Properties

Label 1530.2.c.g.271.3
Level $1530$
Weight $2$
Character 1530.271
Analytic conductor $12.217$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1530,2,Mod(271,1530)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1530, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1530.271"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,0,0,0,4,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2171115093\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 510)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 271.3
Root \(-2.30278i\) of defining polynomial
Character \(\chi\) \(=\) 1530.271
Dual form 1530.2.c.g.271.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000i q^{5} -4.60555i q^{7} +1.00000 q^{8} +1.00000i q^{10} -0.605551 q^{13} -4.60555i q^{14} +1.00000 q^{16} +(3.60555 - 2.00000i) q^{17} +1.00000i q^{20} +2.00000i q^{23} -1.00000 q^{25} -0.605551 q^{26} -4.60555i q^{28} -7.21110i q^{29} -2.00000i q^{31} +1.00000 q^{32} +(3.60555 - 2.00000i) q^{34} +4.60555 q^{35} -11.2111i q^{37} +1.00000i q^{40} +1.39445i q^{41} -2.60555 q^{43} +2.00000i q^{46} -4.00000 q^{47} -14.2111 q^{49} -1.00000 q^{50} -0.605551 q^{52} +7.21110 q^{53} -4.60555i q^{56} -7.21110i q^{58} +10.6056 q^{59} -3.21110i q^{61} -2.00000i q^{62} +1.00000 q^{64} -0.605551i q^{65} +14.6056 q^{67} +(3.60555 - 2.00000i) q^{68} +4.60555 q^{70} +13.8167i q^{71} -6.60555i q^{73} -11.2111i q^{74} +7.21110i q^{79} +1.00000i q^{80} +1.39445i q^{82} -5.21110 q^{83} +(2.00000 + 3.60555i) q^{85} -2.60555 q^{86} +0.788897 q^{89} +2.78890i q^{91} +2.00000i q^{92} -4.00000 q^{94} +2.60555i q^{97} -14.2111 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8} + 12 q^{13} + 4 q^{16} - 4 q^{25} + 12 q^{26} + 4 q^{32} + 4 q^{35} + 4 q^{43} - 16 q^{47} - 28 q^{49} - 4 q^{50} + 12 q^{52} + 28 q^{59} + 4 q^{64} + 44 q^{67} + 4 q^{70}+ \cdots - 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1530\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(1261\) \(1361\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 4.60555i 1.74073i −0.492403 0.870367i \(-0.663881\pi\)
0.492403 0.870367i \(-0.336119\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) −0.605551 −0.167950 −0.0839749 0.996468i \(-0.526762\pi\)
−0.0839749 + 0.996468i \(0.526762\pi\)
\(14\) 4.60555i 1.23089i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.60555 2.00000i 0.874475 0.485071i
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 1.00000i 0.223607i
\(21\) 0 0
\(22\) 0 0
\(23\) 2.00000i 0.417029i 0.978019 + 0.208514i \(0.0668628\pi\)
−0.978019 + 0.208514i \(0.933137\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −0.605551 −0.118758
\(27\) 0 0
\(28\) 4.60555i 0.870367i
\(29\) 7.21110i 1.33907i −0.742781 0.669534i \(-0.766494\pi\)
0.742781 0.669534i \(-0.233506\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i −0.983739 0.179605i \(-0.942518\pi\)
0.983739 0.179605i \(-0.0574821\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 3.60555 2.00000i 0.618347 0.342997i
\(35\) 4.60555 0.778480
\(36\) 0 0
\(37\) 11.2111i 1.84309i −0.388267 0.921547i \(-0.626926\pi\)
0.388267 0.921547i \(-0.373074\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 1.00000i 0.158114i
\(41\) 1.39445i 0.217776i 0.994054 + 0.108888i \(0.0347290\pi\)
−0.994054 + 0.108888i \(0.965271\pi\)
\(42\) 0 0
\(43\) −2.60555 −0.397343 −0.198671 0.980066i \(-0.563663\pi\)
−0.198671 + 0.980066i \(0.563663\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 2.00000i 0.294884i
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) −14.2111 −2.03016
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) −0.605551 −0.0839749
\(53\) 7.21110 0.990521 0.495261 0.868744i \(-0.335073\pi\)
0.495261 + 0.868744i \(0.335073\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.60555i 0.615443i
\(57\) 0 0
\(58\) 7.21110i 0.946864i
\(59\) 10.6056 1.38073 0.690363 0.723464i \(-0.257451\pi\)
0.690363 + 0.723464i \(0.257451\pi\)
\(60\) 0 0
\(61\) 3.21110i 0.411140i −0.978642 0.205570i \(-0.934095\pi\)
0.978642 0.205570i \(-0.0659048\pi\)
\(62\) 2.00000i 0.254000i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.605551i 0.0751094i
\(66\) 0 0
\(67\) 14.6056 1.78435 0.892176 0.451688i \(-0.149178\pi\)
0.892176 + 0.451688i \(0.149178\pi\)
\(68\) 3.60555 2.00000i 0.437237 0.242536i
\(69\) 0 0
\(70\) 4.60555 0.550469
\(71\) 13.8167i 1.63974i 0.572553 + 0.819868i \(0.305953\pi\)
−0.572553 + 0.819868i \(0.694047\pi\)
\(72\) 0 0
\(73\) 6.60555i 0.773121i −0.922264 0.386561i \(-0.873663\pi\)
