Properties

Label 2550.2.f.p.1699.4
Level $2550$
Weight $2$
Character 2550.1699
Analytic conductor $20.362$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2550,2,Mod(1699,2550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2550, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2550.1699"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2550.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,-4,0,0,4,0,4,0,0,4,0,0,0,4,-8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3618525154\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 510)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1699.4
Root \(1.30278i\) of defining polynomial
Character \(\chi\) \(=\) 2550.1699
Dual form 2550.2.f.p.1699.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{3} -1.00000 q^{4} -1.00000i q^{6} +4.60555 q^{7} -1.00000i q^{8} +1.00000 q^{9} +1.00000 q^{12} -0.605551i q^{13} +4.60555i q^{14} +1.00000 q^{16} +(-2.00000 + 3.60555i) q^{17} +1.00000i q^{18} -4.60555 q^{21} -2.00000 q^{23} +1.00000i q^{24} +0.605551 q^{26} -1.00000 q^{27} -4.60555 q^{28} +7.21110i q^{29} +2.00000i q^{31} +1.00000i q^{32} +(-3.60555 - 2.00000i) q^{34} -1.00000 q^{36} +11.2111 q^{37} +0.605551i q^{39} +1.39445i q^{41} -4.60555i q^{42} -2.60555i q^{43} -2.00000i q^{46} -4.00000i q^{47} -1.00000 q^{48} +14.2111 q^{49} +(2.00000 - 3.60555i) q^{51} +0.605551i q^{52} -7.21110i q^{53} -1.00000i q^{54} -4.60555i q^{56} -7.21110 q^{58} +10.6056 q^{59} +3.21110i q^{61} -2.00000 q^{62} +4.60555 q^{63} -1.00000 q^{64} -14.6056i q^{67} +(2.00000 - 3.60555i) q^{68} +2.00000 q^{69} +13.8167i q^{71} -1.00000i q^{72} -6.60555 q^{73} +11.2111i q^{74} -0.605551 q^{78} +7.21110i q^{79} +1.00000 q^{81} -1.39445 q^{82} +5.21110i q^{83} +4.60555 q^{84} +2.60555 q^{86} -7.21110i q^{87} +0.788897 q^{89} -2.78890i q^{91} +2.00000 q^{92} -2.00000i q^{93} +4.00000 q^{94} -1.00000i q^{96} -2.60555 q^{97} +14.2111i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 4 q^{4} + 4 q^{7} + 4 q^{9} + 4 q^{12} + 4 q^{16} - 8 q^{17} - 4 q^{21} - 8 q^{23} - 12 q^{26} - 4 q^{27} - 4 q^{28} - 4 q^{36} + 16 q^{37} - 4 q^{48} + 28 q^{49} + 8 q^{51} + 28 q^{59}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2550\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(851\) \(1327\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −1.00000 −0.577350
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 1.00000i 0.408248i
\(7\) 4.60555 1.74073 0.870367 0.492403i \(-0.163881\pi\)
0.870367 + 0.492403i \(0.163881\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 1.00000 0.288675
\(13\) 0.605551i 0.167950i −0.996468 0.0839749i \(-0.973238\pi\)
0.996468 0.0839749i \(-0.0267615\pi\)
\(14\) 4.60555i 1.23089i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 + 3.60555i −0.485071 + 0.874475i
\(18\) 1.00000i 0.235702i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −4.60555 −1.00501
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 1.00000i 0.204124i
\(25\) 0 0
\(26\) 0.605551 0.118758
\(27\) −1.00000 −0.192450
\(28\) −4.60555 −0.870367
\(29\) 7.21110i 1.33907i 0.742781 + 0.669534i \(0.233506\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i 0.983739 + 0.179605i \(0.0574821\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −3.60555 2.00000i −0.618347 0.342997i
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 11.2111 1.84309 0.921547 0.388267i \(-0.126926\pi\)
0.921547 + 0.388267i \(0.126926\pi\)
\(38\) 0 0
\(39\) 0.605551i 0.0969658i
\(40\) 0 0
\(41\) 1.39445i 0.217776i 0.994054 + 0.108888i \(0.0347290\pi\)
−0.994054 + 0.108888i \(0.965271\pi\)
\(42\) 4.60555i 0.710652i
\(43\) 2.60555i 0.397343i −0.980066 0.198671i \(-0.936337\pi\)
0.980066 0.198671i \(-0.0636627\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 2.00000i 0.294884i
\(47\) 4.00000i 0.583460i −0.956501 0.291730i \(-0.905769\pi\)
0.956501 0.291730i \(-0.0942309\pi\)
\(48\) −1.00000 −0.144338
\(49\) 14.2111 2.03016
\(50\) 0 0
\(51\) 2.00000 3.60555i 0.280056 0.504878i
\(52\) 0.605551i 0.0839749i
\(53\) 7.21110i 0.990521i −0.868744 0.495261i \(-0.835073\pi\)
0.868744 0.495261i \(-0.164927\pi\)
\(54\) 1.00000i 0.136083i
\(55\) 0 0
\(56\) 4.60555i 0.615443i
\(57\) 0 0
\(58\) −7.21110 −0.946864
\(59\) 10.6056 1.38073 0.690363 0.723464i \(-0.257451\pi\)
0.690363 + 0.723464i \(0.257451\pi\)
\(60\) 0 0
\(61\) 3.21110i 0.411140i 0.978642 + 0.205570i \(0.0659048\pi\)
−0.978642 + 0.205570i \(0.934095\pi\)
\(62\) −2.00000 −0.254000
\(63\) 4.60555 0.580245
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 14.6056i 1.78435i −0.451688 0.892176i \(-0.649178\pi\)
0.451688 0.892176i \(-0.350822\pi\)
\(68\) 2.00000 3.60555i 0.242536 0.437237i
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) 13.8167i 1.63974i 0.572553 + 0.819868i \(0.305953\pi\)
