.98316 24.4917i −0.494507 1.34822i
\(331\) −20.6415 11.9174i −1.13456 0.655039i −0.189483 0.981884i \(-0.560681\pi\)
−0.945078 + 0.326845i \(0.894014\pi\)
\(332\) −2.00518 + 5.59548i −0.110049 + 0.307092i
\(333\) 15.9089 9.18503i 0.871805 0.503337i
\(334\) −3.40144 + 19.5746i −0.186119 + 1.07107i
\(335\) 0.760830 0.0415686
\(336\) 0 0
\(337\) 16.4650 0.896906 0.448453 0.893806i \(-0.351975\pi\)
0.448453 + 0.893806i \(0.351975\pi\)
\(338\) −1.52797 + 8.79317i −0.0831109 + 0.478285i
\(339\) −2.23983 + 1.29317i −0.121651 + 0.0702351i
\(340\) −1.26277 + 3.52378i −0.0684836 + 0.191104i
\(341\) −15.9751 9.22320i −0.865098 0.499465i
\(342\) 4.60407 + 12.5525i 0.248959 + 0.678763i
\(343\) 0 0
\(344\) 2.51902 + 1.42945i 0.135817 + 0.0770708i
\(345\) −2.55137 + 4.41911i −0.137361 + 0.237917i
\(346\) −5.92638 + 7.09850i −0.318604 + 0.381618i
\(347\) 2.78706 1.60911i 0.149617 0.0863817i −0.423322 0.905979i \(-0.639136\pi\)
0.572940 + 0.819597i \(0.305803\pi\)
\(348\) 0.560743 + 3.09033i 0.0300590 + 0.165659i
\(349\) 22.8716i 1.22429i −0.790747 0.612143i \(-0.790308\pi\)
0.790747 0.612143i \(-0.209692\pi\)
\(350\) 0 0
\(351\) −0.326856 −0.0174463
\(352\) −9.42964 + 26.9437i −0.502601 + 1.43610i
\(353\) 11.6608 + 20.1971i 0.620641 + 1.07498i 0.989367 + 0.145444i \(0.0464609\pi\)
−0.368725 + 0.929538i \(0.620206\pi\)
\(354\) −9.30405 7.76775i −0.494505 0.412851i
\(355\) 9.54058 + 5.50826i 0.506361 + 0.292348i
\(356\) 3.94196 3.34119i 0.208923 0.177083i
\(357\) 0 0
\(358\) −0.0615446 0.167795i −0.00325273 0.00886825i
\(359\) 2.55488 4.42518i 0.134841 0.233552i −0.790696 0.612210i \(-0.790281\pi\)
0.925537 + 0.378658i \(0.123614\pi\)
\(360\) 0.0955128 + 12.8245i 0.00503397 + 0.675912i
\(361\) −4.70015 8.14090i −0.247376 0.428468i
\(362\) 3.78876 + 0.658366i 0.199133 + 0.0346030i
\(363\) 35.5833i 1.86764i
\(364\) 0 0
\(365\) 14.7032i 0.769600i
\(366\) −7.67613 + 44.1745i −0.401238 + 2.30904i
\(367\) 14.0779 + 24.3837i 0.734862 + 1.27282i 0.954784 + 0.297301i \(0.0960863\pi\)
−0.219922 + 0.975517i \(0.570580\pi\)
\(368\) 5.22777 1.96176i 0.272516 0.102264i
\(369\) −9.70682 + 16.8127i −0.505317 + 0.875234i
\(370\) 11.8778 4.35658i 0.617496 0.226488i
\(371\) 0 0
\(372\) 11.6284 + 13.7193i 0.602906 + 0.711313i
\(373\) −6.10052 3.52214i −0.315873 0.182369i 0.333679 0.942687i \(-0.391710\pi\)
−0.649551 + 0.760318i \(0.725043\pi\)
\(374\) −5.76060 + 6.89994i −0.297874 + 0.356787i
\(375\) 14.2414 + 24.6667i 0.735420 + 1.27379i
\(376\) 15.7084 + 26.7457i 0.810096 + 1.37930i
\(377\) −1.65107 −0.0850346
\(378\) 0 0
\(379\) 13.1974i 0.677905i −0.940803 0.338953i \(-0.889927\pi\)
0.940803 0.338953i \(-0.110073\pi\)
\(380\) 1.64398 + 9.06019i 0.0843344 + 0.464778i
\(381\) −15.3561 + 8.86584i −0.786716 + 0.454211i
\(382\) 2.65680 + 2.21811i 0.135934 + 0.113488i
\(383\) −2.46546 + 4.27031i −0.125979 + 0.218202i −0.922115 0.386915i \(-0.873541\pi\)
0.796136 + 0.605118i \(0.206874\pi\)
\(384\) 17.5164 21.6276i 0.893879 1.10368i
\(385\) 0 0
\(386\) 5.24267 1.92293i 0.266845 0.0978746i
\(387\) 2.70602 + 1.56232i 0.137555 + 0.0794172i
\(388\) −2.95667 1.05955i −0.150102 0.0537903i
\(389\) 19.8735 11.4739i 1.00762 0.581752i 0.0971291 0.995272i \(-0.469034\pi\)
0.910495 + 0.413520i \(0.135701\pi\)
\(390\) −13.1728 2.28902i −0.667033 0.115909i
\(391\) 1.75819 0.0889155
\(392\) 0 0
\(393\) −36.2923 −1.83070
\(394\) 27.2352 + 4.73261i 1.37209 + 0.238426i
\(395\) 11.2048 6.46908i 0.563773 0.325495i
\(396\) −10.3891 + 28.9909i −0.522073 + 1.45685i
\(397\) 25.9079 + 14.9579i 1.30028 + 0.750716i 0.980452 0.196760i \(-0.0630420\pi\)
0.319827 + 0.947476i \(0.396375\pi\)
\(398\) −27.6116 + 10.1275i −1.38404 + 0.507646i
\(399\) 0 0
\(400\) 1.82991 11.0165i 0.0914953 0.550826i
\(401\) 7.83525 13.5711i 0.391274 0.677706i −0.601344 0.798990i \(-0.705368\pi\)
0.992618 + 0.121284i \(0.0387012\pi\)
\(402\) −1.36733 1.14155i −0.0681962 0.0569355i
\(403\) −8.18757 + 4.72709i −0.407852 + 0.235473i
\(404\) 0.411701 0.0747036i 0.0204829 0.00371664i
\(405\) 13.1409i 0.652975i
\(406\) 0 0
\(407\) 30.3800 1.50588
\(408\) 7.55650 4.43811i 0.374103 0.219719i
\(409\) −13.0434 22.5918i −0.644954 1.11709i −0.984312 0.176436i \(-0.943543\pi\)
0.339358 0.940657i \(-0.389790\pi\)
\(410\) −8.56877 + 10.2635i −0.423182 + 0.506878i
\(411\) 19.9452 + 11.5154i 0.983824 + 0.568011i
\(412\) −10.4920 + 8.89299i −0.516904 + 0.438126i
\(413\) 0 0
\(414\) 5.65544 2.07433i 0.277950 0.101948i
\(415\) −2.20814 + 3.82460i −0.108393 + 0.187742i
\(416\) 9.54269 + 11.0900i 0.467869 + 0.543733i