0.922264 0.386561i \(-0.126337\pi\)
\(74\) 11.2111i 1.30326i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7.21110i 0.811312i 0.914026 + 0.405656i \(0.132957\pi\)
−0.914026 + 0.405656i \(0.867043\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 0 0
\(82\) 1.39445i 0.153991i
\(83\) −5.21110 −0.571993 −0.285996 0.958231i \(-0.592325\pi\)
−0.285996 + 0.958231i \(0.592325\pi\)
\(84\) 0 0
\(85\) 2.00000 + 3.60555i 0.216930 + 0.391077i
\(86\) −2.60555 −0.280964
\(87\) 0 0
\(88\) 0 0
\(89\) 0.788897 0.0836230 0.0418115 0.999126i \(-0.486687\pi\)
0.0418115 + 0.999126i \(0.486687\pi\)
\(90\) 0 0
\(91\) 2.78890i 0.292356i
\(92\) 2.00000i 0.208514i
\(93\) 0 0
\(94\) −4.00000 −0.412568
\(95\) 0 0
\(96\) 0 0
\(97\) 2.60555i 0.264554i 0.991213 + 0.132277i \(0.0422288\pi\)
−0.991213 + 0.132277i \(0.957771\pi\)
\(98\) −14.2111 −1.43554
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −16.6056 −1.65231 −0.826157 0.563440i \(-0.809478\pi\)
−0.826157 + 0.563440i \(0.809478\pi\)
\(102\) 0 0
\(103\) 14.4222 1.42106 0.710531 0.703666i \(-0.248455\pi\)
0.710531 + 0.703666i \(0.248455\pi\)
\(104\) −0.605551 −0.0593792
\(105\) 0 0
\(106\) 7.21110 0.700404
\(107\) 1.21110i 0.117082i 0.998285 + 0.0585409i \(0.0186448\pi\)
−0.998285 + 0.0585409i \(0.981355\pi\)
\(108\) 0 0
\(109\) 0.788897i 0.0755627i −0.999286 0.0377813i \(-0.987971\pi\)
0.999286 0.0377813i \(-0.0120290\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 4.60555i 0.435184i
\(113\) 5.21110i 0.490219i 0.969495 + 0.245110i \(0.0788240\pi\)
−0.969495 + 0.245110i \(0.921176\pi\)
\(114\) 0 0
\(115\) −2.00000 −0.186501
\(116\) 7.21110i 0.669534i
\(117\) 0 0
\(118\) 10.6056 0.976320
\(119\) −9.21110 16.6056i −0.844380 1.52223i
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 3.21110i 0.290720i
\(123\) 0 0
\(124\) 2.00000i 0.179605i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 9.21110 0.817353 0.408677 0.912679i \(-0.365990\pi\)
0.408677 + 0.912679i \(0.365990\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0.605551i 0.0531104i
\(131\) 10.4222i 0.910592i 0.890340 + 0.455296i \(0.150467\pi\)
−0.890340 + 0.455296i \(0.849533\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 14.6056 1.26173
\(135\) 0 0
\(136\) 3.60555 2.00000i 0.309173 0.171499i
\(137\) 7.21110 0.616086 0.308043 0.951372i \(-0.400326\pi\)
0.308043 + 0.951372i \(0.400326\pi\)
\(138\) 0 0
\(139\) 17.2111i 1.45983i 0.683540 + 0.729913i \(0.260440\pi\)
−0.683540 + 0.729913i \(0.739560\pi\)
\(140\) 4.60555 0.389240
\(141\) 0 0
\(142\) 13.8167i 1.15947i
\(143\) 0 0
\(144\) 0 0
\(145\) 7.21110 0.598849
\(146\) 6.60555i 0.546679i
\(147\) 0 0
\(148\) 11.2111i 0.921547i
\(149\) −23.0278 −1.88651 −0.943254 0.332073i \(-0.892252\pi\)
−0.943254 + 0.332073i \(0.892252\pi\)
\(150\) 0 0
\(151\) 6.42221 0.522632 0.261316 0.965253i \(-0.415844\pi\)
0.261316 + 0.965253i \(0.415844\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.00000 0.160644
\(156\) 0 0
\(157\) −20.6056 −1.64450 −0.822251 0.569125i \(-0.807282\pi\)
−0.822251 + 0.569125i \(0.807282\pi\)
\(158\) 7.21110i 0.573685i
\(159\) 0 0
\(160\) 1.00000i 0.0790569i
\(161\) 9.21110 0.725937
\(162\) 0 0
\(163\) 20.0000i 1.56652i 0.621694 + 0.783260i \(0.286445\pi\)
−0.621694 + 0.783260i \(0.713555\pi\)
\(164\) 1.39445i 0.108888i
\(165\) 0 0
\(166\) −5.21110 −0.404460
\(167\) 3.21110i 0.248483i 0.992252 + 0.124241i \(0.0396497\pi\)
−0.992252 + 0.124241i \(0.960350\pi\)
\(168\) 0 0
\(169\) −12.6333 −0.971793
\(170\) 2.00000 + 3.60555i 0.153393 + 0.276533i
\(171\) 0 0
\(172\) −2.60555 −0.198671
\(173\) 6.00000i 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) 0 0
\(175\) 4.60555i 0.348147i
\(176\) 0 0
\(177\) 0 0
\(178\) 0.788897 0.0591304
\(179\) −25.0278 −1.87066 −0.935331 0.353773i \(-0.884898\pi\)
−0.935331 + 0.353773i \(0.884898\pi\)
\(180\) 0 0
\(181\) 7.21110i 0.535997i −0.963419 0.267999i \(-0.913638\pi\)
0.963419 0.267999i \(-0.0863622\pi\)
\(182\) 2.78890i 0.206727i
\(183\) 0 0
\(184\) 2.00000i 0.147442i
\(185\) 11.2111 0.824257
\(186\) 0 0
\(187\) 0 0
\(188\) −4.00000 −0.291730
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 10.6056i 0.763404i −0.924285 0.381702i \(-0.875338\pi\)
0.924285 0.381702i \(-0.124662\pi\)
\(194\) 2.60555i 0.187068i
\(195\) 0 0
\(196\) −14.2111 −1.01508
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 0 0
\(199\) 14.0000i 0.992434i −0.868199 0.496217i \(-0.834722\pi\)
0.868199 0.496217i \(-0.165278\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) −16.6056 −1.16836
