Properties

Label 1530.2.c.g
Level $1530$
Weight $2$
Character orbit 1530.c
Analytic conductor $12.217$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1530,2,Mod(271,1530)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1530, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1530.271"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,0,0,0,4,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2171115093\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 510)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + \beta_1 q^{5} + (\beta_{2} - \beta_1) q^{7} + q^{8} + \beta_1 q^{10} + (\beta_{3} + 3) q^{13} + (\beta_{2} - \beta_1) q^{14} + q^{16} + ( - \beta_{3} - 2 \beta_1) q^{17} + \beta_1 q^{20}+ \cdots + (2 \beta_{3} - 7) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8} + 12 q^{13} + 4 q^{16} - 4 q^{25} + 12 q^{26} + 4 q^{32} + 4 q^{35} + 4 q^{43} - 16 q^{47} - 28 q^{49} - 4 q^{50} + 12 q^{52} + 28 q^{59} + 4 q^{64} + 44 q^{67} + 4 q^{70}+ \cdots - 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 7x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 4\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 10\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{2} + 5\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1530\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(1261\) \(1361\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
271.1
1.30278i
2.30278i
2.30278i
1.30278i
1.00000 0 1.00000 1.00000i 0 2.60555i 1.00000 0 1.00000i
271.2 1.00000 0 1.00000 1.00000i 0 4.60555i 1.00000 0 1.00000i
271.3 1.00000 0 1.00000 1.00000i 0 4.60555i 1.00000 0 1.00000i
271.4 1.00000 0 1.00000 1.00000i 0 2.60555i 1.00000 0 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1530.2.c.g 4
3.b odd 2 1 510.2.c.c 4
12.b even 2 1 4080.2.h.q 4
15.d odd 2 1 2550.2.c.o 4
15.e even 4 1 2550.2.f.p 4
15.e even 4 1 2550.2.f.s 4
17.b even 2 1 inner 1530.2.c.g 4
51.c odd 2 1 510.2.c.c 4
51.f odd 4 1 8670.2.a.bh 2
51.f odd 4 1 8670.2.a.bk 2
204.h even 2 1 4080.2.h.q 4
255.h odd 2 1 2550.2.c.o 4
255.o even 4 1 2550.2.f.p 4
255.o even 4 1 2550.2.f.s 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
510.2.c.c 4 3.b odd 2 1
510.2.c.c 4 51.c odd 2 1
1530.2.c.g 4 1.a even 1 1 trivial
1530.2.c.g 4 17.b even 2 1 inner
2550.2.c.o 4 15.d odd 2 1
2550.2.c.o 4 255.h odd 2 1
2550.2.f.p 4 15.e even 4 1
2550.2.f.p 4 255.o even 4 1
2550.2.f.s 4 15.e even 4 1
2550.2.f.s 4 255.o even 4 1
4080.2.h.q 4 12.b even 2 1
4080.2.h.q 4 204.h even 2 1
8670.2.a.bh 2 51.f odd 4 1
8670.2.a.bk 2 51.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1530, [\chi])\):

\( T_{7}^{4} + 28T_{7}^{2} + 144 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{47} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 28T^{2} + 144 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} - 6 T - 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 18T^{2} + 289 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 52)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 136T^{2} + 1296 \) Copy content Toggle raw display
$41$ \( T^{4} + 76T^{2} + 144 \) Copy content Toggle raw display
$43$ \( (T^{2} - 2 T - 12)^{2} \) Copy content Toggle raw display
$47$ \( (T + 4)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 52)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 14 T + 36)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 136T^{2} + 1296 \) Copy content Toggle raw display
$67$ \( (T^{2} - 22 T + 108)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 252 T^{2} + 11664 \) Copy content Toggle raw display
$73$ \( T^{4} + 44T^{2} + 16 \) Copy content Toggle raw display
$79$ \( (T^{2} + 52)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 4 T - 48)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 16 T + 12)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 28T^{2} + 144 \) Copy content Toggle raw display
show more
show less