\(417\) −2.08505 3.61141i −0.102105 0.176851i
\(418\) −3.78553 + 21.7849i −0.185156 + 1.06554i
\(419\) 0.252757i 0.0123480i −0.999981 0.00617398i \(-0.998035\pi\)
0.999981 0.00617398i \(-0.00196525\pi\)
\(420\) 0 0
\(421\) 18.3701i 0.895302i 0.894208 + 0.447651i \(0.147739\pi\)
−0.894208 + 0.447651i \(0.852261\pi\)
\(422\) −23.9837 4.16761i −1.16751 0.202876i
\(423\) 16.7312 + 28.9793i 0.813498 + 1.40902i
\(424\) 0.121490 + 16.3125i 0.00590009 + 0.792206i
\(425\) 1.75819 3.04528i 0.0852848 0.147718i
\(426\) −8.88128 24.2139i −0.430299 1.17317i
\(427\) 0 0
\(428\) 16.7312 + 19.7396i 0.808732 + 0.954148i
\(429\) −27.8044 16.0529i −1.34241 0.775041i
\(430\) 1.65192 + 1.37915i 0.0796627 + 0.0665086i
\(431\) −13.7223 23.7678i −0.660982 1.14485i −0.980358 0.197226i \(-0.936807\pi\)
0.319377 0.947628i \(-0.396527\pi\)
\(432\) 0.321076 0.390453i 0.0154478 0.0187857i
\(433\) 7.26215 0.348997 0.174498 0.984657i \(-0.444170\pi\)
0.174498 + 0.984657i \(0.444170\pi\)
\(434\) 0 0
\(435\) 2.33358i 0.111886i
\(436\) −37.8178 + 6.86207i −1.81114 + 0.328634i
\(437\) 3.74562 2.16253i 0.179177 0.103448i
\(438\) −22.0607 + 26.4239i −1.05410 + 1.26258i
\(439\) 15.0022 25.9845i 0.716015 1.24017i −0.246551 0.969130i \(-0.579297\pi\)
0.962567 0.271045i \(-0.0873692\pi\)
\(440\) −10.4676 + 18.4464i −0.499025 + 0.879398i
\(441\) 0 0
\(442\) 1.58637 + 4.32507i 0.0754558 + 0.205723i
\(443\) 30.3838 + 17.5421i 1.44358 + 0.833451i 0.998086 0.0618342i \(-0.0196950\pi\)
0.445493 + 0.895285i \(0.353028\pi\)
\(444\) −27.8828 9.99202i −1.32326 0.474200i
\(445\) 3.32499 1.91968i 0.157620 0.0910017i
\(446\) 4.24102 24.4062i 0.200818 1.15567i
\(447\) −9.06908 −0.428953
\(448\) 0 0
\(449\) −21.0107 −0.991556 −0.495778 0.868449i \(-0.665117\pi\)
−0.495778 + 0.868449i \(0.665117\pi\)
\(450\) 2.06260 11.8698i 0.0972320 0.559550i
\(451\) −27.8044 + 16.0529i −1.30926 + 0.755901i
\(452\) 1.97948 + 0.709363i 0.0931071 + 0.0333656i
\(453\) 30.4159 + 17.5606i 1.42906 + 0.825071i
\(454\) 6.42380 + 17.5139i 0.301484 + 0.821966i
\(455\) 0 0
\(456\) 10.6395 18.7492i 0.498239 0.878012i
\(457\) −6.68780 + 11.5836i −0.312842 + 0.541858i −0.978976 0.203974i \(-0.934614\pi\)
0.666135 + 0.745832i \(0.267948\pi\)
\(458\) 15.5616 18.6394i 0.727148 0.870963i
\(459\) 0.137849 0.0795874i 0.00643426 0.00371482i
\(460\) 4.08200 0.740682i 0.190324 0.0345345i
\(461\) 2.68641i 0.125118i 0.998041 + 0.0625592i \(0.0199262\pi\)
−0.998041 + 0.0625592i \(0.980074\pi\)
\(462\) 0 0
\(463\) −21.0380 −0.977721 −0.488860 0.872362i \(-0.662587\pi\)
−0.488860 + 0.872362i \(0.662587\pi\)
\(464\) 1.62188 1.97232i 0.0752937 0.0915629i
\(465\) 6.68113 + 11.5721i 0.309830 + 0.536641i
\(466\) −27.0083 22.5487i −1.25114 1.04455i
\(467\) −21.3849 12.3466i −0.989574 0.571331i −0.0844270 0.996430i \(-0.526906\pi\)
−0.905147 + 0.425099i \(0.860239\pi\)
\(468\) 10.2055 + 12.0405i 0.471749 + 0.556573i
\(469\) 0 0
\(470\) 7.93582 + 21.6362i 0.366052 + 0.998004i
\(471\) 15.8521 27.4566i 0.730426 1.26513i
\(472\) 0.0733884 + 9.85387i 0.00337797 + 0.453561i
\(473\) 2.58373 + 4.47515i 0.118800 + 0.205767i
\(474\) −29.8429 5.18576i −1.37073 0.238190i
\(475\) 8.65014i 0.396896i
\(476\) 0 0
\(477\) 17.5988i 0.805794i
\(478\) 3.22602 18.5651i 0.147555 0.849147i
\(479\) −20.4562 35.4311i −0.934666 1.61889i −0.775229 0.631680i \(-0.782366\pi\)
−0.159437 0.987208i \(-0.550968\pi\)
\(480\) 15.6743 13.4874i 0.715431 0.615610i
\(481\) 7.78520 13.4844i 0.354974 0.614834i
\(482\) 29.5332 10.8323i 1.34520 0.493399i
\(483\) 0 0
\(484\) −22.0691 + 18.7057i −1.00314 + 0.850257i
\(485\) −2.02094 1.16679i −0.0917660 0.0529811i
\(486\) −20.0603 + 24.0278i −0.909952 + 1.08992i
\(487\) −8.76704 15.1850i −0.397273 0.688096i 0.596116 0.802898i \(-0.296710\pi\)
−0.993388 + 0.114802i \(0.963377\pi\)
\(488\) 31.4327 18.4612i 1.42289 0.835697i
\(489\) 7.94863 0.359449
\(490\) 0 0
\(491\) 15.7509i 0.710830i −0.934709 0.355415i \(-0.884340\pi\)
0.934709 0.355415i \(-0.115660\pi\)
\(492\) 30.7988 5.58847i 1.38852 0.251948i
\(493\) 0.696329 0.402026i 0.0313611 0.0181063i
\(494\) 8.69930 + 7.26286i 0.391400 + 0.326771i
\(495\) −11.4406 + 19.8158i −0.514219 + 0.890653i
\(496\) 2.39593 14.4241i 0.107581 0.647663i
\(497\) 0 0
\(498\) 9.70682 3.56031i 0.434973 0.159541i
\(499\) 8.82147 + 5.09308i 0.394903 + 0.227997i 0.684282 0.729217i \(-0.260116\pi\)
−0.289379 + 0.957215i \(0.593449\pi\)
\(500\) 7.81206 21.7996i 0.349366 0.974909i
\(501\) 29.9292 17.2796i 1.33714 0.771997i
\(502\) −38.2312 6.64337i −1.70634 0.296508i
\(503\) −27.1001 −1.20833 −0.604167 0.796858i \(-0.706494\pi\)