\(203\) −33.2111 −2.33096
\(204\) 0 0
\(205\) −1.39445 −0.0973925
\(206\) 14.4222 1.00484
\(207\) 0 0
\(208\) −0.605551 −0.0419874
\(209\) 0 0
\(210\) 0 0
\(211\) 16.0000i 1.10149i −0.834675 0.550743i \(-0.814345\pi\)
0.834675 0.550743i \(-0.185655\pi\)
\(212\) 7.21110 0.495261
\(213\) 0 0
\(214\) 1.21110i 0.0827893i
\(215\) 2.60555i 0.177697i
\(216\) 0 0
\(217\) −9.21110 −0.625290
\(218\) 0.788897i 0.0534309i
\(219\) 0 0
\(220\) 0 0
\(221\) −2.18335 + 1.21110i −0.146868 + 0.0814676i
\(222\) 0 0
\(223\) −20.0000 −1.33930 −0.669650 0.742677i \(-0.733556\pi\)
−0.669650 + 0.742677i \(0.733556\pi\)
\(224\) 4.60555i 0.307721i
\(225\) 0 0
\(226\) 5.21110i 0.346637i
\(227\) 29.2111i 1.93881i 0.245469 + 0.969404i \(0.421058\pi\)
−0.245469 + 0.969404i \(0.578942\pi\)
\(228\) 0 0
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) −2.00000 −0.131876
\(231\) 0 0
\(232\) 7.21110i 0.473432i
\(233\) 8.00000i 0.524097i 0.965055 + 0.262049i \(0.0843981\pi\)
−0.965055 + 0.262049i \(0.915602\pi\)
\(234\) 0 0
\(235\) 4.00000i 0.260931i
\(236\) 10.6056 0.690363
\(237\) 0 0
\(238\) −9.21110 16.6056i −0.597067 1.07638i
\(239\) −10.7889 −0.697876 −0.348938 0.937146i \(-0.613458\pi\)
−0.348938 + 0.937146i \(0.613458\pi\)
\(240\) 0 0
\(241\) 14.4222i 0.929016i 0.885569 + 0.464508i \(0.153769\pi\)
−0.885569 + 0.464508i \(0.846231\pi\)
\(242\) 11.0000 0.707107
\(243\) 0 0
\(244\) 3.21110i 0.205570i
\(245\) 14.2111i 0.907914i
\(246\) 0 0
\(247\) 0 0
\(248\) 2.00000i 0.127000i
\(249\) 0 0
\(250\) 1.00000i 0.0632456i
\(251\) −14.6056 −0.921894 −0.460947 0.887428i \(-0.652490\pi\)
−0.460947 + 0.887428i \(0.652490\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 9.21110 0.577956
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 16.4222 1.02439 0.512195 0.858869i \(-0.328833\pi\)
0.512195 + 0.858869i \(0.328833\pi\)
\(258\) 0 0
\(259\) −51.6333 −3.20834
\(260\) 0.605551i 0.0375547i
\(261\) 0 0
\(262\) 10.4222i 0.643886i
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) 0 0
\(265\) 7.21110i 0.442975i
\(266\) 0 0
\(267\) 0 0
\(268\) 14.6056 0.892176
\(269\) 0.422205i 0.0257423i 0.999917 + 0.0128711i \(0.00409713\pi\)
−0.999917 + 0.0128711i \(0.995903\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 3.60555 2.00000i 0.218619 0.121268i
\(273\) 0 0
\(274\) 7.21110 0.435639
\(275\) 0 0
\(276\) 0 0
\(277\) 19.2111i 1.15428i 0.816644 + 0.577142i \(0.195832\pi\)
−0.816644 + 0.577142i \(0.804168\pi\)
\(278\) 17.2111i 1.03225i
\(279\) 0 0
\(280\) 4.60555 0.275234
\(281\) 23.2111 1.38466 0.692329 0.721582i \(-0.256585\pi\)
0.692329 + 0.721582i \(0.256585\pi\)
\(282\) 0 0
\(283\) 23.6333i 1.40485i 0.711756 + 0.702427i \(0.247900\pi\)
−0.711756 + 0.702427i \(0.752100\pi\)
\(284\) 13.8167i 0.819868i
\(285\) 0 0
\(286\) 0 0
\(287\) 6.42221 0.379091
\(288\) 0 0
\(289\) 9.00000 14.4222i 0.529412 0.848365i
\(290\) 7.21110 0.423451
\(291\) 0 0
\(292\) 6.60555i 0.386561i
\(293\) −0.422205 −0.0246655 −0.0123327 0.999924i \(-0.503926\pi\)
−0.0123327 + 0.999924i \(0.503926\pi\)
\(294\) 0 0
\(295\) 10.6056i 0.617479i
\(296\) 11.2111i 0.651632i
\(297\) 0 0
\(298\) −23.0278 −1.33396
\(299\) 1.21110i 0.0700399i
\(300\) 0 0
\(301\) 12.0000i 0.691669i
\(302\) 6.42221 0.369556
\(303\) 0 0
\(304\) 0 0
\(305\) 3.21110 0.183867
\(306\) 0 0
\(307\) 18.6056 1.06187 0.530937 0.847411i \(-0.321840\pi\)
0.530937 + 0.847411i \(0.321840\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 2.00000 0.113592
\(311\) 3.39445i 0.192482i −0.995358 0.0962408i \(-0.969318\pi\)
0.995358 0.0962408i \(-0.0306819\pi\)
\(312\) 0 0
\(313\) 8.18335i 0.462550i −0.972888 0.231275i \(-0.925710\pi\)
0.972888 0.231275i \(-0.0742897\pi\)
\(314\) −20.6056 −1.16284
\(315\) 0 0
\(316\) 7.21110i 0.405656i
\(317\) 16.4222i 0.922363i −0.887306 0.461181i \(-0.847426\pi\)
0.887306 0.461181i \(-0.152574\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.00000i 0.0559017i
\(321\) 0 0
\(322\) 9.21110 0.513315
\(323\) 0 0
\(324\) 0 0
\(325\) 0.605551 0.0335899
\(326\) 20.0000i 1.10770i
\(327\) 0 0
\(328\) 1.39445i 0.0769956i
\(329\) 18.4222i 1.01565i
\(330\) 0 0
\(331\) 11.6333 0.639424 0.319712 0.947515i \(-0.396414\pi\)
0.319712 + 0.947515i \(0.396414\pi\)
\(332\) −5.21110 −0.285996
\(333\) 0 0
\(334\) 3.21110i 0.175704i
\(335\) 14.6056i 0.797987i
\(336\) 0 0
\(337\) 6.60555i 0.359827i −0.983682 0.179914i \(-0.942418\pi\)
0.983682 0.179914i \(-0.0575818\pi\)
\(338\) −12.6333 −0.687161
\(339\) 0 0
\(340\) 2.00000 + 3.60555i 0.108465 + 0.195538i
\(341\) 0 0
\(342\) 0 0
\(343\) 33.2111i 1.79323i
