Properties

Label 1530.2.c
Level $1530$
Weight $2$
Character orbit 1530.c
Rep. character $\chi_{1530}(271,\cdot)$
Character field $\Q$
Dimension $30$
Newform subspaces $9$
Sturm bound $648$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(648\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(7\), \(11\), \(47\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1530, [\chi])\).

Total New Old
Modular forms 340 30 310
Cusp forms 308 30 278
Eisenstein series 32 0 32

Trace form

\( 30 q - 2 q^{2} + 30 q^{4} - 2 q^{8} - 12 q^{13} + 30 q^{16} - 6 q^{17} + 4 q^{19} - 30 q^{25} - 8 q^{26} - 2 q^{32} + 6 q^{34} + 12 q^{35} + 24 q^{38} + 24 q^{43} - 16 q^{47} - 22 q^{49} + 2 q^{50} - 12 q^{52}+ \cdots + 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1530, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1530.2.c.a 1530.c 17.b $2$ $12.217$ \(\Q(\sqrt{-1}) \) None 170.2.b.c \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+q^{4}-i q^{5}+2 i q^{7}-q^{8}+\cdots\)
1530.2.c.b 1530.c 17.b $2$ $12.217$ \(\Q(\sqrt{-1}) \) None 170.2.b.b \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+q^{4}+i q^{5}+4 i q^{7}-q^{8}+\cdots\)
1530.2.c.c 1530.c 17.b $2$ $12.217$ \(\Q(\sqrt{-1}) \) None 510.2.c.b \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+q^{4}-i q^{5}+2 i q^{7}-q^{8}+\cdots\)
1530.2.c.d 1530.c 17.b $2$ $12.217$ \(\Q(\sqrt{-1}) \) None 170.2.b.a \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+q^{4}-i q^{5}+q^{8}-i q^{10}+\cdots\)
1530.2.c.e 1530.c 17.b $2$ $12.217$ \(\Q(\sqrt{-1}) \) None 510.2.c.a \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+q^{4}-i q^{5}+q^{8}-i q^{10}+\cdots\)
1530.2.c.f 1530.c 17.b $4$ $12.217$ \(\Q(\zeta_{8})\) None 510.2.c.d \(-4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+q^{4}-\beta_1 q^{5}+(\beta_{2}+2\beta_1)q^{7}+\cdots\)
1530.2.c.g 1530.c 17.b $4$ $12.217$ \(\Q(i, \sqrt{13})\) None 510.2.c.c \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+q^{4}+\beta _{1}q^{5}+(-\beta _{1}+\beta _{2})q^{7}+\cdots\)
1530.2.c.h 1530.c 17.b $6$ $12.217$ 6.0.5089536.1 None 1530.2.c.h \(-6\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+q^{4}-\beta _{3}q^{5}+(\beta _{1}-\beta _{3})q^{7}+\cdots\)
1530.2.c.i 1530.c 17.b $6$ $12.217$ 6.0.5089536.1 None 1530.2.c.h \(6\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+q^{4}+\beta _{3}q^{5}+(\beta _{1}-\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1530, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1530, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(306, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(510, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(765, [\chi])\)\(^{\oplus 2}\)