−0.604167 + 0.796858i \(0.706494\pi\)
\(504\) 0 0
\(505\) 0.310885 0.0138342
\(506\) 9.81502 + 1.70554i 0.436331 + 0.0758205i
\(507\) 13.4446 7.76224i 0.597096 0.344733i
\(508\) 13.5712 + 4.86333i 0.602124 + 0.215776i
\(509\) −19.4357 11.2212i −0.861471 0.497371i 0.00303361 0.999995i \(-0.499034\pi\)
−0.864505 + 0.502625i \(0.832368\pi\)
\(510\) 6.11292 2.24212i 0.270685 0.0992828i
\(511\) 0 0
\(512\) −22.6218 + 0.505513i −0.999750 + 0.0223407i
\(513\) 0.195781 0.339103i 0.00864396 0.0149718i
\(514\) −26.2602 21.9241i −1.15829 0.967030i
\(515\) −8.84987 + 5.10948i −0.389972 + 0.225150i
\(516\) −0.899470 4.95710i −0.0395970 0.218224i
\(517\) 55.3392i 2.43382i
\(518\) 0 0
\(519\) 16.0850 0.706055
\(520\) 5.50512 + 9.37323i 0.241415 + 0.411043i
\(521\) −5.13510 8.89426i −0.224973 0.389664i 0.731338 0.682015i \(-0.238896\pi\)
−0.956311 + 0.292350i \(0.905563\pi\)
\(522\) 1.76552 2.11470i 0.0772746 0.0925579i
\(523\) −15.4655 8.92903i −0.676261 0.390439i 0.122184 0.992507i \(-0.461010\pi\)
−0.798445 + 0.602068i \(0.794344\pi\)
\(524\) 19.0784 + 22.5088i 0.833443 + 0.983302i
\(525\) 0 0
\(526\) −14.4415 + 5.29692i −0.629680 + 0.230956i
\(527\) 2.30203 3.98724i 0.100278 0.173687i
\(528\) 46.4891 17.4453i 2.02318 0.759211i
\(529\) 10.5257 + 18.2310i 0.457639 + 0.792653i
\(530\) −2.07504 + 11.9414i −0.0901341 + 0.518702i
\(531\) 10.6309i 0.461341i
\(532\) 0 0
\(533\) 16.4549i 0.712742i
\(534\) −8.85582 1.53886i −0.383229 0.0665931i
\(535\) 9.61292 + 16.6501i 0.415603 + 0.719845i
\(536\) 0.0107852 + 1.44813i 0.000465850 + 0.0625497i
\(537\) −0.155442 + 0.269234i −0.00670783 + 0.0116183i
\(538\) 11.6900 + 31.8716i 0.503991 + 1.37408i
\(539\) 0 0
\(540\) 0.286517 0.242851i 0.0123297 0.0104506i
\(541\) 19.9303 + 11.5067i 0.856869 + 0.494714i 0.862963 0.505268i \(-0.168606\pi\)
−0.00609356 + 0.999981i \(0.501940\pi\)
\(542\) 6.75593 + 5.64038i 0.290192 + 0.242275i
\(543\) −3.34456 5.79294i −0.143529 0.248599i
\(544\) −6.72492 2.35356i −0.288328 0.100908i
\(545\) −28.5571 −1.22325
\(546\) 0 0
\(547\) 9.10136i 0.389146i −0.980888 0.194573i \(-0.937668\pi\)
0.980888 0.194573i \(-0.0623321\pi\)
\(548\) −3.34299 18.4237i −0.142806 0.787021i
\(549\) 34.0577 19.6632i 1.45355 0.839206i
\(550\) 12.7691 15.2946i 0.544477 0.652163i
\(551\) 0.988965 1.71294i 0.0421313 0.0729736i
\(552\) −8.44731 4.79353i −0.359541 0.204026i
\(553\) 0 0
\(554\) −13.6360 37.1771i −0.579337 1.57950i
\(555\) −19.0584 11.0034i −0.808983 0.467067i
\(556\) −1.14375 + 3.19164i −0.0485057 + 0.135356i
\(557\) −15.0016 + 8.66116i −0.635637 + 0.366985i −0.782932 0.622107i \(-0.786277\pi\)
0.147295 + 0.989093i \(0.452943\pi\)
\(558\) 2.70061 15.5414i 0.114326 0.657921i
\(559\) 2.64843 0.112017
\(560\) 0 0
\(561\) 15.6351 0.660115
\(562\) 4.04607 23.2843i 0.170673 0.982187i
\(563\) −6.91560 + 3.99272i −0.291458 + 0.168273i −0.638599 0.769540i \(-0.720486\pi\)
0.347141 + 0.937813i \(0.387152\pi\)
\(564\) 18.2012 50.7905i 0.766408 2.13867i
\(565\) 1.35301 + 0.781160i 0.0569215 + 0.0328637i
\(566\) −13.5629 36.9778i −0.570090 1.55429i
\(567\) 0 0
\(568\) −10.3489 + 18.2372i −0.434231 + 0.765216i
\(569\) −5.98535 + 10.3669i −0.250919 + 0.434604i −0.963779 0.266702i \(-0.914066\pi\)
0.712860 + 0.701306i \(0.247399\pi\)
\(570\) 10.2651 12.2953i 0.429958 0.514995i
\(571\) −36.9016 + 21.3051i −1.54428 + 0.891592i −0.545722 + 0.837966i \(0.683745\pi\)
−0.998561 + 0.0536265i \(0.982922\pi\)
\(572\) 4.66027 + 25.6834i 0.194856 + 1.07388i
\(573\) 6.02026i 0.251500i
\(574\) 0 0
\(575\) −3.89725 −0.162527
\(576\) −24.4083 + 0.363590i −1.01701 + 0.0151496i
\(577\) −14.9650 25.9202i −0.623001 1.07907i −0.988924 0.148425i \(-0.952580\pi\)
0.365922 0.930645i \(-0.380754\pi\)
\(578\) 16.7331 + 13.9701i 0.696005 + 0.581079i
\(579\) −8.41208 4.85672i −0.349594 0.201838i
\(580\) 1.44731 1.22673i 0.0600961 0.0509372i
\(581\) 0 0
\(582\) 1.88128 + 5.12912i 0.0779816 + 0.212609i
\(583\) −14.5522 + 25.2052i −0.602692 + 1.04389i
\(584\) 27.9854 0.208426i 1.15804 0.00862473i
\(585\) 5.86358 + 10.1560i 0.242429 + 0.419900i
\(586\) 28.1246 + 4.88717i 1.16182 + 0.201887i
\(587\) 19.4269i 0.801833i −0.916115 0.400916i \(-0.868692\pi\)
0.916115 0.400916i \(-0.131308\pi\)
\(588\) 0 0
\(589\) 11.3258i 0.466671i
\(590\) −1.25347 + 7.21343i −0.0516044 + 0.296972i
\(591\) −24.0421 41.6421i −0.988959 1.71293i
\(592\) 8.46050 + 22.5459i 0.347724 + 0.926630i
\(593\) −9.07706 + 15.7219i −0.372750 + 0.645622i −0.989988 0.141155i \(-0.954919\pi\)
0.617237 + 0.786777i \(0.288252\pi\)
\(594\) 0.846742 0.310572i 0.0347423 0.0127429i