\(344\) −2.60555 −0.140482
\(345\) 0 0
\(346\) 6.00000i 0.322562i
\(347\) 15.6333i 0.839240i 0.907700 + 0.419620i \(0.137837\pi\)
−0.907700 + 0.419620i \(0.862163\pi\)
\(348\) 0 0
\(349\) 11.2111 0.600117 0.300058 0.953921i \(-0.402994\pi\)
0.300058 + 0.953921i \(0.402994\pi\)
\(350\) 4.60555i 0.246177i
\(351\) 0 0
\(352\) 0 0
\(353\) 16.4222 0.874066 0.437033 0.899446i \(-0.356029\pi\)
0.437033 + 0.899446i \(0.356029\pi\)
\(354\) 0 0
\(355\) −13.8167 −0.733312
\(356\) 0.788897 0.0418115
\(357\) 0 0
\(358\) −25.0278 −1.32276
\(359\) −7.63331 −0.402871 −0.201435 0.979502i \(-0.564561\pi\)
−0.201435 + 0.979502i \(0.564561\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 7.21110i 0.379007i
\(363\) 0 0
\(364\) 2.78890i 0.146178i
\(365\) 6.60555 0.345750
\(366\) 0 0
\(367\) 33.4500i 1.74607i 0.487654 + 0.873037i \(0.337853\pi\)
−0.487654 + 0.873037i \(0.662147\pi\)
\(368\) 2.00000i 0.104257i
\(369\) 0 0
\(370\) 11.2111 0.582837
\(371\) 33.2111i 1.72423i
\(372\) 0 0
\(373\) 23.0278 1.19233 0.596166 0.802861i \(-0.296690\pi\)
0.596166 + 0.802861i \(0.296690\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −4.00000 −0.206284
\(377\) 4.36669i 0.224896i
\(378\) 0 0
\(379\) 37.2111i 1.91141i −0.294333 0.955703i \(-0.595097\pi\)
0.294333 0.955703i \(-0.404903\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 8.00000 0.409316
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 10.6056i 0.539808i
\(387\) 0 0
\(388\) 2.60555i 0.132277i
\(389\) 12.6056 0.639127 0.319563 0.947565i \(-0.396464\pi\)
0.319563 + 0.947565i \(0.396464\pi\)
\(390\) 0 0
\(391\) 4.00000 + 7.21110i 0.202289 + 0.364681i
\(392\) −14.2111 −0.717769
\(393\) 0 0
\(394\) 18.0000i 0.906827i
\(395\) −7.21110 −0.362830
\(396\) 0 0
\(397\) 32.4222i 1.62722i 0.581408 + 0.813612i \(0.302502\pi\)
−0.581408 + 0.813612i \(0.697498\pi\)
\(398\) 14.0000i 0.701757i
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) 14.6056i 0.729366i 0.931132 + 0.364683i \(0.118823\pi\)
−0.931132 + 0.364683i \(0.881177\pi\)
\(402\) 0 0
\(403\) 1.21110i 0.0603293i
\(404\) −16.6056 −0.826157
\(405\) 0 0
\(406\) −33.2111 −1.64824
\(407\) 0 0
\(408\) 0 0
\(409\) −13.6333 −0.674124 −0.337062 0.941483i \(-0.609433\pi\)
−0.337062 + 0.941483i \(0.609433\pi\)
\(410\) −1.39445 −0.0688669
\(411\) 0 0
\(412\) 14.4222 0.710531
\(413\) 48.8444i 2.40348i
\(414\) 0 0
\(415\) 5.21110i 0.255803i
\(416\) −0.605551 −0.0296896
\(417\) 0 0
\(418\) 0 0
\(419\) 27.6333i 1.34998i 0.737829 + 0.674988i \(0.235851\pi\)
−0.737829 + 0.674988i \(0.764149\pi\)
\(420\) 0 0
\(421\) 28.4222 1.38521 0.692607 0.721315i \(-0.256462\pi\)
0.692607 + 0.721315i \(0.256462\pi\)
\(422\) 16.0000i 0.778868i
\(423\) 0 0
\(424\) 7.21110 0.350202
\(425\) −3.60555 + 2.00000i −0.174895 + 0.0970143i
\(426\) 0 0
\(427\) −14.7889 −0.715685
\(428\) 1.21110i 0.0585409i
\(429\) 0 0
\(430\) 2.60555i 0.125651i
\(431\) 7.02776i 0.338515i −0.985572 0.169258i \(-0.945863\pi\)
0.985572 0.169258i \(-0.0541370\pi\)
\(432\) 0 0
\(433\) −16.4222 −0.789201 −0.394600 0.918853i \(-0.629117\pi\)
−0.394600 + 0.918853i \(0.629117\pi\)
\(434\) −9.21110 −0.442147
\(435\) 0 0
\(436\) 0.788897i 0.0377813i
\(437\) 0 0
\(438\) 0 0
\(439\) 17.6333i 0.841592i 0.907155 + 0.420796i \(0.138249\pi\)
−0.907155 + 0.420796i \(0.861751\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −2.18335 + 1.21110i −0.103851 + 0.0576063i
\(443\) −27.6333 −1.31290 −0.656449 0.754370i \(-0.727942\pi\)
−0.656449 + 0.754370i \(0.727942\pi\)
\(444\) 0 0
\(445\) 0.788897i 0.0373973i
\(446\) −20.0000 −0.947027
\(447\) 0 0
\(448\) 4.60555i 0.217592i
\(449\) 25.3944i 1.19844i −0.800585 0.599219i \(-0.795478\pi\)
0.800585 0.599219i \(-0.204522\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 5.21110i 0.245110i
\(453\) 0 0
\(454\) 29.2111i 1.37094i
\(455\) −2.78890 −0.130746
\(456\) 0 0
\(457\) 30.8444 1.44284 0.721420 0.692497i \(-0.243490\pi\)
0.721420 + 0.692497i \(0.243490\pi\)
\(458\) 2.00000 0.0934539
\(459\) 0 0
\(460\) −2.00000 −0.0932505
\(461\) 0.972244 0.0452819 0.0226409 0.999744i \(-0.492793\pi\)
0.0226409 + 0.999744i \(0.492793\pi\)
\(462\) 0 0
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) 7.21110i 0.334767i
\(465\) 0 0
\(466\) 8.00000i 0.370593i
\(467\) −1.57779 −0.0730116 −0.0365058 0.999333i \(-0.511623\pi\)
−0.0365058 + 0.999333i \(0.511623\pi\)
\(468\) 0 0
\(469\) 67.2666i 3.10608i
\(470\) 4.00000i 0.184506i
\(471\) 0 0
\(472\) 10.6056 0.488160
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −9.21110 16.6056i −0.422190 0.761114i