−0.572553 + 0.819868i \(0.694047\pi\)
\(72\) 1.00000i 0.117851i
\(73\) −6.60555 −0.773121 −0.386561 0.922264i \(-0.626337\pi\)
−0.386561 + 0.922264i \(0.626337\pi\)
\(74\) 11.2111i 1.30326i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) −0.605551 −0.0685652
\(79\) 7.21110i 0.811312i 0.914026 + 0.405656i \(0.132957\pi\)
−0.914026 + 0.405656i \(0.867043\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −1.39445 −0.153991
\(83\) 5.21110i 0.571993i 0.958231 + 0.285996i \(0.0923245\pi\)
−0.958231 + 0.285996i \(0.907675\pi\)
\(84\) 4.60555 0.502507
\(85\) 0 0
\(86\) 2.60555 0.280964
\(87\) 7.21110i 0.773111i
\(88\) 0 0
\(89\) 0.788897 0.0836230 0.0418115 0.999126i \(-0.486687\pi\)
0.0418115 + 0.999126i \(0.486687\pi\)
\(90\) 0 0
\(91\) 2.78890i 0.292356i
\(92\) 2.00000 0.208514
\(93\) 2.00000i 0.207390i
\(94\) 4.00000 0.412568
\(95\) 0 0
\(96\) 1.00000i 0.102062i
\(97\) −2.60555 −0.264554 −0.132277 0.991213i \(-0.542229\pi\)
−0.132277 + 0.991213i \(0.542229\pi\)
\(98\) 14.2111i 1.43554i
\(99\) 0 0
\(100\) 0 0
\(101\) 16.6056 1.65231 0.826157 0.563440i \(-0.190522\pi\)
0.826157 + 0.563440i \(0.190522\pi\)
\(102\) 3.60555 + 2.00000i 0.357003 + 0.198030i
\(103\) 14.4222i 1.42106i 0.703666 + 0.710531i \(0.251545\pi\)
−0.703666 + 0.710531i \(0.748455\pi\)
\(104\) −0.605551 −0.0593792
\(105\) 0 0
\(106\) 7.21110 0.700404
\(107\) 1.21110 0.117082 0.0585409 0.998285i \(-0.481355\pi\)
0.0585409 + 0.998285i \(0.481355\pi\)
\(108\) 1.00000 0.0962250
\(109\) 0.788897i 0.0755627i −0.999286 0.0377813i \(-0.987971\pi\)
0.999286 0.0377813i \(-0.0120290\pi\)
\(110\) 0 0
\(111\) −11.2111 −1.06411
\(112\) 4.60555 0.435184
\(113\) −5.21110 −0.490219 −0.245110 0.969495i \(-0.578824\pi\)
−0.245110 + 0.969495i \(0.578824\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 7.21110i 0.669534i
\(117\) 0.605551i 0.0559832i
\(118\) 10.6056i 0.976320i
\(119\) −9.21110 + 16.6056i −0.844380 + 1.52223i
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) −3.21110 −0.290720
\(123\) 1.39445i 0.125733i
\(124\) 2.00000i 0.179605i
\(125\) 0 0
\(126\) 4.60555i 0.410295i
\(127\) 9.21110i 0.817353i −0.912679 0.408677i \(-0.865990\pi\)
0.912679 0.408677i \(-0.134010\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 2.60555i 0.229406i
\(130\) 0 0
\(131\) 10.4222i 0.910592i 0.890340 + 0.455296i \(0.150467\pi\)
−0.890340 + 0.455296i \(0.849533\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 14.6056 1.26173
\(135\) 0 0
\(136\) 3.60555 + 2.00000i 0.309173 + 0.171499i
\(137\) 7.21110i 0.616086i 0.951372 + 0.308043i \(0.0996741\pi\)
−0.951372 + 0.308043i \(0.900326\pi\)
\(138\) 2.00000i 0.170251i
\(139\) 17.2111i 1.45983i 0.683540 + 0.729913i \(0.260440\pi\)
−0.683540 + 0.729913i \(0.739560\pi\)
\(140\) 0 0
\(141\) 4.00000i 0.336861i
\(142\) −13.8167 −1.15947
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 6.60555i 0.546679i
\(147\) −14.2111 −1.17211
\(148\) −11.2111 −0.921547
\(149\) −23.0278 −1.88651 −0.943254 0.332073i \(-0.892252\pi\)
−0.943254 + 0.332073i \(0.892252\pi\)
\(150\) 0 0
\(151\) 6.42221 0.522632 0.261316 0.965253i \(-0.415844\pi\)
0.261316 + 0.965253i \(0.415844\pi\)
\(152\) 0 0
\(153\) −2.00000 + 3.60555i −0.161690 + 0.291492i
\(154\) 0 0
\(155\) 0 0
\(156\) 0.605551i 0.0484829i
\(157\) 20.6056i 1.64450i 0.569125 + 0.822251i \(0.307282\pi\)
−0.569125 + 0.822251i \(0.692718\pi\)
\(158\) −7.21110 −0.573685
\(159\) 7.21110i 0.571878i
\(160\) 0 0
\(161\) −9.21110 −0.725937
\(162\) 1.00000i 0.0785674i
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 1.39445i 0.108888i
\(165\) 0 0
\(166\) −5.21110 −0.404460
\(167\) 3.21110 0.248483 0.124241 0.992252i \(-0.460350\pi\)
0.124241 + 0.992252i \(0.460350\pi\)
\(168\) 4.60555i 0.355326i
\(169\) 12.6333 0.971793
\(170\) 0 0
\(171\) 0 0
\(172\) 2.60555i 0.198671i
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 7.21110 0.546672
\(175\) 0 0
\(176\) 0 0
\(177\) −10.6056 −0.797162
\(178\) 0.788897i 0.0591304i
\(179\) −25.0278 −1.87066 −0.935331 0.353773i \(-0.884898\pi\)
−0.935331 + 0.353773i \(0.884898\pi\)
\(180\) 0 0
\(181\) 7.21110i 0.535997i 0.963419 + 0.267999i \(0.0863622\pi\)
−0.963419 + 0.267999i \(0.913638\pi\)
\(182\) 2.78890 0.206727
\(183\) 3.21110i 0.237372i
\(184\) 2.00000i 0.147442i
\(185\) 0 0
\(186\) 2.00000 0.146647
\(187\) 0 0
\(188\) 4.00000i 0.291730i
\(189\) −4.60555 −0.335005
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 1.00000 0.0721688
\(193\) −10.6056 −0.763404 −0.381702 0.924285i \(-0.624662\pi\)
−0.381702 + 0.924285i \(0.624662\pi\)
\(194\) 2.60555i 0.187068i
\(195\) 0 0
\(196\) −14.2111 −1.01508
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 14.0000i 0.992434i −0.868199 0.496217i \(-0.834722\pi\)
0.868199 0.496217i \(-0.165278\pi\)