\(595\) 0 0
\(596\) 4.76750 + 5.62473i 0.195284 + 0.230398i
\(597\) 44.3039 + 25.5789i 1.81324 + 1.04687i
\(598\) 3.27222 3.91940i 0.133811 0.160276i
\(599\) −5.59258 9.68663i −0.228507 0.395785i 0.728859 0.684664i \(-0.240051\pi\)
−0.957366 + 0.288879i \(0.906718\pi\)
\(600\) −16.7499 + 9.83763i −0.683814 + 0.401620i
\(601\) 4.21883 0.172090 0.0860448 0.996291i \(-0.472577\pi\)
0.0860448 + 0.996291i \(0.472577\pi\)
\(602\) 0 0
\(603\) 1.56232i 0.0636226i
\(604\) −5.09798 28.0957i −0.207434 1.14320i
\(605\) −18.6150 + 10.7474i −0.756806 + 0.436942i
\(606\) −0.558708 0.466453i −0.0226960 0.0189484i
\(607\) −13.6196 + 23.5898i −0.552802 + 0.957481i 0.445269 + 0.895397i \(0.353108\pi\)
−0.998071 + 0.0620841i \(0.980225\pi\)
\(608\) −17.2215 + 3.25751i −0.698423 + 0.132110i
\(609\) 0 0
\(610\) 25.4278 9.32653i 1.02954 0.377620i
\(611\) 24.5627 + 14.1813i 0.993701 + 0.573713i
\(612\) −7.23589 2.59304i −0.292493 0.104817i
\(613\) 3.20401 1.84984i 0.129409 0.0747141i −0.433898 0.900962i \(-0.642862\pi\)
0.563307 + 0.826248i \(0.309529\pi\)
\(614\) 24.9189 + 4.33012i 1.00564 + 0.174749i
\(615\) 23.2569 0.937808
\(616\) 0 0
\(617\) 26.0487 1.04868 0.524341 0.851508i \(-0.324312\pi\)
0.524341 + 0.851508i \(0.324312\pi\)
\(618\) 23.5709 + 4.09587i 0.948159 + 0.164760i
\(619\) 27.7816 16.0397i 1.11664 0.644692i 0.176098 0.984373i \(-0.443652\pi\)
0.940541 + 0.339681i \(0.110319\pi\)
\(620\) 3.66492 10.2270i 0.147187 0.410725i
\(621\) −0.152780 0.0882077i −0.00613086 0.00353965i
\(622\) 1.90041 0.697042i 0.0761996 0.0279488i
\(623\) 0 0
\(624\) 4.17009 25.1051i 0.166937 1.00501i
\(625\) 1.62309 2.81127i 0.0649236 0.112451i
\(626\) 5.27231 + 4.40174i 0.210724 + 0.175929i
\(627\) 33.3088 19.2308i 1.33022 0.768005i
\(628\) −25.3621 + 4.60198i −1.01206 + 0.183639i
\(629\) 7.58258i 0.302337i
\(630\) 0 0
\(631\) 11.7538 0.467912 0.233956 0.972247i \(-0.424833\pi\)
0.233956 + 0.972247i \(0.424833\pi\)
\(632\) 12.4718 + 21.2350i 0.496101 + 0.844682i
\(633\) 21.1718 + 36.6707i 0.841504 + 1.45753i
\(634\) −10.2354 + 12.2597i −0.406499 + 0.486896i
\(635\) 9.27612 + 5.35557i 0.368112 + 0.212529i
\(636\) 21.6461 18.3472i 0.858325 0.727513i
\(637\) 0 0
\(638\) 4.27721 1.56881i 0.169336 0.0621099i
\(639\) −11.3109 + 19.5910i −0.447452 + 0.775009i
\(640\) −16.6048 2.63122i −0.656361 0.104008i
\(641\) −20.9136 36.2235i −0.826039 1.43074i −0.901123 0.433564i \(-0.857256\pi\)
0.0750839 0.997177i \(-0.476078\pi\)
\(642\) 7.70593 44.3460i 0.304129 1.75020i
\(643\) 42.9368i 1.69326i 0.532180 + 0.846631i \(0.321373\pi\)
−0.532180 + 0.846631i \(0.678627\pi\)
\(644\) 0 0
\(645\) 3.74321i 0.147389i
\(646\) −5.43733 0.944836i −0.213929 0.0371741i
\(647\) −4.55891 7.89626i −0.179229 0.310434i 0.762388 0.647121i \(-0.224027\pi\)
−0.941617 + 0.336687i \(0.890694\pi\)
\(648\) 25.0118 0.186279i 0.982555 0.00731774i
\(649\) −8.79054 + 15.2257i −0.345059 + 0.597660i
\(650\) −3.51638 9.58706i −0.137924 0.376035i
\(651\) 0 0
\(652\) −4.17849 4.92981i −0.163642 0.193066i
\(653\) −18.8716 10.8955i −0.738502 0.426374i 0.0830227 0.996548i \(-0.473543\pi\)
−0.821524 + 0.570174i \(0.806876\pi\)
\(654\) 51.3215 + 42.8472i 2.00683 + 1.67546i
\(655\) 10.9615 + 18.9859i 0.428301 + 0.741840i
\(656\) −19.6566 16.1639i −0.767460 0.631096i
\(657\) 30.1922 1.17791
\(658\) 0 0
\(659\) 0.152682i 0.00594765i −0.999996 0.00297383i \(-0.999053\pi\)
0.999996 0.00297383i \(-0.000946600\pi\)
\(660\) 36.3001 6.58668i 1.41298 0.256386i
\(661\) 24.6004 14.2031i 0.956845 0.552435i 0.0616446 0.998098i \(-0.480365\pi\)
0.895201 + 0.445663i \(0.147032\pi\)
\(662\) 21.6026 25.8751i 0.839608 1.00567i
\(663\) 4.00667 6.93975i 0.155606 0.269518i
\(664\) −7.31088 4.14865i −0.283717 0.160999i
\(665\) 0 0
\(666\) 8.94599 + 24.3903i 0.346650 + 0.945106i
\(667\) −0.771750 0.445570i −0.0298823 0.0172525i
\(668\) −26.4504 9.47869i −1.02340 0.366742i
\(669\) −37.3166 + 21.5447i −1.44274 + 0.832968i
\(670\) −0.184210 + 1.06009i −0.00711666 + 0.0409549i
\(671\) 65.0371 2.51073
\(672\) 0 0
\(673\) 26.2542 1.01203 0.506013 0.862526i \(-0.331119\pi\)
0.506013 + 0.862526i \(0.331119\pi\)
\(674\) −3.98646 + 22.9413i −0.153553 + 0.883664i
\(675\) −0.305561 + 0.176415i −0.0117610 + 0.00679023i
\(676\) −11.8819 4.25796i −0.456995 0.163768i
\(677\) 4.00416 + 2.31180i 0.153892 + 0.0888498i 0.574969 0.818175i \(-0.305014\pi\)
−0.421076 + 0.907025i \(0.638348\pi\)
\(678\) −1.25951 3.43393i −0.0483712 0.131879i
\(679\) 0 0
\(680\) −4.60407 2.61264i −0.176558 0.100190i
\(681\) 16.2245 28.1017i 0.621725 1.07686i