\(477\) 0 0
\(478\) −10.7889 −0.493473
\(479\) 20.6056i 0.941492i −0.882269 0.470746i \(-0.843985\pi\)
0.882269 0.470746i \(-0.156015\pi\)
\(480\) 0 0
\(481\) 6.78890i 0.309547i
\(482\) 14.4222i 0.656913i
\(483\) 0 0
\(484\) 11.0000 0.500000
\(485\) −2.60555 −0.118312
\(486\) 0 0
\(487\) 21.4500i 0.971991i −0.873961 0.485995i \(-0.838457\pi\)
0.873961 0.485995i \(-0.161543\pi\)
\(488\) 3.21110i 0.145360i
\(489\) 0 0
\(490\) 14.2111i 0.641992i
\(491\) −33.0278 −1.49052 −0.745261 0.666773i \(-0.767675\pi\)
−0.745261 + 0.666773i \(0.767675\pi\)
\(492\) 0 0
\(493\) −14.4222 26.0000i −0.649543 1.17098i
\(494\) 0 0
\(495\) 0 0
\(496\) 2.00000i 0.0898027i
\(497\) 63.6333 2.85434
\(498\) 0 0
\(499\) 16.0000i 0.716258i 0.933672 + 0.358129i \(0.116585\pi\)
−0.933672 + 0.358129i \(0.883415\pi\)
\(500\) 1.00000i 0.0447214i
\(501\) 0 0
\(502\) −14.6056 −0.651878
\(503\) 22.0000i 0.980932i −0.871460 0.490466i \(-0.836827\pi\)
0.871460 0.490466i \(-0.163173\pi\)
\(504\) 0 0
\(505\) 16.6056i 0.738937i
\(506\) 0 0
\(507\) 0 0
\(508\) 9.21110 0.408677
\(509\) −31.0278 −1.37528 −0.687641 0.726051i \(-0.741353\pi\)
−0.687641 + 0.726051i \(0.741353\pi\)
\(510\) 0 0
\(511\) −30.4222 −1.34580
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 16.4222 0.724352
\(515\) 14.4222i 0.635518i
\(516\) 0 0
\(517\) 0 0
\(518\) −51.6333 −2.26864
\(519\) 0 0
\(520\) 0.605551i 0.0265552i
\(521\) 38.6056i 1.69134i 0.533706 + 0.845670i \(0.320799\pi\)
−0.533706 + 0.845670i \(0.679201\pi\)
\(522\) 0 0
\(523\) 1.39445 0.0609750 0.0304875 0.999535i \(-0.490294\pi\)
0.0304875 + 0.999535i \(0.490294\pi\)
\(524\) 10.4222i 0.455296i
\(525\) 0 0
\(526\) 16.0000 0.697633
\(527\) −4.00000 7.21110i −0.174243 0.314121i
\(528\) 0 0
\(529\) 19.0000 0.826087
\(530\) 7.21110i 0.313230i
\(531\) 0 0
\(532\) 0 0
\(533\) 0.844410i 0.0365755i
\(534\) 0 0
\(535\) −1.21110 −0.0523605
\(536\) 14.6056 0.630864
\(537\) 0 0
\(538\) 0.422205i 0.0182026i
\(539\) 0 0
\(540\) 0 0
\(541\) 16.7889i 0.721811i 0.932602 + 0.360906i \(0.117532\pi\)
−0.932602 + 0.360906i \(0.882468\pi\)
\(542\) 20.0000 0.859074
\(543\) 0 0
\(544\) 3.60555 2.00000i 0.154587 0.0857493i
\(545\) 0.788897 0.0337927
\(546\) 0 0
\(547\) 23.6333i 1.01049i −0.862977 0.505244i \(-0.831403\pi\)
0.862977 0.505244i \(-0.168597\pi\)
\(548\) 7.21110 0.308043
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 33.2111 1.41228
\(554\) 19.2111i 0.816202i
\(555\) 0 0
\(556\) 17.2111i 0.729913i
\(557\) −15.2111 −0.644515 −0.322258 0.946652i \(-0.604442\pi\)
−0.322258 + 0.946652i \(0.604442\pi\)
\(558\) 0 0
\(559\) 1.57779 0.0667336
\(560\) 4.60555 0.194620
\(561\) 0 0
\(562\) 23.2111 0.979101
\(563\) 39.6333 1.67034 0.835172 0.549988i \(-0.185368\pi\)
0.835172 + 0.549988i \(0.185368\pi\)
\(564\) 0 0
\(565\) −5.21110 −0.219233
\(566\) 23.6333i 0.993382i
\(567\) 0 0
\(568\) 13.8167i 0.579734i
\(569\) −25.6333 −1.07460 −0.537302 0.843390i \(-0.680556\pi\)
−0.537302 + 0.843390i \(0.680556\pi\)
\(570\) 0 0
\(571\) 10.7889i 0.451501i −0.974185 0.225751i \(-0.927517\pi\)
0.974185 0.225751i \(-0.0724835\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 6.42221 0.268058
\(575\) 2.00000i 0.0834058i
\(576\) 0 0
\(577\) −30.8444 −1.28407 −0.642035 0.766675i \(-0.721910\pi\)
−0.642035 + 0.766675i \(0.721910\pi\)
\(578\) 9.00000 14.4222i 0.374351 0.599885i
\(579\) 0 0
\(580\) 7.21110 0.299425
\(581\) 24.0000i 0.995688i
\(582\) 0 0
\(583\) 0 0
\(584\) 6.60555i 0.273340i
\(585\) 0 0
\(586\) −0.422205 −0.0174411
\(587\) 30.0555 1.24052 0.620262 0.784395i \(-0.287026\pi\)
0.620262 + 0.784395i \(0.287026\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 10.6056i 0.436624i
\(591\) 0 0
\(592\) 11.2111i 0.460773i
\(593\) 36.4222 1.49568 0.747840 0.663879i \(-0.231091\pi\)
0.747840 + 0.663879i \(0.231091\pi\)
\(594\) 0 0
\(595\) 16.6056 9.21110i 0.680761 0.377618i
\(596\) −23.0278 −0.943254
\(597\) 0 0
\(598\) 1.21110i 0.0495257i
\(599\) 13.2111 0.539791 0.269896 0.962890i \(-0.413011\pi\)
0.269896 + 0.962890i \(0.413011\pi\)
\(600\) 0 0
\(601\) 37.2111i 1.51787i 0.651165 + 0.758936i \(0.274281\pi\)
−0.651165 + 0.758936i \(0.725719\pi\)
\(602\) 12.0000i 0.489083i
\(603\) 0 0
\(604\) 6.42221 0.261316
\(605\) 11.0000i 0.447214i
\(606\) 0 0
\(607\) 12.2389i 0.496760i −0.968663 0.248380i \(-0.920102\pi\)
0.968663 0.248380i \(-0.0798982\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 3.21110 0.130014
\(611\) 2.42221 0.0979919
\(612\) 0 0
\(613\) 21.4500 0.866356 0.433178 0.901308i \(-0.357392\pi\)