\(200\) 0 0
\(201\) 14.6056i 1.03020i
\(202\) 16.6056i 1.16836i
\(203\) 33.2111i 2.33096i
\(204\) −2.00000 + 3.60555i −0.140028 + 0.252439i
\(205\) 0 0
\(206\) −14.4222 −1.00484
\(207\) −2.00000 −0.139010
\(208\) 0.605551i 0.0419874i
\(209\) 0 0
\(210\) 0 0
\(211\) 16.0000i 1.10149i 0.834675 + 0.550743i \(0.185655\pi\)
−0.834675 + 0.550743i \(0.814345\pi\)
\(212\) 7.21110i 0.495261i
\(213\) 13.8167i 0.946702i
\(214\) 1.21110i 0.0827893i
\(215\) 0 0
\(216\) 1.00000i 0.0680414i
\(217\) 9.21110i 0.625290i
\(218\) 0.788897 0.0534309
\(219\) 6.60555 0.446362
\(220\) 0 0
\(221\) 2.18335 + 1.21110i 0.146868 + 0.0814676i
\(222\) 11.2111i 0.752440i
\(223\) 20.0000i 1.33930i −0.742677 0.669650i \(-0.766444\pi\)
0.742677 0.669650i \(-0.233556\pi\)
\(224\) 4.60555i 0.307721i
\(225\) 0 0
\(226\) 5.21110i 0.346637i
\(227\) 29.2111 1.93881 0.969404 0.245469i \(-0.0789419\pi\)
0.969404 + 0.245469i \(0.0789419\pi\)
\(228\) 0 0
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 7.21110 0.473432
\(233\) −8.00000 −0.524097 −0.262049 0.965055i \(-0.584398\pi\)
−0.262049 + 0.965055i \(0.584398\pi\)
\(234\) 0.605551 0.0395861
\(235\) 0 0
\(236\) −10.6056 −0.690363
\(237\) 7.21110i 0.468411i
\(238\) −16.6056 9.21110i −1.07638 0.597067i
\(239\) −10.7889 −0.697876 −0.348938 0.937146i \(-0.613458\pi\)
−0.348938 + 0.937146i \(0.613458\pi\)
\(240\) 0 0
\(241\) 14.4222i 0.929016i −0.885569 0.464508i \(-0.846231\pi\)
0.885569 0.464508i \(-0.153769\pi\)
\(242\) 11.0000i 0.707107i
\(243\) −1.00000 −0.0641500
\(244\) 3.21110i 0.205570i
\(245\) 0 0
\(246\) 1.39445 0.0889068
\(247\) 0 0
\(248\) 2.00000 0.127000
\(249\) 5.21110i 0.330240i
\(250\) 0 0
\(251\) 14.6056 0.921894 0.460947 0.887428i \(-0.347510\pi\)
0.460947 + 0.887428i \(0.347510\pi\)
\(252\) −4.60555 −0.290122
\(253\) 0 0
\(254\) 9.21110 0.577956
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 16.4222i 1.02439i 0.858869 + 0.512195i \(0.171167\pi\)
−0.858869 + 0.512195i \(0.828833\pi\)
\(258\) −2.60555 −0.162215
\(259\) 51.6333 3.20834
\(260\) 0 0
\(261\) 7.21110i 0.446356i
\(262\) −10.4222 −0.643886
\(263\) 16.0000i 0.986602i −0.869859 0.493301i \(-0.835790\pi\)
0.869859 0.493301i \(-0.164210\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −0.788897 −0.0482797
\(268\) 14.6056i 0.892176i
\(269\) 0.422205i 0.0257423i −0.999917 0.0128711i \(-0.995903\pi\)
0.999917 0.0128711i \(-0.00409713\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) −2.00000 + 3.60555i −0.121268 + 0.218619i
\(273\) 2.78890i 0.168792i
\(274\) −7.21110 −0.435639
\(275\) 0 0
\(276\) −2.00000 −0.120386
\(277\) −19.2111 −1.15428 −0.577142 0.816644i \(-0.695832\pi\)
−0.577142 + 0.816644i \(0.695832\pi\)
\(278\) −17.2111 −1.03225
\(279\) 2.00000i 0.119737i
\(280\) 0 0
\(281\) −23.2111 −1.38466 −0.692329 0.721582i \(-0.743415\pi\)
−0.692329 + 0.721582i \(0.743415\pi\)
\(282\) −4.00000 −0.238197
\(283\) 23.6333 1.40485 0.702427 0.711756i \(-0.252100\pi\)
0.702427 + 0.711756i \(0.252100\pi\)
\(284\) 13.8167i 0.819868i
\(285\) 0 0
\(286\) 0 0
\(287\) 6.42221i 0.379091i
\(288\) 1.00000i 0.0589256i
\(289\) −9.00000 14.4222i −0.529412 0.848365i
\(290\) 0 0
\(291\) 2.60555 0.152740
\(292\) 6.60555 0.386561
\(293\) 0.422205i 0.0246655i 0.999924 + 0.0123327i \(0.00392573\pi\)
−0.999924 + 0.0123327i \(0.996074\pi\)
\(294\) 14.2111i 0.828808i
\(295\) 0 0
\(296\) 11.2111i 0.651632i
\(297\) 0 0
\(298\) 23.0278i 1.33396i
\(299\) 1.21110i 0.0700399i
\(300\) 0 0
\(301\) 12.0000i 0.691669i
\(302\) 6.42221i 0.369556i
\(303\) −16.6056 −0.953964
\(304\) 0 0
\(305\) 0 0
\(306\) −3.60555 2.00000i −0.206116 0.114332i
\(307\) 18.6056i 1.06187i −0.847411 0.530937i \(-0.821840\pi\)
0.847411 0.530937i \(-0.178160\pi\)
\(308\) 0 0
\(309\) 14.4222i 0.820451i
\(310\) 0 0
\(311\) 3.39445i 0.192482i −0.995358 0.0962408i \(-0.969318\pi\)
0.995358 0.0962408i \(-0.0306819\pi\)
\(312\) 0.605551 0.0342826
\(313\) −8.18335 −0.462550 −0.231275 0.972888i \(-0.574290\pi\)
−0.231275 + 0.972888i \(0.574290\pi\)
\(314\) −20.6056 −1.16284
\(315\) 0 0
\(316\) 7.21110i 0.405656i
\(317\) −16.4222 −0.922363 −0.461181 0.887306i \(-0.652574\pi\)
−0.461181 + 0.887306i \(0.652574\pi\)
\(318\) −7.21110 −0.404379
\(319\) 0 0
\(320\) 0 0
\(321\) −1.21110 −0.0675972
\(322\) 9.21110i 0.513315i
\(323\) 0 0
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 20.0000i 1.10770i
\(327\) 0.788897i 0.0436261i
\(328\) 1.39445 0.0769956
\(329\) 18.4222i 1.01565i
\(330\) 0 0
\(331\) 11.6333 0.639424 0.319712 0.947515i \(-0.396414\pi\)
0.319712 + 0.947515i \(0.396414\pi\)
\(332\) 5.21110i 0.285996i
\(333\) 11.2111 0.614365
\(334\) 3.21110i 0.175704i
\(335\) 0 0
\(336\) −4.60555 −0.251253
\(337\) 6.60555 0.359827 0.179914 0.983682i \(-0.442418\pi\)
0.179914 + 0.983682i \(0.442418\pi\)
\(338\) 12.6333i 0.687161i