\(682\) 16.7188 20.0255i 0.640198 0.766816i
\(683\) 16.8469 9.72659i 0.644631 0.372178i −0.141765 0.989900i \(-0.545278\pi\)
0.786396 + 0.617723i \(0.211945\pi\)
\(684\) −18.6046 + 3.37582i −0.711364 + 0.129078i
\(685\) 13.9121i 0.531555i
\(686\) 0 0
\(687\) −42.2365 −1.61142
\(688\) −2.60160 + 3.16374i −0.0991851 + 0.120617i
\(689\) 7.45834 + 12.9182i 0.284140 + 0.492145i
\(690\) −5.53956 4.62486i −0.210888 0.176065i
\(691\) −15.0449 8.68618i −0.572335 0.330438i 0.185746 0.982598i \(-0.440530\pi\)
−0.758081 + 0.652160i \(0.773863\pi\)
\(692\) −8.45570 9.97610i −0.321438 0.379234i
\(693\) 0 0
\(694\) 1.56723 + 4.27290i 0.0594914 + 0.162197i
\(695\) −1.25951 + 2.18154i −0.0477760 + 0.0827504i
\(696\) −4.44163 + 0.0330798i −0.168359 + 0.00125388i
\(697\) −4.00667 6.93975i −0.151763 0.262862i
\(698\) 31.8677 + 5.53760i 1.20621 + 0.209601i
\(699\) 61.2003i 2.31481i
\(700\) 0 0
\(701\) 25.1180i 0.948695i −0.880338 0.474348i \(-0.842684\pi\)
0.880338 0.474348i \(-0.157316\pi\)
\(702\) 0.0791376 0.455420i 0.00298686 0.0171887i
\(703\) 9.32640 + 16.1538i 0.351752 + 0.609252i
\(704\) −35.2585 19.6622i −1.32885 0.741046i
\(705\) 20.0434 34.7162i 0.754878 1.30749i
\(706\) −30.9646 + 11.3573i −1.16537 + 0.427438i
\(707\) 0 0
\(708\) 13.0757 11.0829i 0.491416 0.416523i
\(709\) −17.4147 10.0544i −0.654024 0.377601i 0.135972 0.990713i \(-0.456584\pi\)
−0.789996 + 0.613112i \(0.789918\pi\)
\(710\) −9.98478 + 11.9596i −0.374722 + 0.448834i
\(711\) 13.2839 + 23.0084i 0.498184 + 0.862881i
\(712\) 3.70097 + 6.30143i 0.138700 + 0.236156i
\(713\) −5.10275 −0.191099
\(714\) 0 0
\(715\) 19.3941i 0.725297i
\(716\) 0.248696 0.0451260i 0.00929419 0.00168644i
\(717\) −28.3857 + 16.3885i −1.06008 + 0.612039i
\(718\) 5.54717 + 4.63121i 0.207019 + 0.172835i
\(719\) −19.1966 + 33.2496i −0.715914 + 1.24000i 0.246692 + 0.969094i \(0.420656\pi\)
−0.962606 + 0.270906i \(0.912677\pi\)
\(720\) −17.8920 2.97196i −0.666794 0.110758i
\(721\) 0 0
\(722\) 12.4810 4.57783i 0.464494 0.170369i
\(723\) −47.3873 27.3590i −1.76235 1.01749i
\(724\) −1.83465 + 5.11960i −0.0681842 + 0.190269i
\(725\) −1.54350 + 0.891141i −0.0573242 + 0.0330961i
\(726\) 49.5794 + 8.61532i 1.84006 + 0.319745i
\(727\) −14.8679 −0.551422 −0.275711 0.961241i \(-0.588913\pi\)
−0.275711 + 0.961241i \(0.588913\pi\)
\(728\) 0 0
\(729\) 27.9167 1.03395
\(730\) 20.4865 + 3.55990i 0.758238 + 0.131758i
\(731\) −1.11696 + 0.644877i −0.0413122 + 0.0238516i
\(732\) −59.6913 21.3908i −2.20625 0.790628i
\(733\) −36.4503 21.0446i −1.34632 0.777300i −0.358597 0.933492i \(-0.616745\pi\)
−0.987727 + 0.156192i \(0.950078\pi\)
\(734\) −37.3831 + 13.7115i −1.37984 + 0.506102i
\(735\) 0 0
\(736\) 1.46765 + 7.75900i 0.0540982 + 0.286000i
\(737\) −1.29186 + 2.23757i −0.0475864 + 0.0824221i
\(738\) −21.0755 17.5955i −0.775800 0.647699i
\(739\) −10.9859 + 6.34270i −0.404122 + 0.233320i −0.688261 0.725463i \(-0.741626\pi\)
0.284139 + 0.958783i \(0.408292\pi\)
\(740\) 3.19435 + 17.6045i 0.117427 + 0.647155i
\(741\) 19.7124i 0.724154i
\(742\) 0 0
\(743\) −25.7219 −0.943644 −0.471822 0.881694i \(-0.656404\pi\)
−0.471822 + 0.881694i \(0.656404\pi\)
\(744\) −21.9310 + 12.8806i −0.804031 + 0.472226i
\(745\) 2.73917 + 4.74438i 0.100355 + 0.173821i
\(746\) 6.38455 7.64729i 0.233755 0.279987i
\(747\) −7.85360 4.53428i −0.287348 0.165901i
\(748\) −8.21917 9.69704i −0.300523 0.354559i
\(749\) 0 0
\(750\) −37.8171 + 13.8707i −1.38089 + 0.506487i
\(751\) −17.9305 + 31.0565i −0.654292 + 1.13327i 0.327779 + 0.944755i \(0.393700\pi\)
−0.982071 + 0.188513i \(0.939633\pi\)
\(752\) −41.0689 + 15.4114i −1.49763 + 0.561995i
\(753\) 33.7489 + 58.4548i 1.22988 + 2.13021i
\(754\) 0.399754 2.30050i 0.0145582 0.0837791i
\(755\) 21.2157i 0.772117i
\(756\) 0 0
\(757\) 30.7289i 1.11686i 0.829551 + 0.558431i \(0.188597\pi\)
−0.829551 + 0.558431i \(0.811403\pi\)
\(758\) 18.3884 + 3.19532i 0.667896 + 0.116059i
\(759\) −8.66429 15.0070i −0.314494 0.544719i
\(760\) −13.0219 + 0.0969829i −0.472354 + 0.00351794i
\(761\) 22.5624 39.0792i 0.817887 1.41662i −0.0893497 0.996000i \(-0.528479\pi\)
0.907236 0.420621i \(-0.138188\pi\)
\(762\) −8.63510 23.5427i −0.312817 0.852863i
\(763\) 0 0
\(764\) −3.73382 + 3.16477i −0.135085 + 0.114497i
\(765\) −4.94585 2.85549i −0.178818 0.103240i
\(766\) −5.35303 4.46913i −0.193413 0.161476i
\(767\) 4.50535 + 7.80349i 0.162679 + 0.281768i
\(768\) 25.8934 + 29.6426i 0.934348 + 1.06963i
\(769\) 28.0168 1.01031 0.505156 0.863028i \(-0.331435\pi\)
0.505156 + 0.863028i \(0.331435\pi\)
\(770\) 0 0
\(771\) 59.5051i 2.14302i