0.433178 + 0.901308i \(0.357392\pi\)
\(614\) 18.6056 0.750859
\(615\) 0 0
\(616\) 0 0
\(617\) 34.4222i 1.38579i −0.721041 0.692893i \(-0.756336\pi\)
0.721041 0.692893i \(-0.243664\pi\)
\(618\) 0 0
\(619\) 30.4222i 1.22277i −0.791333 0.611386i \(-0.790612\pi\)
0.791333 0.611386i \(-0.209388\pi\)
\(620\) 2.00000 0.0803219
\(621\) 0 0
\(622\) 3.39445i 0.136105i
\(623\) 3.63331i 0.145565i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 8.18335i 0.327072i
\(627\) 0 0
\(628\) −20.6056 −0.822251
\(629\) −22.4222 40.4222i −0.894032 1.61174i
\(630\) 0 0
\(631\) −39.2666 −1.56318 −0.781590 0.623793i \(-0.785591\pi\)
−0.781590 + 0.623793i \(0.785591\pi\)
\(632\) 7.21110i 0.286842i
\(633\) 0 0
\(634\) 16.4222i 0.652209i
\(635\) 9.21110i 0.365531i
\(636\) 0 0
\(637\) 8.60555 0.340964
\(638\) 0 0
\(639\) 0 0
\(640\) 1.00000i 0.0395285i
\(641\) 35.4500i 1.40019i −0.714050 0.700095i \(-0.753141\pi\)
0.714050 0.700095i \(-0.246859\pi\)
\(642\) 0 0
\(643\) 8.84441i 0.348789i 0.984676 + 0.174395i \(0.0557969\pi\)
−0.984676 + 0.174395i \(0.944203\pi\)
\(644\) 9.21110 0.362968
\(645\) 0 0
\(646\) 0 0
\(647\) 18.4222 0.724252 0.362126 0.932129i \(-0.382051\pi\)
0.362126 + 0.932129i \(0.382051\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0.605551 0.0237517
\(651\) 0 0
\(652\) 20.0000i 0.783260i
\(653\) 22.0000i 0.860927i −0.902608 0.430463i \(-0.858350\pi\)
0.902608 0.430463i \(-0.141650\pi\)
\(654\) 0 0
\(655\) −10.4222 −0.407229
\(656\) 1.39445i 0.0544441i
\(657\) 0 0
\(658\) 18.4222i 0.718172i
\(659\) 29.0278 1.13076 0.565380 0.824830i \(-0.308729\pi\)
0.565380 + 0.824830i \(0.308729\pi\)
\(660\) 0 0
\(661\) −4.78890 −0.186267 −0.0931333 0.995654i \(-0.529688\pi\)
−0.0931333 + 0.995654i \(0.529688\pi\)
\(662\) 11.6333 0.452141
\(663\) 0 0
\(664\) −5.21110 −0.202230
\(665\) 0 0
\(666\) 0 0
\(667\) 14.4222 0.558430
\(668\) 3.21110i 0.124241i
\(669\) 0 0
\(670\) 14.6056i 0.564262i
\(671\) 0 0
\(672\) 0 0
\(673\) 2.97224i 0.114572i 0.998358 + 0.0572858i \(0.0182446\pi\)
−0.998358 + 0.0572858i \(0.981755\pi\)
\(674\) 6.60555i 0.254436i
\(675\) 0 0
\(676\) −12.6333 −0.485896
\(677\) 30.8444i 1.18545i −0.805406 0.592723i \(-0.798053\pi\)
0.805406 0.592723i \(-0.201947\pi\)
\(678\) 0 0
\(679\) 12.0000 0.460518
\(680\) 2.00000 + 3.60555i 0.0766965 + 0.138267i
\(681\) 0 0
\(682\) 0 0
\(683\) 4.00000i 0.153056i −0.997067 0.0765279i \(-0.975617\pi\)
0.997067 0.0765279i \(-0.0243834\pi\)
\(684\) 0 0
\(685\) 7.21110i 0.275522i
\(686\) 33.2111i 1.26801i
\(687\) 0 0
\(688\) −2.60555 −0.0993357
\(689\) −4.36669 −0.166358
\(690\) 0 0
\(691\) 5.57779i 0.212189i −0.994356 0.106095i \(-0.966165\pi\)
0.994356 0.106095i \(-0.0338347\pi\)
\(692\) 6.00000i 0.228086i
\(693\) 0 0
\(694\) 15.6333i 0.593432i
\(695\) −17.2111 −0.652854
\(696\) 0 0
\(697\) 2.78890 + 5.02776i 0.105637 + 0.190440i
\(698\) 11.2111 0.424346
\(699\) 0 0
\(700\) 4.60555i 0.174073i
\(701\) 20.6056 0.778261 0.389130 0.921183i \(-0.372776\pi\)
0.389130 + 0.921183i \(0.372776\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 16.4222 0.618058
\(707\) 76.4777i 2.87624i
\(708\) 0 0
\(709\) 3.21110i 0.120595i −0.998180 0.0602977i \(-0.980795\pi\)
0.998180 0.0602977i \(-0.0192050\pi\)
\(710\) −13.8167 −0.518530
\(711\) 0 0
\(712\) 0.788897 0.0295652
\(713\) 4.00000 0.149801
\(714\) 0 0
\(715\) 0 0
\(716\) −25.0278 −0.935331
\(717\) 0 0
\(718\) −7.63331 −0.284873
\(719\) 3.39445i 0.126592i 0.997995 + 0.0632958i \(0.0201612\pi\)
−0.997995 + 0.0632958i \(0.979839\pi\)
\(720\) 0 0
\(721\) 66.4222i 2.47369i
\(722\) −19.0000 −0.707107
\(723\) 0 0
\(724\) 7.21110i 0.267999i
\(725\) 7.21110i 0.267814i
\(726\) 0 0
\(727\) 30.0555 1.11470 0.557349 0.830279i \(-0.311819\pi\)
0.557349 + 0.830279i \(0.311819\pi\)
\(728\) 2.78890i 0.103363i
\(729\) 0 0
\(730\) 6.60555 0.244482
\(731\) −9.39445 + 5.21110i −0.347466 + 0.192740i
\(732\) 0 0
\(733\) −18.1833 −0.671617 −0.335809 0.941930i \(-0.609010\pi\)
−0.335809 + 0.941930i \(0.609010\pi\)
\(734\) 33.4500i 1.23466i
\(735\) 0 0
\(736\) 2.00000i 0.0737210i
\(737\) 0 0
\(738\) 0 0
\(739\) 2.78890 0.102591 0.0512956 0.998684i \(-0.483665\pi\)
0.0512956 + 0.998684i \(0.483665\pi\)
\(740\) 11.2111 0.412128
\(741\) 0 0
\(742\) 33.2111i 1.21922i
\(743\) 27.2111i 0.998279i 0.866522 + 0.499139i \(0.166350\pi\)
−0.866522 + 0.499139i \(0.833650\pi\)
\(744\) 0 0
\(745\) 23.0278i 0.843672i
\(746\) 23.0278 0.843106
\(747\) 0 0
\(748\) 0 0
\(749\) 5.57779 0.203808
\(750\) 0 0
\(751\) 37.6333i 1.37326i −0.727008 0.686629i \(-0.759090\pi\)
0.727008 0.686629i \(-0.240910\pi\)