\(339\) 5.21110 0.283028
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 33.2111 1.79323
\(344\) −2.60555 −0.140482
\(345\) 0 0
\(346\) 6.00000i 0.322562i
\(347\) 15.6333 0.839240 0.419620 0.907700i \(-0.362163\pi\)
0.419620 + 0.907700i \(0.362163\pi\)
\(348\) 7.21110i 0.386556i
\(349\) −11.2111 −0.600117 −0.300058 0.953921i \(-0.597006\pi\)
−0.300058 + 0.953921i \(0.597006\pi\)
\(350\) 0 0
\(351\) 0.605551i 0.0323219i
\(352\) 0 0
\(353\) 16.4222i 0.874066i −0.899446 0.437033i \(-0.856029\pi\)
0.899446 0.437033i \(-0.143971\pi\)
\(354\) 10.6056i 0.563679i
\(355\) 0 0
\(356\) −0.788897 −0.0418115
\(357\) 9.21110 16.6056i 0.487503 0.878859i
\(358\) 25.0278i 1.32276i
\(359\) −7.63331 −0.402871 −0.201435 0.979502i \(-0.564561\pi\)
−0.201435 + 0.979502i \(0.564561\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) −7.21110 −0.379007
\(363\) −11.0000 −0.577350
\(364\) 2.78890i 0.146178i
\(365\) 0 0
\(366\) 3.21110 0.167847
\(367\) −33.4500 −1.74607 −0.873037 0.487654i \(-0.837853\pi\)
−0.873037 + 0.487654i \(0.837853\pi\)
\(368\) −2.00000 −0.104257
\(369\) 1.39445i 0.0725921i
\(370\) 0 0
\(371\) 33.2111i 1.72423i
\(372\) 2.00000i 0.103695i
\(373\) 23.0278i 1.19233i 0.802861 + 0.596166i \(0.203310\pi\)
−0.802861 + 0.596166i \(0.796690\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −4.00000 −0.206284
\(377\) 4.36669 0.224896
\(378\) 4.60555i 0.236884i
\(379\) 37.2111i 1.91141i −0.294333 0.955703i \(-0.595097\pi\)
0.294333 0.955703i \(-0.404903\pi\)
\(380\) 0 0
\(381\) 9.21110i 0.471899i
\(382\) 8.00000i 0.409316i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 0 0
\(386\) 10.6056i 0.539808i
\(387\) 2.60555i 0.132448i
\(388\) 2.60555 0.132277
\(389\) 12.6056 0.639127 0.319563 0.947565i \(-0.396464\pi\)
0.319563 + 0.947565i \(0.396464\pi\)
\(390\) 0 0
\(391\) 4.00000 7.21110i 0.202289 0.364681i
\(392\) 14.2111i 0.717769i
\(393\) 10.4222i 0.525731i
\(394\) 18.0000i 0.906827i
\(395\) 0 0
\(396\) 0 0
\(397\) −32.4222 −1.62722 −0.813612 0.581408i \(-0.802502\pi\)
−0.813612 + 0.581408i \(0.802502\pi\)
\(398\) 14.0000 0.701757
\(399\) 0 0
\(400\) 0 0
\(401\) 14.6056i 0.729366i 0.931132 + 0.364683i \(0.118823\pi\)
−0.931132 + 0.364683i \(0.881177\pi\)
\(402\) −14.6056 −0.728459
\(403\) 1.21110 0.0603293
\(404\) −16.6056 −0.826157
\(405\) 0 0
\(406\) −33.2111 −1.64824
\(407\) 0 0
\(408\) −3.60555 2.00000i −0.178501 0.0990148i
\(409\) 13.6333 0.674124 0.337062 0.941483i \(-0.390567\pi\)
0.337062 + 0.941483i \(0.390567\pi\)
\(410\) 0 0
\(411\) 7.21110i 0.355697i
\(412\) 14.4222i 0.710531i
\(413\) 48.8444 2.40348
\(414\) 2.00000i 0.0982946i
\(415\) 0 0
\(416\) 0.605551 0.0296896
\(417\) 17.2111i 0.842831i
\(418\) 0 0
\(419\) 27.6333i 1.34998i −0.737829 0.674988i \(-0.764149\pi\)
0.737829 0.674988i \(-0.235851\pi\)
\(420\) 0 0
\(421\) 28.4222 1.38521 0.692607 0.721315i \(-0.256462\pi\)
0.692607 + 0.721315i \(0.256462\pi\)
\(422\) −16.0000 −0.778868
\(423\) 4.00000i 0.194487i
\(424\) −7.21110 −0.350202
\(425\) 0 0
\(426\) 13.8167 0.669419
\(427\) 14.7889i 0.715685i
\(428\) −1.21110 −0.0585409
\(429\) 0 0
\(430\) 0 0
\(431\) 7.02776i 0.338515i −0.985572 0.169258i \(-0.945863\pi\)
0.985572 0.169258i \(-0.0541370\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 16.4222i 0.789201i −0.918853 0.394600i \(-0.870883\pi\)
0.918853 0.394600i \(-0.129117\pi\)
\(434\) −9.21110 −0.442147
\(435\) 0 0
\(436\) 0.788897i 0.0377813i
\(437\) 0 0
\(438\) 6.60555i 0.315625i
\(439\) 17.6333i 0.841592i 0.907155 + 0.420796i \(0.138249\pi\)
−0.907155 + 0.420796i \(0.861751\pi\)
\(440\) 0 0
\(441\) 14.2111 0.676719
\(442\) −1.21110 + 2.18335i −0.0576063 + 0.103851i
\(443\) 27.6333i 1.31290i 0.754370 + 0.656449i \(0.227942\pi\)
−0.754370 + 0.656449i \(0.772058\pi\)
\(444\) 11.2111 0.532055
\(445\) 0 0
\(446\) 20.0000 0.947027
\(447\) 23.0278 1.08918
\(448\) −4.60555 −0.217592
\(449\) 25.3944i 1.19844i 0.800585 + 0.599219i \(0.204522\pi\)
−0.800585 + 0.599219i \(0.795478\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 5.21110 0.245110
\(453\) −6.42221 −0.301742
\(454\) 29.2111i 1.37094i
\(455\) 0 0
\(456\) 0 0
\(457\) 30.8444i 1.44284i −0.692497 0.721420i \(-0.743490\pi\)
0.692497 0.721420i \(-0.256510\pi\)
\(458\) 2.00000i 0.0934539i
\(459\) 2.00000 3.60555i 0.0933520 0.168293i
\(460\) 0 0
\(461\) −0.972244 −0.0452819 −0.0226409 0.999744i \(-0.507207\pi\)
−0.0226409 + 0.999744i \(0.507207\pi\)
\(462\) 0 0
\(463\) 20.0000i 0.929479i −0.885448 0.464739i \(-0.846148\pi\)
0.885448 0.464739i \(-0.153852\pi\)
\(464\) 7.21110i 0.334767i
\(465\) 0 0
\(466\) 8.00000i 0.370593i
\(467\) 1.57779i 0.0730116i −0.999333 0.0365058i \(-0.988377\pi\)
0.999333 0.0365058i \(-0.0116227\pi\)
\(468\) 0.605551i 0.0279916i
\(469\) 67.2666i 3.10608i
\(470\) 0 0
\(471\) 20.6056i 0.949454i