\(772\) 1.40994 + 7.77037i 0.0507449 + 0.279662i
\(773\) −29.9953 + 17.3178i −1.07886 + 0.622878i −0.930588 0.366069i \(-0.880703\pi\)
−0.148268 + 0.988947i \(0.547370\pi\)
\(774\) −2.83201 + 3.39212i −0.101794 + 0.121927i
\(775\) −5.10275 + 8.83822i −0.183296 + 0.317478i
\(776\) 2.19216 3.86310i 0.0786941 0.138677i
\(777\) 0 0
\(778\) 11.1753 + 30.4684i 0.400655 + 1.09235i
\(779\) −17.0715 9.85621i −0.611649 0.353136i
\(780\) 6.37875 17.8000i 0.228396 0.637341i
\(781\) −32.3992 + 18.7057i −1.15933 + 0.669341i
\(782\) −0.425689 + 2.44975i −0.0152226 + 0.0876028i
\(783\) −0.0806779 −0.00288319
\(784\) 0 0
\(785\) −19.1515 −0.683546
\(786\) 8.78699 50.5673i 0.313422 1.80367i
\(787\) 29.6763 17.1336i 1.05784 0.610747i 0.133009 0.991115i \(-0.457536\pi\)
0.924835 + 0.380368i \(0.124203\pi\)
\(788\) −13.1882 + 36.8018i −0.469811 + 1.31101i
\(789\) 23.1720 + 13.3784i 0.824944 + 0.476282i
\(790\) 6.30071 + 17.1783i 0.224169 + 0.611175i
\(791\) 0 0
\(792\) −37.8786 21.4947i −1.34596 0.763781i
\(793\) 16.6665 28.8672i 0.591844 1.02510i
\(794\) −27.1141 + 32.4767i −0.962244 + 1.15256i
\(795\) 18.2582 10.5414i 0.647552 0.373865i
\(796\) −7.42574 40.9242i −0.263198 1.45052i
\(797\) 20.5838i 0.729114i −0.931181 0.364557i \(-0.881220\pi\)
0.931181 0.364557i \(-0.118780\pi\)
\(798\) 0 0
\(799\) −13.8122 −0.488641
\(800\) 14.9066 + 5.21696i 0.527029 + 0.184447i
\(801\) 3.94196 + 6.82767i 0.139282 + 0.241244i
\(802\) 17.0120 + 14.2029i 0.600713 + 0.501522i
\(803\) 43.2416 + 24.9655i 1.52596 + 0.881014i
\(804\) 1.92162 1.62876i 0.0677703 0.0574418i
\(805\) 0 0
\(806\) −4.60407 12.5525i −0.162171 0.442144i
\(807\) 29.5252 51.1392i 1.03934 1.80019i
\(808\) 0.00440697 + 0.591724i 0.000155037 + 0.0208168i
\(809\) 23.4504 + 40.6172i 0.824471 + 1.42802i 0.902323 + 0.431060i \(0.141860\pi\)
−0.0778526 + 0.996965i \(0.524806\pi\)
\(810\) 18.3096 + 3.18163i 0.643335 + 0.111791i
\(811\) 22.2462i 0.781168i −0.920567 0.390584i \(-0.872273\pi\)
0.920567 0.390584i \(-0.127727\pi\)
\(812\) 0 0
\(813\) 15.3088i 0.536902i
\(814\) −7.35552 + 42.3294i −0.257811 + 1.48365i
\(815\) −2.40076 4.15823i −0.0840948 0.145656i
\(816\) 4.35421 + 11.6033i 0.152428 + 0.406196i
\(817\) −1.58637 + 2.74767i −0.0554999 + 0.0961287i
\(818\) 34.6360 12.7039i 1.21102 0.444182i
\(819\) 0 0
\(820\) −12.2258 14.4241i −0.426945 0.503713i
\(821\) −28.4062 16.4003i −0.991384 0.572376i −0.0856966 0.996321i \(-0.527312\pi\)
−0.905688 + 0.423945i \(0.860645\pi\)
\(822\) −20.8738 + 25.0022i −0.728058 + 0.872053i
\(823\) 6.88576 + 11.9265i 0.240023 + 0.415731i 0.960720 0.277518i \(-0.0895118\pi\)
−0.720698 + 0.693249i \(0.756178\pi\)
\(824\) −9.85060 16.7720i −0.343162 0.584281i
\(825\) −34.6572 −1.20661
\(826\) 0 0
\(827\) 22.0460i 0.766615i −0.923621 0.383307i \(-0.874785\pi\)
0.923621 0.383307i \(-0.125215\pi\)
\(828\) 1.52095 + 8.38215i 0.0528566 + 0.291300i
\(829\) −4.74751 + 2.74098i −0.164888 + 0.0951980i −0.580173 0.814493i \(-0.697015\pi\)
0.415285 + 0.909691i \(0.363682\pi\)
\(830\) −4.79432 4.00267i −0.166413 0.138935i
\(831\) −34.4402 + 59.6522i −1.19472 + 2.06931i
\(832\) −17.7626 + 10.6111i −0.615806 + 0.367873i
\(833\) 0 0
\(834\) 5.53672 2.03078i 0.191721 0.0703202i
\(835\) −18.0793 10.4381i −0.625659 0.361224i
\(836\) −29.4371 10.5490i −1.01810 0.364845i
\(837\) −0.400076 + 0.230984i −0.0138287 + 0.00798398i
\(838\) 0.352174 + 0.0611968i 0.0121657 + 0.00211401i
\(839\) −28.7512 −0.992601 −0.496301 0.868151i \(-0.665309\pi\)
−0.496301 + 0.868151i \(0.665309\pi\)
\(840\) 0 0
\(841\) 28.5925 0.985947
\(842\) −25.5956 4.44771i −0.882084 0.153278i
\(843\) −35.6012 + 20.5544i −1.22617 + 0.707930i
\(844\) 11.6137 32.4083i 0.399762 1.11554i
\(845\) −8.12145 4.68892i −0.279387 0.161304i
\(846\) −44.4287 + 16.2957i −1.52749 + 0.560259i
\(847\) 0 0
\(848\) −22.7582 3.78027i −0.781519 0.129815i
\(849\) −34.2556 + 59.3324i −1.17565 + 2.03628i
\(850\) 3.81740 + 3.18706i 0.130936 + 0.109315i
\(851\) 7.27797 4.20194i 0.249486 0.144041i
\(852\) 35.8884 6.51198i 1.22952 0.223097i
\(853\) 21.7605i 0.745064i 0.928019 + 0.372532i \(0.121510\pi\)
−0.928019 + 0.372532i \(0.878490\pi\)
\(854\) 0 0
\(855\) −14.0487 −0.480457
\(856\) −31.5547 + 18.5328i −1.07852 + 0.633439i
\(857\) 5.89593 + 10.2121i 0.201401 + 0.348837i 0.948980 0.315336i \(-0.102117\pi\)
−0.747579 + 0.664173i \(0.768784\pi\)
\(858\) 29.0990 34.8542i 0.993422 1.18990i
\(859\) −4.15132 2.39676i −0.141641 0.0817766i 0.427505 0.904013i \(-0.359393\pi\)
−0.569146 + 0.822237i \(0.692726\pi\)
\(860\) −2.32158 + 1.96776i −0.0791651 + 0.0671000i