\(752\) −4.00000 −0.145865
\(753\) 0 0
\(754\) 4.36669i 0.159026i
\(755\) 6.42221i 0.233728i
\(756\) 0 0
\(757\) 47.0278 1.70925 0.854626 0.519243i \(-0.173786\pi\)
0.854626 + 0.519243i \(0.173786\pi\)
\(758\) 37.2111i 1.35157i
\(759\) 0 0
\(760\) 0 0
\(761\) 23.2111 0.841402 0.420701 0.907199i \(-0.361784\pi\)
0.420701 + 0.907199i \(0.361784\pi\)
\(762\) 0 0
\(763\) −3.63331 −0.131535
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 0 0
\(767\) −6.42221 −0.231892
\(768\) 0 0
\(769\) 1.63331 0.0588986 0.0294493 0.999566i \(-0.490625\pi\)
0.0294493 + 0.999566i \(0.490625\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 10.6056i 0.381702i
\(773\) −15.2111 −0.547105 −0.273553 0.961857i \(-0.588199\pi\)
−0.273553 + 0.961857i \(0.588199\pi\)
\(774\) 0 0
\(775\) 2.00000i 0.0718421i
\(776\) 2.60555i 0.0935338i
\(777\) 0 0
\(778\) 12.6056 0.451931
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 4.00000 + 7.21110i 0.143040 + 0.257869i
\(783\) 0 0
\(784\) −14.2111 −0.507539
\(785\) 20.6056i 0.735444i
\(786\) 0 0
\(787\) 2.78890i 0.0994135i −0.998764 0.0497067i \(-0.984171\pi\)
0.998764 0.0497067i \(-0.0158287\pi\)
\(788\) 18.0000i 0.641223i
\(789\) 0 0
\(790\) −7.21110 −0.256560
\(791\) 24.0000 0.853342
\(792\) 0 0
\(793\) 1.94449i 0.0690508i
\(794\) 32.4222i 1.15062i
\(795\) 0 0
\(796\) 14.0000i 0.496217i
\(797\) −48.4222 −1.71520 −0.857601 0.514315i \(-0.828046\pi\)
−0.857601 + 0.514315i \(0.828046\pi\)
\(798\) 0 0
\(799\) −14.4222 + 8.00000i −0.510221 + 0.283020i
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 14.6056i 0.515740i
\(803\) 0 0
\(804\) 0 0
\(805\) 9.21110i 0.324649i
\(806\) 1.21110i 0.0426593i
\(807\) 0 0
\(808\) −16.6056 −0.584181
\(809\) 6.97224i 0.245131i 0.992460 + 0.122566i \(0.0391122\pi\)
−0.992460 + 0.122566i \(0.960888\pi\)
\(810\) 0 0
\(811\) 31.6333i 1.11080i 0.831585 + 0.555398i \(0.187434\pi\)
−0.831585 + 0.555398i \(0.812566\pi\)
\(812\) −33.2111 −1.16548
\(813\) 0 0
\(814\) 0 0
\(815\) −20.0000 −0.700569
\(816\) 0 0
\(817\) 0 0
\(818\) −13.6333 −0.476677
\(819\) 0 0
\(820\) −1.39445 −0.0486963
\(821\) 46.0000i 1.60541i −0.596376 0.802706i \(-0.703393\pi\)
0.596376 0.802706i \(-0.296607\pi\)
\(822\) 0 0
\(823\) 16.2389i 0.566051i −0.959112 0.283026i \(-0.908662\pi\)
0.959112 0.283026i \(-0.0913381\pi\)
\(824\) 14.4222 0.502421
\(825\) 0 0
\(826\) 48.8444i 1.69951i
\(827\) 2.42221i 0.0842283i −0.999113 0.0421142i \(-0.986591\pi\)
0.999113 0.0421142i \(-0.0134093\pi\)
\(828\) 0 0
\(829\) −36.0555 −1.25226 −0.626130 0.779719i \(-0.715362\pi\)
−0.626130 + 0.779719i \(0.715362\pi\)
\(830\) 5.21110i 0.180880i
\(831\) 0 0
\(832\) −0.605551 −0.0209937
\(833\) −51.2389 + 28.4222i −1.77532 + 0.984771i
\(834\) 0 0
\(835\) −3.21110 −0.111125
\(836\) 0 0
\(837\) 0 0
\(838\) 27.6333i 0.954577i
\(839\) 3.02776i 0.104530i −0.998633 0.0522649i \(-0.983356\pi\)
0.998633 0.0522649i \(-0.0166440\pi\)
\(840\) 0 0
\(841\) −23.0000 −0.793103
\(842\) 28.4222 0.979494
\(843\) 0 0
\(844\) 16.0000i 0.550743i
\(845\) 12.6333i 0.434599i
\(846\) 0 0
\(847\) 50.6611i 1.74073i
\(848\) 7.21110 0.247630
\(849\) 0 0
\(850\) −3.60555 + 2.00000i −0.123669 + 0.0685994i
\(851\) 22.4222 0.768623
\(852\) 0 0
\(853\) 35.2111i 1.20561i 0.797890 + 0.602803i \(0.205949\pi\)
−0.797890 + 0.602803i \(0.794051\pi\)
\(854\) −14.7889 −0.506066
\(855\) 0 0
\(856\) 1.21110i 0.0413946i
\(857\) 40.8444i 1.39522i −0.716478 0.697609i \(-0.754247\pi\)
0.716478 0.697609i \(-0.245753\pi\)
\(858\) 0 0
\(859\) −41.2111 −1.40610 −0.703052 0.711138i \(-0.748180\pi\)
−0.703052 + 0.711138i \(0.748180\pi\)
\(860\) 2.60555i 0.0888486i
\(861\) 0 0
\(862\) 7.02776i 0.239366i
\(863\) 54.4222 1.85255 0.926277 0.376844i \(-0.122991\pi\)
0.926277 + 0.376844i \(0.122991\pi\)
\(864\) 0 0
\(865\) 6.00000 0.204006
\(866\) −16.4222 −0.558049
\(867\) 0 0
\(868\) −9.21110 −0.312645
\(869\) 0 0
\(870\) 0 0
\(871\) −8.84441 −0.299681
\(872\) 0.788897i 0.0267154i
\(873\) 0 0
\(874\) 0 0
\(875\) −4.60555 −0.155696
\(876\) 0 0
\(877\) 54.8444i 1.85196i 0.377567 + 0.925982i \(0.376761\pi\)
−0.377567 + 0.925982i \(0.623239\pi\)
\(878\) 17.6333i 0.595095i
\(879\) 0 0
\(880\) 0 0
\(881\) 53.0278i 1.78655i −0.449510 0.893275i \(-0.648401\pi\)
0.449510 0.893275i \(-0.351599\pi\)
\(882\) 0 0
\(883\) 19.8167 0.666883 0.333442 0.942771i \(-0.391790\pi\)
0.333442 + 0.942771i \(0.391790\pi\)
\(884\) −2.18335 + 1.21110i −0.0734339 + 0.0407338i
\(885\) 0 0
\(886\) −27.6333 −0.928359
\(887\) 28.4222i 0.954324i 0.878815 + 0.477162i \(0.158335\pi\)