\(472\) 10.6056i 0.488160i
\(473\) 0 0
\(474\) 7.21110 0.331217
\(475\) 0 0
\(476\) 9.21110 16.6056i 0.422190 0.761114i
\(477\) 7.21110i 0.330174i
\(478\) 10.7889i 0.493473i
\(479\) 20.6056i 0.941492i 0.882269 + 0.470746i \(0.156015\pi\)
−0.882269 + 0.470746i \(0.843985\pi\)
\(480\) 0 0
\(481\) 6.78890i 0.309547i
\(482\) 14.4222 0.656913
\(483\) 9.21110 0.419120
\(484\) −11.0000 −0.500000
\(485\) 0 0
\(486\) 1.00000i 0.0453609i
\(487\) 21.4500 0.971991 0.485995 0.873961i \(-0.338457\pi\)
0.485995 + 0.873961i \(0.338457\pi\)
\(488\) 3.21110 0.145360
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) 33.0278 1.49052 0.745261 0.666773i \(-0.232325\pi\)
0.745261 + 0.666773i \(0.232325\pi\)
\(492\) 1.39445i 0.0628666i
\(493\) −26.0000 14.4222i −1.17098 0.649543i
\(494\) 0 0
\(495\) 0 0
\(496\) 2.00000i 0.0898027i
\(497\) 63.6333i 2.85434i
\(498\) 5.21110 0.233515
\(499\) 16.0000i 0.716258i 0.933672 + 0.358129i \(0.116585\pi\)
−0.933672 + 0.358129i \(0.883415\pi\)
\(500\) 0 0
\(501\) −3.21110 −0.143461
\(502\) 14.6056i 0.651878i
\(503\) 22.0000 0.980932 0.490466 0.871460i \(-0.336827\pi\)
0.490466 + 0.871460i \(0.336827\pi\)
\(504\) 4.60555i 0.205148i
\(505\) 0 0
\(506\) 0 0
\(507\) −12.6333 −0.561065
\(508\) 9.21110i 0.408677i
\(509\) −31.0278 −1.37528 −0.687641 0.726051i \(-0.741353\pi\)
−0.687641 + 0.726051i \(0.741353\pi\)
\(510\) 0 0
\(511\) −30.4222 −1.34580
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −16.4222 −0.724352
\(515\) 0 0
\(516\) 2.60555i 0.114703i
\(517\) 0 0
\(518\) 51.6333i 2.26864i
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 38.6056i 1.69134i 0.533706 + 0.845670i \(0.320799\pi\)
−0.533706 + 0.845670i \(0.679201\pi\)
\(522\) −7.21110 −0.315621
\(523\) 1.39445i 0.0609750i 0.999535 + 0.0304875i \(0.00970597\pi\)
−0.999535 + 0.0304875i \(0.990294\pi\)
\(524\) 10.4222i 0.455296i
\(525\) 0 0
\(526\) 16.0000 0.697633
\(527\) −7.21110 4.00000i −0.314121 0.174243i
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 10.6056 0.460242
\(532\) 0 0
\(533\) 0.844410 0.0365755
\(534\) 0.788897i 0.0341389i
\(535\) 0 0
\(536\) −14.6056 −0.630864
\(537\) 25.0278 1.08003
\(538\) 0.422205 0.0182026
\(539\) 0 0
\(540\) 0 0
\(541\) 16.7889i 0.721811i −0.932602 0.360906i \(-0.882468\pi\)
0.932602 0.360906i \(-0.117532\pi\)
\(542\) 20.0000i 0.859074i
\(543\) 7.21110i 0.309458i
\(544\) −3.60555 2.00000i −0.154587 0.0857493i
\(545\) 0 0
\(546\) −2.78890 −0.119354
\(547\) 23.6333 1.01049 0.505244 0.862977i \(-0.331403\pi\)
0.505244 + 0.862977i \(0.331403\pi\)
\(548\) 7.21110i 0.308043i
\(549\) 3.21110i 0.137047i
\(550\) 0 0
\(551\) 0 0
\(552\) 2.00000i 0.0851257i
\(553\) 33.2111i 1.41228i
\(554\) 19.2111i 0.816202i
\(555\) 0 0
\(556\) 17.2111i 0.729913i
\(557\) 15.2111i 0.644515i −0.946652 0.322258i \(-0.895558\pi\)
0.946652 0.322258i \(-0.104442\pi\)
\(558\) −2.00000 −0.0846668
\(559\) −1.57779 −0.0667336
\(560\) 0 0
\(561\) 0 0
\(562\) 23.2111i 0.979101i
\(563\) 39.6333i 1.67034i −0.549988 0.835172i \(-0.685368\pi\)
0.549988 0.835172i \(-0.314632\pi\)
\(564\) 4.00000i 0.168430i
\(565\) 0 0
\(566\) 23.6333i 0.993382i
\(567\) 4.60555 0.193415
\(568\) 13.8167 0.579734
\(569\) −25.6333 −1.07460 −0.537302 0.843390i \(-0.680556\pi\)
−0.537302 + 0.843390i \(0.680556\pi\)
\(570\) 0 0
\(571\) 10.7889i 0.451501i 0.974185 + 0.225751i \(0.0724835\pi\)
−0.974185 + 0.225751i \(0.927517\pi\)
\(572\) 0 0
\(573\) 8.00000 0.334205
\(574\) −6.42221 −0.268058
\(575\) 0 0
\(576\) −1.00000 −0.0416667
\(577\) 30.8444i 1.28407i 0.766675 + 0.642035i \(0.221910\pi\)
−0.766675 + 0.642035i \(0.778090\pi\)
\(578\) 14.4222 9.00000i 0.599885 0.374351i
\(579\) 10.6056 0.440752
\(580\) 0 0
\(581\) 24.0000i 0.995688i
\(582\) 2.60555i 0.108004i
\(583\) 0 0
\(584\) 6.60555i 0.273340i
\(585\) 0 0
\(586\) −0.422205 −0.0174411
\(587\) 30.0555i 1.24052i 0.784395 + 0.620262i \(0.212974\pi\)
−0.784395 + 0.620262i \(0.787026\pi\)
\(588\) 14.2111 0.586056
\(589\) 0 0
\(590\) 0 0
\(591\) −18.0000 −0.740421
\(592\) 11.2111 0.460773
\(593\) 36.4222i 1.49568i −0.663879 0.747840i \(-0.731091\pi\)
0.663879 0.747840i \(-0.268909\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 23.0278 0.943254
\(597\) 14.0000i 0.572982i
\(598\) −1.21110 −0.0495257
\(599\) 13.2111 0.539791 0.269896 0.962890i \(-0.413011\pi\)
0.269896 + 0.962890i \(0.413011\pi\)
\(600\) 0 0
\(601\) 37.2111i 1.51787i −0.651165 0.758936i \(-0.725719\pi\)
0.651165 0.758936i \(-0.274281\pi\)
\(602\) 12.0000 0.489083
\(603\) 14.6056i 0.594784i
\(604\) −6.42221 −0.261316
\(605\) 0 0
\(606\) 16.6056i 0.674554i
\(607\) 12.2389 0.496760 0.248380 0.968663i \(-0.420102\pi\)
0.248380 + 0.968663i \(0.420102\pi\)
\(608\) 0 0
\(609\) 33.2111i 1.34578i
\(610\) 0 0
\(611\) −2.42221 −0.0979919
\(612\) 2.00000 3.60555i 0.0808452 0.145746i
