Properties

Label 153.2.f.b.64.4
Level $153$
Weight $2$
Character 153.64
Analytic conductor $1.222$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [153,2,Mod(55,153)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(153, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("153.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 153 = 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 153.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22171115093\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.836829184.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 14x^{6} + 61x^{4} + 84x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 64.4
Root \(2.06644i\) of defining polynomial
Character \(\chi\) \(=\) 153.64
Dual form 153.2.f.b.55.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.06644i q^{2} -2.27016 q^{4} +(0.245916 + 0.245916i) q^{5} +(-3.06644 + 3.06644i) q^{7} -0.558268i q^{8} +(-0.508169 + 0.508169i) q^{10} +(-0.516075 + 0.516075i) q^{11} +5.40303 q^{13} +(-6.33660 - 6.33660i) q^{14} -3.38669 q^{16} +(4.09068 - 0.516075i) q^{17} -3.27016i q^{19} +(-0.558268 - 0.558268i) q^{20} +(-1.06644 - 1.06644i) q^{22} +(2.51608 - 2.51608i) q^{23} -4.87905i q^{25} +11.1650i q^{26} +(6.96130 - 6.96130i) q^{28} +(3.09859 + 3.09859i) q^{29} +(2.33660 + 2.33660i) q^{31} -8.11492i q^{32} +(1.06644 + 8.45313i) q^{34} -1.50817 q^{35} +(2.03215 + 2.03215i) q^{37} +6.75758 q^{38} +(0.137287 - 0.137287i) q^{40} +(-8.37879 + 8.37879i) q^{41} +3.74618i q^{43} +(1.17157 - 1.17157i) q^{44} +(5.19931 + 5.19931i) q^{46} +0.476019 q^{47} -11.8061i q^{49} +10.0822 q^{50} -12.2657 q^{52} -10.1329i q^{53} -0.253822 q^{55} +(1.71189 + 1.71189i) q^{56} +(-6.40303 + 6.40303i) q^{58} -5.29790i q^{59} +(2.50817 - 2.50817i) q^{61} +(-4.82843 + 4.82843i) q^{62} +9.99559 q^{64} +(1.32869 + 1.32869i) q^{65} -1.55666 q^{67} +(-9.28650 + 1.17157i) q^{68} -3.11654i q^{70} +(-6.33660 - 6.33660i) q^{71} +(-2.89486 - 2.89486i) q^{73} +(-4.19931 + 4.19931i) q^{74} +7.42378i q^{76} -3.16502i q^{77} +(-0.574605 + 0.574605i) q^{79} +(-0.832841 - 0.832841i) q^{80} +(-17.3142 - 17.3142i) q^{82} +7.21351i q^{83} +(1.13287 + 0.879051i) q^{85} -7.74124 q^{86} +(0.288108 + 0.288108i) q^{88} -9.77391 q^{89} +(-16.5681 + 16.5681i) q^{91} +(-5.71189 + 5.71189i) q^{92} +0.983662i q^{94} +(0.804183 - 0.804183i) q^{95} +(-1.25382 - 1.25382i) q^{97} +24.3965 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{4} + 4 q^{5} - 4 q^{7} - 4 q^{13} - 24 q^{14} + 12 q^{16} + 4 q^{17} + 12 q^{20} + 12 q^{22} + 16 q^{23} - 8 q^{28} - 4 q^{29} - 8 q^{31} - 12 q^{34} - 8 q^{35} + 8 q^{37} - 24 q^{38} + 36 q^{40}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/153\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.06644i 1.46119i 0.682810 + 0.730596i \(0.260757\pi\)
−0.682810 + 0.730596i \(0.739243\pi\)
\(3\) 0 0
\(4\) −2.27016 −1.13508
\(5\) 0.245916 + 0.245916i 0.109977 + 0.109977i 0.759954 0.649977i \(-0.225222\pi\)
−0.649977 + 0.759954i \(0.725222\pi\)
\(6\) 0 0
\(7\) −3.06644 + 3.06644i −1.15900 + 1.15900i −0.174314 + 0.984690i \(0.555771\pi\)
−0.984690 + 0.174314i \(0.944229\pi\)
\(8\) 0.558268i 0.197377i
\(9\) 0 0
\(10\) −0.508169 + 0.508169i −0.160697 + 0.160697i
\(11\) −0.516075 + 0.516075i −0.155603 + 0.155603i −0.780615 0.625012i \(-0.785094\pi\)
0.625012 + 0.780615i \(0.285094\pi\)
\(12\) 0 0
\(13\) 5.40303 1.49853 0.749266 0.662269i \(-0.230407\pi\)
0.749266 + 0.662269i \(0.230407\pi\)
\(14\) −6.33660 6.33660i −1.69353 1.69353i
\(15\) 0 0
\(16\) −3.38669 −0.846674
\(17\) 4.09068 0.516075i 0.992136 0.125167i
\(18\) 0 0
\(19\) 3.27016i 0.750226i −0.926979 0.375113i \(-0.877604\pi\)