\(861\) 0 0
\(862\) 36.4389 13.3652i 1.24111 0.455220i
\(863\) 0.0628642 0.108884i 0.00213992 0.00370646i −0.864953 0.501852i \(-0.832652\pi\)
0.867093 + 0.498146i \(0.165986\pi\)
\(864\) 0.466293 + 0.541902i 0.0158636 + 0.0184359i
\(865\) −4.85823 8.41471i −0.165185 0.286109i
\(866\) −1.75829 + 10.1186i −0.0597492 + 0.343844i
\(867\) 37.9168i 1.28772i
\(868\) 0 0
\(869\) 43.9371i 1.49046i
\(870\) −3.25145 0.564999i −0.110234 0.0191553i
\(871\) 0.662108 + 1.14681i 0.0224347 + 0.0388580i
\(872\) −0.404812 54.3543i −0.0137087 1.84067i
\(873\) 2.39593 4.14988i 0.0810900 0.140452i
\(874\) 2.10625 + 5.74249i 0.0712451 + 0.194242i
\(875\) 0 0
\(876\) −31.4760 37.1357i −1.06348 1.25470i
\(877\) 25.9534 + 14.9842i 0.876385 + 0.505981i 0.869465 0.493995i \(-0.164464\pi\)
0.00692013 + 0.999976i \(0.497797\pi\)
\(878\) 32.5729 + 27.1944i 1.09928 + 0.917765i
\(879\) −24.8273 43.0021i −0.837403 1.45042i
\(880\) −23.1676 19.0511i −0.780980 0.642213i
\(881\) 30.2728 1.01992 0.509959 0.860199i \(-0.329661\pi\)
0.509959 + 0.860199i \(0.329661\pi\)
\(882\) 0 0
\(883\) 43.3423i 1.45858i −0.684203 0.729291i \(-0.739850\pi\)
0.684203 0.729291i \(-0.260150\pi\)
\(884\) −6.41035 + 1.16316i −0.215603 + 0.0391214i
\(885\) 11.0292 6.36772i 0.370743 0.214048i
\(886\) −31.7985 + 38.0876i −1.06829 + 1.27958i
\(887\) 7.56821 13.1085i 0.254116 0.440141i −0.710539 0.703658i \(-0.751549\pi\)
0.964655 + 0.263516i \(0.0848823\pi\)
\(888\) 20.6731 36.4309i 0.693745 1.22254i
\(889\) 0 0
\(890\) 1.86972 + 5.09761i 0.0626732 + 0.170872i
\(891\) 38.6468 + 22.3128i 1.29472 + 0.747505i
\(892\) 32.9791 + 11.8183i 1.10422 + 0.395706i
\(893\) −29.4253 + 16.9887i −0.984680 + 0.568505i
\(894\) 2.19578 12.6362i 0.0734379 0.422619i
\(895\) 0.187796 0.00627731
\(896\) 0 0
\(897\) −8.88128 −0.296537
\(898\) 5.08705 29.2749i 0.169757 0.976916i
\(899\) −2.02094 + 1.16679i −0.0674020 + 0.0389146i
\(900\) 16.0393 + 5.74779i 0.534642 + 0.191593i
\(901\) −6.29101 3.63212i −0.209584 0.121003i
\(902\) −15.6351 42.6275i −0.520592 1.41934i
\(903\) 0 0
\(904\) −1.46765 + 2.58633i −0.0488132 + 0.0860201i
\(905\) −2.02034 + 3.49933i −0.0671584 + 0.116322i
\(906\) −31.8321 + 38.1278i −1.05755 + 1.26671i
\(907\) 27.4761 15.8633i 0.912328 0.526733i 0.0311488 0.999515i \(-0.490083\pi\)
0.881180 + 0.472782i \(0.156750\pi\)
\(908\) −25.9580 + 4.71009i −0.861445 + 0.156310i
\(909\) 0.638384i 0.0211739i
\(910\) 0 0
\(911\) 29.4757 0.976574 0.488287 0.872683i \(-0.337622\pi\)
0.488287 + 0.872683i \(0.337622\pi\)
\(912\) 23.5479 + 19.3638i 0.779749 + 0.641201i
\(913\) −7.49868 12.9881i −0.248170 0.429843i
\(914\) −14.5206 12.1229i −0.480299 0.400991i
\(915\) −40.8000 23.5559i −1.34881 0.778734i
\(916\) 22.2032 + 26.1955i 0.733614 + 0.865524i
\(917\) 0 0
\(918\) 0.0775161 + 0.211340i 0.00255841 + 0.00697525i
\(919\) −8.85875 + 15.3438i −0.292223 + 0.506146i −0.974335 0.225102i \(-0.927728\pi\)
0.682112 + 0.731248i \(0.261062\pi\)
\(920\) 0.0436949 + 5.86692i 0.00144058 + 0.193427i
\(921\) −21.9974 38.1005i −0.724838 1.25546i
\(922\) −3.74306 0.650426i −0.123271 0.0214206i
\(923\) 19.1741i 0.631124i
\(924\) 0 0
\(925\) 16.8077i 0.552635i
\(926\) 5.09368 29.3130i 0.167389 0.963285i
\(927\) −10.4920 18.1727i −0.344603 0.596870i
\(928\) 2.35542 + 2.73735i 0.0773205 + 0.0898579i
\(929\) 26.6338 46.1311i 0.873826 1.51351i 0.0158180 0.999875i \(-0.494965\pi\)
0.858008 0.513636i \(-0.171702\pi\)
\(930\) −17.7414 + 6.50725i −0.581762 + 0.213381i
\(931\) 0 0
\(932\) 37.9570 32.1722i 1.24332 1.05384i
\(933\) −3.04929 1.76051i −0.0998293 0.0576365i
\(934\) 22.3805 26.8069i 0.732313 0.877150i
\(935\) −4.72233 8.17932i −0.154437 0.267492i
\(936\) −19.2474 + 11.3044i −0.629121 + 0.369497i
\(937\) 38.2055 1.24812 0.624060 0.781377i \(-0.285482\pi\)
0.624060 + 0.781377i \(0.285482\pi\)
\(938\) 0 0
\(939\) 11.9469i 0.389874i
\(940\) −32.0679 + 5.81874i −1.04594 + 0.189786i
\(941\) 8.31195 4.79890i 0.270962 0.156440i −0.358363 0.933582i \(-0.616665\pi\)
0.629325 + 0.777143i \(0.283332\pi\)
\(942\) 34.4182 + 28.7350i 1.12140 + 0.936236i
\(943\) −4.44064 + 7.69141i −0.144607 + 0.250467i
\(944\) −13.7475 2.28354i −0.447443 0.0743229i
\(945\) 0 0
\(946\) −6.86094 + 2.51648i −0.223068 + 0.0818179i
\(947\) −14.3314 8.27425i −0.465709 0.268877i 0.248733 0.968572i \(-0.419986\pi\)
−0.714442 + 0.699695i \(0.753319\pi\)
\(948\) 14.4510 40.3256i 0.469346 1.30972i
\(949\) 22.1622 12.7954i 0.719417 0.415356i
\(950\) 12.0525 + 2.09435i 0.391036 + 0.0679496i
\(951\) 27.7803 0.900837
\(952\) 0 0
\(953\) 6.08942 0.197256 0.0986278 0.995124i \(-0.468555\pi\)