\(613\) 21.4500i 0.866356i 0.901308 + 0.433178i \(0.142608\pi\)
−0.901308 + 0.433178i \(0.857392\pi\)
\(614\) 18.6056 0.750859
\(615\) 0 0
\(616\) 0 0
\(617\) −34.4222 −1.38579 −0.692893 0.721041i \(-0.743664\pi\)
−0.692893 + 0.721041i \(0.743664\pi\)
\(618\) 14.4222 0.580146
\(619\) 30.4222i 1.22277i −0.791333 0.611386i \(-0.790612\pi\)
0.791333 0.611386i \(-0.209388\pi\)
\(620\) 0 0
\(621\) 2.00000 0.0802572
\(622\) 3.39445 0.136105
\(623\) 3.63331 0.145565
\(624\) 0.605551i 0.0242415i
\(625\) 0 0
\(626\) 8.18335i 0.327072i
\(627\) 0 0
\(628\) 20.6056i 0.822251i
\(629\) −22.4222 + 40.4222i −0.894032 + 1.61174i
\(630\) 0 0
\(631\) −39.2666 −1.56318 −0.781590 0.623793i \(-0.785591\pi\)
−0.781590 + 0.623793i \(0.785591\pi\)
\(632\) 7.21110 0.286842
\(633\) 16.0000i 0.635943i
\(634\) 16.4222i 0.652209i
\(635\) 0 0
\(636\) 7.21110i 0.285939i
\(637\) 8.60555i 0.340964i
\(638\) 0 0
\(639\) 13.8167i 0.546578i
\(640\) 0 0
\(641\) 35.4500i 1.40019i −0.714050 0.700095i \(-0.753141\pi\)
0.714050 0.700095i \(-0.246859\pi\)
\(642\) 1.21110i 0.0477984i
\(643\) 8.84441 0.348789 0.174395 0.984676i \(-0.444203\pi\)
0.174395 + 0.984676i \(0.444203\pi\)
\(644\) 9.21110 0.362968
\(645\) 0 0
\(646\) 0 0
\(647\) 18.4222i 0.724252i 0.932129 + 0.362126i \(0.117949\pi\)
−0.932129 + 0.362126i \(0.882051\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 0 0
\(650\) 0 0
\(651\) 9.21110i 0.361012i
\(652\) −20.0000 −0.783260
\(653\) 22.0000 0.860927 0.430463 0.902608i \(-0.358350\pi\)
0.430463 + 0.902608i \(0.358350\pi\)
\(654\) −0.788897 −0.0308483
\(655\) 0 0
\(656\) 1.39445i 0.0544441i
\(657\) −6.60555 −0.257707
\(658\) 18.4222 0.718172
\(659\) 29.0278 1.13076 0.565380 0.824830i \(-0.308729\pi\)
0.565380 + 0.824830i \(0.308729\pi\)
\(660\) 0 0
\(661\) −4.78890 −0.186267 −0.0931333 0.995654i \(-0.529688\pi\)
−0.0931333 + 0.995654i \(0.529688\pi\)
\(662\) 11.6333i 0.452141i
\(663\) −2.18335 1.21110i −0.0847941 0.0470353i
\(664\) 5.21110 0.202230
\(665\) 0 0
\(666\) 11.2111i 0.434421i
\(667\) 14.4222i 0.558430i
\(668\) −3.21110 −0.124241
\(669\) 20.0000i 0.773245i
\(670\) 0 0
\(671\) 0 0
\(672\) 4.60555i 0.177663i
\(673\) 2.97224 0.114572 0.0572858 0.998358i \(-0.481755\pi\)
0.0572858 + 0.998358i \(0.481755\pi\)
\(674\) 6.60555i 0.254436i
\(675\) 0 0
\(676\) −12.6333 −0.485896
\(677\) −30.8444 −1.18545 −0.592723 0.805406i \(-0.701947\pi\)
−0.592723 + 0.805406i \(0.701947\pi\)
\(678\) 5.21110i 0.200131i
\(679\) −12.0000 −0.460518
\(680\) 0 0
\(681\) −29.2111 −1.11937
\(682\) 0 0
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 33.2111i 1.26801i
\(687\) 2.00000 0.0763048
\(688\) 2.60555i 0.0993357i
\(689\) −4.36669 −0.166358
\(690\) 0 0
\(691\) 5.57779i 0.212189i 0.994356 + 0.106095i \(0.0338347\pi\)
−0.994356 + 0.106095i \(0.966165\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 15.6333i 0.593432i
\(695\) 0 0
\(696\) −7.21110 −0.273336
\(697\) −5.02776 2.78890i −0.190440 0.105637i
\(698\) 11.2111i 0.424346i
\(699\) 8.00000 0.302588
\(700\) 0 0
\(701\) −20.6056 −0.778261 −0.389130 0.921183i \(-0.627224\pi\)
−0.389130 + 0.921183i \(0.627224\pi\)
\(702\) −0.605551 −0.0228551
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 16.4222 0.618058
\(707\) 76.4777 2.87624
\(708\) 10.6056 0.398581
\(709\) 3.21110i 0.120595i −0.998180 0.0602977i \(-0.980795\pi\)
0.998180 0.0602977i \(-0.0192050\pi\)
\(710\) 0 0
\(711\) 7.21110i 0.270437i
\(712\) 0.788897i 0.0295652i
\(713\) 4.00000i 0.149801i
\(714\) 16.6056 + 9.21110i 0.621447 + 0.344717i
\(715\) 0 0
\(716\) 25.0278 0.935331
\(717\) 10.7889 0.402919
\(718\) 7.63331i 0.284873i
\(719\) 3.39445i 0.126592i −0.997995 0.0632958i \(-0.979839\pi\)
0.997995 0.0632958i \(-0.0201612\pi\)
\(720\) 0 0
\(721\) 66.4222i 2.47369i
\(722\) 19.0000i 0.707107i
\(723\) 14.4222i 0.536368i
\(724\) 7.21110i 0.267999i
\(725\) 0 0
\(726\) 11.0000i 0.408248i
\(727\) 30.0555i 1.11470i −0.830279 0.557349i \(-0.811819\pi\)
0.830279 0.557349i \(-0.188181\pi\)
\(728\) −2.78890 −0.103363
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 9.39445 + 5.21110i 0.347466 + 0.192740i
\(732\) 3.21110i 0.118686i
\(733\) 18.1833i 0.671617i −0.941930 0.335809i \(-0.890990\pi\)
0.941930 0.335809i \(-0.109010\pi\)
\(734\) 33.4500i 1.23466i
\(735\) 0 0
\(736\) 2.00000i 0.0737210i
\(737\) 0 0
\(738\) −1.39445 −0.0513304
\(739\) −2.78890 −0.102591 −0.0512956 0.998684i \(-0.516335\pi\)
−0.0512956 + 0.998684i \(0.516335\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 33.2111 1.21922
\(743\) −27.2111 −0.998279 −0.499139 0.866522i \(-0.666350\pi\)
−0.499139 + 0.866522i \(0.666350\pi\)
\(744\) −2.00000 −0.0733236
\(745\) 0 0
\(746\) −23.0278 −0.843106
\(747\) 5.21110i 0.190664i
\(748\) 0 0
\(749\) 5.57779 0.203808
\(750\) 0 0