−0.878815 + 0.477162i \(0.841665\pi\)
\(888\) 0 0
\(889\) 42.4222i 1.42280i
\(890\) 0.788897i 0.0264439i
\(891\) 0 0
\(892\) −20.0000 −0.669650
\(893\) 0 0
\(894\) 0 0
\(895\) 25.0278i 0.836586i
\(896\) 4.60555i 0.153861i
\(897\) 0 0
\(898\) 25.3944i 0.847424i
\(899\) −14.4222 −0.481007
\(900\) 0 0
\(901\) 26.0000 14.4222i 0.866186 0.480473i
\(902\) 0 0
\(903\) 0 0
\(904\) 5.21110i 0.173319i
\(905\) 7.21110 0.239705
\(906\) 0 0
\(907\) 34.7889i 1.15515i 0.816339 + 0.577573i \(0.196000\pi\)
−0.816339 + 0.577573i \(0.804000\pi\)
\(908\) 29.2111i 0.969404i
\(909\) 0 0
\(910\) −2.78890 −0.0924511
\(911\) 26.6611i 0.883320i −0.897182 0.441660i \(-0.854390\pi\)
0.897182 0.441660i \(-0.145610\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 30.8444 1.02024
\(915\) 0 0
\(916\) 2.00000 0.0660819
\(917\) 48.0000 1.58510
\(918\) 0 0
\(919\) 40.8444 1.34733 0.673666 0.739036i \(-0.264718\pi\)
0.673666 + 0.739036i \(0.264718\pi\)
\(920\) −2.00000 −0.0659380
\(921\) 0 0
\(922\) 0.972244 0.0320191
\(923\) 8.36669i 0.275393i
\(924\) 0 0
\(925\) 11.2111i 0.368619i
\(926\) −20.0000 −0.657241
\(927\) 0 0
\(928\) 7.21110i 0.236716i
\(929\) 27.8167i 0.912635i 0.889817 + 0.456317i \(0.150832\pi\)
−0.889817 + 0.456317i \(0.849168\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 8.00000i 0.262049i
\(933\) 0 0
\(934\) −1.57779 −0.0516270
\(935\) 0 0
\(936\) 0 0
\(937\) −39.2111 −1.28097 −0.640485 0.767970i \(-0.721267\pi\)
−0.640485 + 0.767970i \(0.721267\pi\)
\(938\) 67.2666i 2.19633i
\(939\) 0 0
\(940\) 4.00000i 0.130466i
\(941\) 8.42221i 0.274556i 0.990533 + 0.137278i \(0.0438354\pi\)
−0.990533 + 0.137278i \(0.956165\pi\)
\(942\) 0 0
\(943\) −2.78890 −0.0908190
\(944\) 10.6056 0.345181
\(945\) 0 0
\(946\) 0 0
\(947\) 9.21110i 0.299321i 0.988737 + 0.149660i \(0.0478180\pi\)
−0.988737 + 0.149660i \(0.952182\pi\)
\(948\) 0 0
\(949\) 4.00000i 0.129845i
\(950\) 0 0
\(951\) 0 0
\(952\) −9.21110 16.6056i −0.298534 0.538189i
\(953\) 32.0555 1.03838 0.519190 0.854659i \(-0.326234\pi\)
0.519190 + 0.854659i \(0.326234\pi\)
\(954\) 0 0
\(955\) 8.00000i 0.258874i
\(956\) −10.7889 −0.348938
\(957\) 0 0
\(958\) 20.6056i 0.665735i
\(959\) 33.2111i 1.07244i
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 6.78890i 0.218883i
\(963\) 0 0
\(964\) 14.4222i 0.464508i
\(965\) 10.6056 0.341405
\(966\) 0 0
\(967\) 22.7889 0.732842 0.366421 0.930449i \(-0.380583\pi\)
0.366421 + 0.930449i \(0.380583\pi\)
\(968\) 11.0000 0.353553
\(969\) 0 0
\(970\) −2.60555 −0.0836592
\(971\) −23.4500 −0.752545 −0.376273 0.926509i \(-0.622794\pi\)
−0.376273 + 0.926509i \(0.622794\pi\)
\(972\) 0 0
\(973\) 79.2666 2.54117
\(974\) 21.4500i 0.687301i
\(975\) 0 0
\(976\) 3.21110i 0.102785i
\(977\) −26.8444 −0.858829 −0.429414 0.903108i \(-0.641280\pi\)
−0.429414 + 0.903108i \(0.641280\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 14.2111i 0.453957i
\(981\) 0 0
\(982\) −33.0278 −1.05396
\(983\) 39.2111i 1.25064i 0.780368 + 0.625320i \(0.215032\pi\)
−0.780368 + 0.625320i \(0.784968\pi\)
\(984\) 0 0
\(985\) −18.0000 −0.573528
\(986\) −14.4222 26.0000i −0.459297 0.828009i
\(987\) 0 0
\(988\) 0 0
\(989\) 5.21110i 0.165703i
\(990\) 0 0
\(991\) 11.5778i 0.367781i −0.982947 0.183890i \(-0.941131\pi\)
0.982947 0.183890i \(-0.0588691\pi\)
\(992\) 2.00000i 0.0635001i
\(993\) 0 0
\(994\) 63.6333 2.01833
\(995\) 14.0000 0.443830
\(996\) 0 0
\(997\) 9.63331i 0.305090i −0.988297 0.152545i \(-0.951253\pi\)
0.988297 0.152545i \(-0.0487469\pi\)
\(998\) 16.0000i 0.506471i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1530.2.c.g.271.3 4
3.2 odd 2 510.2.c.c.271.1 4
12.11 even 2 4080.2.h.q.3841.4 4
15.2 even 4 2550.2.f.p.1699.2 4
15.8 even 4 2550.2.f.s.1699.3 4
15.14 odd 2 2550.2.c.o.1801.4 4
17.16 even 2 inner 1530.2.c.g.271.2 4
51.38 odd 4 8670.2.a.bh.1.2 2
51.47 odd 4 8670.2.a.bk.1.1 2
51.50 odd 2 510.2.c.c.271.4 yes 4
204.203 even 2 4080.2.h.q.3841.1 4
255.152 even 4 2550.2.f.s.1699.1 4
255.203 even 4 2550.2.f.p.1699.4 4
255.254 odd 2 2550.2.c.o.1801.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.c.c.271.1 4 3.2 odd 2
510.2.c.c.271.4 yes 4 51.50 odd 2
1530.2.c.g.271.2 4 17.16 even 2 inner
1530.2.c.g.271.3 4 1.1 even 1 trivial
2550.2.c.o.1801.1 4 255.254 odd 2
2550.2.c.o.1801.4 4 15.14 odd 2
2550.2.f.p.1699.2 4 15.2 even 4
2550.2.f.p.1699.4 4 255.203 even 4
2550.2.f.s.1699.1 4 255.152 even 4
2550.2.f.s.1699.3 4 15.8 even 4
4080.2.h.q.3841.1 4 204.203 even 2
4080.2.h.q.3841.4 4 12.11 even 2
8670.2.a.bh.1.2 2 51.38 odd 4
8670.2.a.bk.1.1 2 51.47 odd 4