0.0986278 + 0.995124i \(0.468555\pi\)
\(954\) −24.5210 4.26098i −0.793897 0.137954i
\(955\) −3.14943 + 1.81832i −0.101913 + 0.0588396i
\(956\) 25.0863 + 8.98986i 0.811348 + 0.290753i
\(957\) −6.86296 3.96233i −0.221848 0.128084i
\(958\) 54.3201 19.9238i 1.75500 0.643708i
\(959\) 0 0
\(960\) 14.9974 + 25.1051i 0.484038 + 0.810262i
\(961\) 8.81887 15.2747i 0.284480 0.492733i
\(962\) 16.9033 + 14.1122i 0.544984 + 0.454995i
\(963\) −34.1899 + 19.7396i −1.10176 + 0.636099i
\(964\) 7.94253 + 43.7723i 0.255812 + 1.40981i
\(965\) 5.86758i 0.188884i
\(966\) 0 0
\(967\) 21.5430 0.692778 0.346389 0.938091i \(-0.387408\pi\)
0.346389 + 0.938091i \(0.387408\pi\)
\(968\) −20.7199 35.2786i −0.665963 1.13390i
\(969\) 4.79985 + 8.31358i 0.154193 + 0.267071i
\(970\) 2.11503 2.53334i 0.0679095 0.0813406i
\(971\) −2.27385 1.31281i −0.0729715 0.0421301i 0.463070 0.886322i \(-0.346748\pi\)
−0.536042 + 0.844191i \(0.680081\pi\)
\(972\) −28.6218 33.7682i −0.918044 1.08311i
\(973\) 0 0
\(974\) 23.2804 8.53887i 0.745951 0.273603i
\(975\) −8.88128 + 15.3828i −0.284429 + 0.492645i
\(976\) 18.1122 + 48.2660i 0.579756 + 1.54496i
\(977\) 17.2338 + 29.8499i 0.551359 + 0.954982i 0.998177 + 0.0603567i \(0.0192238\pi\)
−0.446818 + 0.894625i \(0.647443\pi\)
\(978\) −1.92450 + 11.0751i −0.0615387 + 0.354142i
\(979\) 13.0382i 0.416704i
\(980\) 0 0
\(981\) 58.6403i 1.87224i
\(982\) 21.9463 + 3.81358i 0.700335 + 0.121696i
\(983\) 26.2210 + 45.4161i 0.836320 + 1.44855i 0.892951 + 0.450154i \(0.148631\pi\)
−0.0566303 + 0.998395i \(0.518036\pi\)
\(984\) 0.329679 + 44.2661i 0.0105098 + 1.41115i
\(985\) −14.5230 + 25.1547i −0.462743 + 0.801494i
\(986\) 0.391563 + 1.06756i 0.0124699 + 0.0339979i
\(987\) 0 0
\(988\) −12.2258 + 10.3626i −0.388956 + 0.329677i
\(989\) 1.23794 + 0.714725i 0.0393642 + 0.0227269i
\(990\) −24.8400 20.7384i −0.789467 0.659109i
\(991\) 8.08057 + 13.9960i 0.256688 + 0.444596i 0.965353 0.260949i \(-0.0840355\pi\)
−0.708665 + 0.705545i \(0.750702\pi\)
\(992\) 19.5175 + 6.83067i 0.619682 + 0.216874i
\(993\) −58.6325 −1.86064
\(994\) 0 0
\(995\) 30.9028i 0.979684i
\(996\) 2.61051 + 14.3868i 0.0827171 + 0.455865i
\(997\) −34.0954 + 19.6850i −1.07981 + 0.623430i −0.930846 0.365412i \(-0.880928\pi\)
−0.148967 + 0.988842i \(0.547595\pi\)
\(998\) −9.23219 + 11.0581i −0.292240 + 0.350039i
\(999\) 0.380415 0.658898i 0.0120358 0.0208466i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.2.p.g.373.4 12
4.3 odd 2 1568.2.t.g.177.1 12
7.2 even 3 392.2.b.f.197.5 6
7.3 odd 6 56.2.p.a.53.2 yes 12
7.4 even 3 inner 392.2.p.g.165.2 12
7.5 odd 6 392.2.b.e.197.5 6
7.6 odd 2 56.2.p.a.37.4 yes 12
8.3 odd 2 1568.2.t.g.177.6 12
8.5 even 2 inner 392.2.p.g.373.2 12
21.17 even 6 504.2.cj.c.109.5 12
21.20 even 2 504.2.cj.c.37.3 12
28.3 even 6 224.2.t.a.81.1 12
28.11 odd 6 1568.2.t.g.753.6 12
28.19 even 6 1568.2.b.f.785.6 6
28.23 odd 6 1568.2.b.e.785.1 6
28.27 even 2 224.2.t.a.177.6 12
56.3 even 6 224.2.t.a.81.6 12
56.5 odd 6 392.2.b.e.197.6 6
56.11 odd 6 1568.2.t.g.753.1 12
56.13 odd 2 56.2.p.a.37.2 12
56.19 even 6 1568.2.b.f.785.1 6
56.27 even 2 224.2.t.a.177.1 12
56.37 even 6 392.2.b.f.197.6 6
56.45 odd 6 56.2.p.a.53.4 yes 12
56.51 odd 6 1568.2.b.e.785.6 6
56.53 even 6 inner 392.2.p.g.165.4 12
84.59 odd 6 2016.2.cr.c.1873.5 12
84.83 odd 2 2016.2.cr.c.1297.2 12
168.59 odd 6 2016.2.cr.c.1873.2 12
168.83 odd 2 2016.2.cr.c.1297.5 12
168.101 even 6 504.2.cj.c.109.3 12
168.125 even 2 504.2.cj.c.37.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.p.a.37.2 12 56.13 odd 2
56.2.p.a.37.4 yes 12 7.6 odd 2
56.2.p.a.53.2 yes 12 7.3 odd 6
56.2.p.a.53.4 yes 12 56.45 odd 6
224.2.t.a.81.1 12 28.3 even 6
224.2.t.a.81.6 12 56.3 even 6
224.2.t.a.177.1 12 56.27 even 2
224.2.t.a.177.6 12 28.27 even 2
392.2.b.e.197.5 6 7.5 odd 6
392.2.b.e.197.6 6 56.5 odd 6
392.2.b.f.197.5 6 7.2 even 3
392.2.b.f.197.6 6 56.37 even 6
392.2.p.g.165.2 12 7.4 even 3 inner
392.2.p.g.165.4 12 56.53 even 6 inner
392.2.p.g.373.2 12 8.5 even 2 inner
392.2.p.g.373.4 12 1.1 even 1 trivial
504.2.cj.c.37.3 12 21.20 even 2
504.2.cj.c.37.5 12 168.125 even 2
504.2.cj.c.109.3 12 168.101 even 6
504.2.cj.c.109.5 12 21.17 even 6
1568.2.b.e.785.1 6 28.23 odd 6
1568.2.b.e.785.6 6 56.51 odd 6
1568.2.b.f.785.1 6 56.19 even 6
1568.2.b.f.785.6 6 28.19 even 6
1568.2.t.g.177.1 12 4.3 odd 2
1568.2.t.g.177.6 12 8.3 odd 2
1568.2.t.g.753.1 12 56.11 odd 6
1568.2.t.g.753.6 12 28.11 odd 6
2016.2.cr.c.1297.2 12 84.83 odd 2
2016.2.cr.c.1297.5 12 168.83 odd 2
2016.2.cr.c.1873.2 12 168.59 odd 6
2016.2.cr.c.1873.5 12 84.59 odd 6