\(751\) 37.6333i 1.37326i 0.727008 + 0.686629i \(0.240910\pi\)
−0.727008 + 0.686629i \(0.759090\pi\)
\(752\) 4.00000i 0.145865i
\(753\) −14.6056 −0.532256
\(754\) 4.36669i 0.159026i
\(755\) 0 0
\(756\) 4.60555 0.167502
\(757\) 47.0278i 1.70925i −0.519243 0.854626i \(-0.673786\pi\)
0.519243 0.854626i \(-0.326214\pi\)
\(758\) 37.2111 1.35157
\(759\) 0 0
\(760\) 0 0
\(761\) −23.2111 −0.841402 −0.420701 0.907199i \(-0.638216\pi\)
−0.420701 + 0.907199i \(0.638216\pi\)
\(762\) −9.21110 −0.333683
\(763\) 3.63331i 0.131535i
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 0 0
\(767\) 6.42221i 0.231892i
\(768\) −1.00000 −0.0360844
\(769\) −1.63331 −0.0588986 −0.0294493 0.999566i \(-0.509375\pi\)
−0.0294493 + 0.999566i \(0.509375\pi\)
\(770\) 0 0
\(771\) 16.4222i 0.591431i
\(772\) 10.6056 0.381702
\(773\) 15.2111i 0.547105i 0.961857 + 0.273553i \(0.0881988\pi\)
−0.961857 + 0.273553i \(0.911801\pi\)
\(774\) 2.60555 0.0936546
\(775\) 0 0
\(776\) 2.60555i 0.0935338i
\(777\) −51.6333 −1.85233
\(778\) 12.6056i 0.451931i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 7.21110 + 4.00000i 0.257869 + 0.143040i
\(783\) 7.21110i 0.257704i
\(784\) 14.2111 0.507539
\(785\) 0 0
\(786\) 10.4222 0.371748
\(787\) 2.78890 0.0994135 0.0497067 0.998764i \(-0.484171\pi\)
0.0497067 + 0.998764i \(0.484171\pi\)
\(788\) −18.0000 −0.641223
\(789\) 16.0000i 0.569615i
\(790\) 0 0
\(791\) −24.0000 −0.853342
\(792\) 0 0
\(793\) 1.94449 0.0690508
\(794\) 32.4222i 1.15062i
\(795\) 0 0
\(796\) 14.0000i 0.496217i
\(797\) 48.4222i 1.71520i −0.514315 0.857601i \(-0.671954\pi\)
0.514315 0.857601i \(-0.328046\pi\)
\(798\) 0 0
\(799\) 14.4222 + 8.00000i 0.510221 + 0.283020i
\(800\) 0 0
\(801\) 0.788897 0.0278743
\(802\) −14.6056 −0.515740
\(803\) 0 0
\(804\) 14.6056i 0.515098i
\(805\) 0 0
\(806\) 1.21110i 0.0426593i
\(807\) 0.422205i 0.0148623i
\(808\) 16.6056i 0.584181i
\(809\) 6.97224i 0.245131i −0.992460 0.122566i \(-0.960888\pi\)
0.992460 0.122566i \(-0.0391122\pi\)
\(810\) 0 0
\(811\) 31.6333i 1.11080i −0.831585 0.555398i \(-0.812566\pi\)
0.831585 0.555398i \(-0.187434\pi\)
\(812\) 33.2111i 1.16548i
\(813\) −20.0000 −0.701431
\(814\) 0 0
\(815\) 0 0
\(816\) 2.00000 3.60555i 0.0700140 0.126220i
\(817\) 0 0
\(818\) 13.6333i 0.476677i
\(819\) 2.78890i 0.0974520i
\(820\) 0 0
\(821\) 46.0000i 1.60541i −0.596376 0.802706i \(-0.703393\pi\)
0.596376 0.802706i \(-0.296607\pi\)
\(822\) 7.21110 0.251516
\(823\) −16.2389 −0.566051 −0.283026 0.959112i \(-0.591338\pi\)
−0.283026 + 0.959112i \(0.591338\pi\)
\(824\) 14.4222 0.502421
\(825\) 0 0
\(826\) 48.8444i 1.69951i
\(827\) −2.42221 −0.0842283 −0.0421142 0.999113i \(-0.513409\pi\)
−0.0421142 + 0.999113i \(0.513409\pi\)
\(828\) 2.00000 0.0695048
\(829\) 36.0555 1.25226 0.626130 0.779719i \(-0.284638\pi\)
0.626130 + 0.779719i \(0.284638\pi\)
\(830\) 0 0
\(831\) 19.2111 0.666426
\(832\) 0.605551i 0.0209937i
\(833\) −28.4222 + 51.2389i −0.984771 + 1.77532i
\(834\) 17.2111 0.595972
\(835\) 0 0
\(836\) 0 0
\(837\) 2.00000i 0.0691301i
\(838\) 27.6333 0.954577
\(839\) 3.02776i 0.104530i 0.998633 + 0.0522649i \(0.0166440\pi\)
−0.998633 + 0.0522649i \(0.983356\pi\)
\(840\) 0 0
\(841\) −23.0000 −0.793103
\(842\) 28.4222i 0.979494i
\(843\) 23.2111 0.799433
\(844\) 16.0000i 0.550743i
\(845\) 0 0
\(846\) 4.00000 0.137523
\(847\) 50.6611 1.74073
\(848\) 7.21110i 0.247630i
\(849\) −23.6333 −0.811093
\(850\) 0 0
\(851\) −22.4222 −0.768623
\(852\) 13.8167i 0.473351i
\(853\) 35.2111 1.20561 0.602803 0.797890i \(-0.294051\pi\)
0.602803 + 0.797890i \(0.294051\pi\)
\(854\) −14.7889 −0.506066
\(855\) 0 0
\(856\) 1.21110i 0.0413946i
\(857\) −40.8444 −1.39522 −0.697609 0.716478i \(-0.745753\pi\)
−0.697609 + 0.716478i \(0.745753\pi\)
\(858\) 0 0
\(859\) 41.2111 1.40610 0.703052 0.711138i \(-0.251820\pi\)
0.703052 + 0.711138i \(0.251820\pi\)
\(860\) 0 0
\(861\) 6.42221i 0.218868i
\(862\) 7.02776 0.239366
\(863\) 54.4222i 1.85255i −0.376844 0.926277i \(-0.622991\pi\)
0.376844 0.926277i \(-0.377009\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) 0 0
\(866\) 16.4222 0.558049
\(867\) 9.00000 + 14.4222i 0.305656 + 0.489804i
\(868\) 9.21110i 0.312645i
\(869\) 0 0
\(870\) 0 0
\(871\) −8.84441 −0.299681
\(872\) −0.788897 −0.0267154
\(873\) −2.60555 −0.0881845
\(874\) 0 0
\(875\) 0 0
\(876\) −6.60555 −0.223181
\(877\) −54.8444 −1.85196 −0.925982 0.377567i \(-0.876761\pi\)
−0.925982 + 0.377567i \(0.876761\pi\)
\(878\) −17.6333 −0.595095
\(879\) 0.422205i 0.0142406i
\(880\) 0 0
\(881\) 53.0278i 1.78655i −0.449510 0.893275i \(-0.648401\pi\)
0.449510 0.893275i \(-0.351599\pi\)
\(882\) 14.2111i 0.478513i
\(883\) 19.8167i 0.666883i 0.942771 + 0.333442i \(0.108210\pi\)
−0.942771 + 0.333442i \(0.891790\pi\)
\(884\) −2.18335 1.21110i −0.0734339 0.0407338i
\(885\) 0 0
\(886\) −27.6333 −0.928359
\(887\) 28.4222 0.954324 0.477162 0.878815i \(-0.341665\pi\)
0.477162 + 0.878815i \(0.341665\pi\)
\(888\) 11.2111i 0.376220i
\(889\) 42.4222i 1.42280i
\(890\) 0 0
\(891\) 0 0
\(892\) 20.0000i 0.669650i
\(893\) 0 0
\(894\) 23.0278i 0.770163i
\(895\) 0 0
\(896\) 4.60555i 0.153861i
\(897\) 1.21110i 0.0404375i
\(898\) −25.3944 −0.847424
\(899\) −14.4222 −0.481007
\(900\) 0 0
\(901\) 26.0000 + 14.4222i 0.866186 + 0.480473i
\(902\) 0 0
\(903\) 12.0000i 0.399335i
\(904\) 5.21110i 0.173319i
\(905\) 0 0
\(906\) 6.42221i 0.213363i
\(907\) −34.7889 −1.15515 −0.577573 0.816339i \(-0.696000\pi\)
−0.577573 + 0.816339i \(0.696000\pi\)
\(908\) −29.2111 −0.969404
\(909\) 16.6056 0.550771
\(910\) 0 0
\(911\) 26.6611i 0.883320i −0.897182 0.441660i \(-0.854390\pi\)
0.897182 0.441660i \(-0.145610\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 30.8444 1.02024
\(915\) 0 0
\(916\) 2.00000 0.0660819
\(917\) 48.0000i 1.58510i
\(918\) 3.60555 + 2.00000i 0.119001 + 0.0660098i
\(919\) −40.8444 −1.34733 −0.673666 0.739036i \(-0.735282\pi\)
−0.673666 + 0.739036i \(0.735282\pi\)
\(920\) 0 0
\(921\) 18.6056i 0.613074i
\(922\) 0.972244i 0.0320191i
\(923\) 8.36669 0.275393
\(924\) 0 0
\(925\) 0 0
\(926\) 20.0000 0.657241
\(927\) 14.4222i 0.473687i
\(928\) −7.21110 −0.236716
\(929\) 27.8167i 0.912635i −0.889817 0.456317i \(-0.849168\pi\)
0.889817 0.456317i \(-0.150832\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 8.00000 0.262049
\(933\) 3.39445i 0.111129i
\(934\) 1.57779 0.0516270
\(935\) 0 0
\(936\) −0.605551 −0.0197931
\(937\) 39.2111i 1.28097i 0.767970 + 0.640485i \(0.221267\pi\)
−0.767970 + 0.640485i \(0.778733\pi\)
\(938\) 67.2666 2.19633
\(939\) 8.18335 0.267053
\(940\) 0 0
\(941\) 8.42221i 0.274556i 0.990533 + 0.137278i \(0.0438354\pi\)
−0.990533 + 0.137278i \(0.956165\pi\)
\(942\) 20.6056 0.671365
\(943\) 2.78890i 0.0908190i
\(944\) 10.6056 0.345181
\(945\) 0 0
\(946\) 0 0
\(947\) 9.21110 0.299321 0.149660 0.988737i \(-0.452182\pi\)
0.149660 + 0.988737i \(0.452182\pi\)
\(948\) 7.21110i 0.234206i
\(949\) 4.00000i 0.129845i
\(950\) 0 0
\(951\) 16.4222 0.532526
\(952\) 16.6056 + 9.21110i 0.538189 + 0.298534i
\(953\) 32.0555i 1.03838i −0.854659 0.519190i \(-0.826234\pi\)
0.854659 0.519190i \(-0.173766\pi\)
\(954\) 7.21110 0.233468
\(955\) 0 0
\(956\) 10.7889 0.348938
\(957\) 0 0
\(958\) −20.6056 −0.665735
\(959\) 33.2111i 1.07244i
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 6.78890 0.218883
\(963\) 1.21110 0.0390272
\(964\) 14.4222i 0.464508i
\(965\) 0 0
\(966\) 9.21110i 0.296362i
\(967\) 22.7889i 0.732842i −0.930449 0.366421i \(-0.880583\pi\)
0.930449 0.366421i \(-0.119417\pi\)
\(968\) 11.0000i 0.353553i
\(969\) 0 0
\(970\) 0 0
\(971\) 23.4500 0.752545 0.376273 0.926509i \(-0.377206\pi\)
0.376273 + 0.926509i \(0.377206\pi\)
\(972\) 1.00000 0.0320750
\(973\) 79.2666i 2.54117i
\(974\) 21.4500i 0.687301i
\(975\) 0 0
\(976\) 3.21110i 0.102785i
\(977\) 26.8444i 0.858829i −0.903108 0.429414i \(-0.858720\pi\)
0.903108 0.429414i \(-0.141280\pi\)
\(978\) 20.0000i 0.639529i
\(979\) 0 0
\(980\) 0 0
\(981\) 0.788897i 0.0251876i
\(982\) 33.0278i 1.05396i
\(983\) −39.2111 −1.25064 −0.625320 0.780368i \(-0.715032\pi\)
−0.625320 + 0.780368i \(0.715032\pi\)
\(984\) −1.39445 −0.0444534
\(985\) 0 0
\(986\) 14.4222 26.0000i 0.459297 0.828009i
\(987\) 18.4222i 0.586385i
\(988\) 0 0
\(989\) 5.21110i 0.165703i
\(990\) 0 0
\(991\) 11.5778i 0.367781i 0.982947 + 0.183890i \(0.0588691\pi\)
−0.982947 + 0.183890i \(0.941131\pi\)
\(992\) −2.00000 −0.0635001
\(993\) −11.6333 −0.369172
\(994\) −63.6333 −2.01833
\(995\) 0 0
\(996\) 5.21110i 0.165120i
\(997\) 9.63331 0.305090 0.152545 0.988297i \(-0.451253\pi\)
0.152545 + 0.988297i \(0.451253\pi\)
\(998\) −16.0000 −0.506471
\(999\) −11.2111 −0.354704
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2550.2.f.p.1699.4 4
5.2 odd 4 510.2.c.c.271.4 yes 4
5.3 odd 4 2550.2.c.o.1801.1 4
5.4 even 2 2550.2.f.s.1699.1 4
15.2 even 4 1530.2.c.g.271.2 4
17.16 even 2 2550.2.f.s.1699.3 4
20.7 even 4 4080.2.h.q.3841.1 4
85.33 odd 4 2550.2.c.o.1801.4 4
85.47 odd 4 8670.2.a.bh.1.2 2
85.67 odd 4 510.2.c.c.271.1 4
85.72 odd 4 8670.2.a.bk.1.1 2
85.84 even 2 inner 2550.2.f.p.1699.2 4
255.152 even 4 1530.2.c.g.271.3 4
340.67 even 4 4080.2.h.q.3841.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.c.c.271.1 4 85.67 odd 4
510.2.c.c.271.4 yes 4 5.2 odd 4
1530.2.c.g.271.2 4 15.2 even 4
1530.2.c.g.271.3 4 255.152 even 4
2550.2.c.o.1801.1 4 5.3 odd 4
2550.2.c.o.1801.4 4 85.33 odd 4
2550.2.f.p.1699.2 4 85.84 even 2 inner
2550.2.f.p.1699.4 4 1.1 even 1 trivial
2550.2.f.s.1699.1 4 5.4 even 2
2550.2.f.s.1699.3 4 17.16 even 2
4080.2.h.q.3841.1 4 20.7 even 4
4080.2.h.q.3841.4 4 340.67 even 4
8670.2.a.bh.1.2 2 85.47 odd 4
8670.2.a.bk.1.1 2 85.72 odd 4