0.926979 0.375113i \(-0.122396\pi\)
\(20\) −0.558268 0.558268i −0.124832 0.124832i
\(21\) 0 0
\(22\) −1.06644 1.06644i −0.227365 0.227365i
\(23\) 2.51608 2.51608i 0.524638 0.524638i −0.394331 0.918969i \(-0.629024\pi\)
0.918969 + 0.394331i \(0.129024\pi\)
\(24\) 0 0
\(25\) 4.87905i 0.975810i
\(26\) 11.1650i 2.18964i
\(27\) 0 0
\(28\) 6.96130 6.96130i 1.31556 1.31556i
\(29\) 3.09859 + 3.09859i 0.575393 + 0.575393i 0.933631 0.358237i \(-0.116622\pi\)
−0.358237 + 0.933631i \(0.616622\pi\)
\(30\) 0 0
\(31\) 2.33660 + 2.33660i 0.419665 + 0.419665i 0.885088 0.465423i \(-0.154098\pi\)
−0.465423 + 0.885088i \(0.654098\pi\)
\(32\) 8.11492i 1.43453i
\(33\) 0 0
\(34\) 1.06644 + 8.45313i 0.182892 + 1.44970i
\(35\) −1.50817 −0.254927
\(36\) 0 0
\(37\) 2.03215 + 2.03215i 0.334083 + 0.334083i 0.854135 0.520051i \(-0.174087\pi\)
−0.520051 + 0.854135i \(0.674087\pi\)
\(38\) 6.75758 1.09622
\(39\) 0 0
\(40\) 0.137287 0.137287i 0.0217069 0.0217069i
\(41\) −8.37879 + 8.37879i −1.30855 + 1.30855i −0.386083 + 0.922464i \(0.626172\pi\)
−0.922464 + 0.386083i \(0.873828\pi\)
\(42\) 0 0
\(43\) 3.74618i 0.571287i 0.958336 + 0.285643i \(0.0922073\pi\)
−0.958336 + 0.285643i \(0.907793\pi\)
\(44\) 1.17157 1.17157i 0.176621 0.176621i
\(45\) 0 0
\(46\) 5.19931 + 5.19931i 0.766596 + 0.766596i
\(47\) 0.476019 0.0694345 0.0347172 0.999397i \(-0.488947\pi\)
0.0347172 + 0.999397i \(0.488947\pi\)
\(48\) 0 0
\(49\) 11.8061i 1.68658i
\(50\) 10.0822 1.42585
\(51\) 0 0
\(52\) −12.2657 −1.70095
\(53\) 10.1329i 1.39186i −0.718111 0.695929i \(-0.754993\pi\)
0.718111 0.695929i \(-0.245007\pi\)
\(54\) 0 0
\(55\) −0.253822 −0.0342253
\(56\) 1.71189 + 1.71189i 0.228761 + 0.228761i
\(57\) 0 0
\(58\) −6.40303 + 6.40303i −0.840759 + 0.840759i
\(59\) 5.29790i 0.689727i −0.938653 0.344864i \(-0.887925\pi\)
0.938653 0.344864i \(-0.112075\pi\)
\(60\) 0 0
\(61\) 2.50817 2.50817i 0.321138 0.321138i −0.528066 0.849204i \(-0.677082\pi\)
0.849204 + 0.528066i \(0.177082\pi\)
\(62\) −4.82843 + 4.82843i −0.613211 + 0.613211i
\(63\) 0 0
\(64\) 9.99559 1.24945
\(65\) 1.32869 + 1.32869i 0.164804 + 0.164804i
\(66\) 0 0
\(67\) −1.55666 −0.190176 −0.0950880 0.995469i \(-0.530313\pi\)
−0.0950880 + 0.995469i \(0.530313\pi\)
\(68\) −9.28650 + 1.17157i −1.12615 + 0.142074i
\(69\) 0 0
\(70\) 3.11654i 0.372497i
\(71\) −6.33660 6.33660i −0.752016 0.752016i 0.222840 0.974855i \(-0.428467\pi\)
−0.974855 + 0.222840i \(0.928467\pi\)
\(72\) 0 0
\(73\) −2.89486 2.89486i −0.338818 0.338818i 0.517104 0.855922i \(-0.327010\pi\)
−0.855922 + 0.517104i \(0.827010\pi\)
\(74\) −4.19931 + 4.19931i −0.488160 + 0.488160i
\(75\) 0 0
\(76\) 7.42378i 0.851566i
\(77\) 3.16502i 0.360688i
\(78\) 0 0
\(79\) −0.574605 + 0.574605i −0.0646481 + 0.0646481i −0.738692 0.674044i \(-0.764556\pi\)
0.674044 + 0.738692i \(0.264556\pi\)
\(80\) −0.832841 0.832841i −0.0931144 0.0931144i
\(81\) 0 0
\(82\) −17.3142 17.3142i −1.91204 1.91204i
\(83\) 7.21351i 0.791786i 0.918297 + 0.395893i \(0.129565\pi\)
−0.918297 + 0.395893i \(0.870435\pi\)
\(84\) 0 0
\(85\) 1.13287 + 0.879051i 0.122877 + 0.0953465i
\(86\) −7.74124 −0.834759
\(87\) 0 0
\(88\) 0.288108 + 0.288108i 0.0307124 + 0.0307124i
\(89\) −9.77391 −1.03603 −0.518016 0.855371i \(-0.673329\pi\)
−0.518016 + 0.855371i \(0.673329\pi\)
\(90\) 0 0
\(91\) −16.5681 + 16.5681i −1.73680 + 1.73680i
\(92\) −5.71189 + 5.71189i −0.595506 + 0.595506i
\(93\) 0 0
\(94\) 0.983662i 0.101457i
\(95\) 0.804183 0.804183i 0.0825074 0.0825074i
\(96\) 0 0
\(97\) −1.25382 1.25382i −0.127306 0.127306i 0.640583 0.767889i \(-0.278693\pi\)
−0.767889 + 0.640583i \(0.778693\pi\)
\(98\) 24.3965 2.46442
\(99\) 0 0
\(100\) 11.0762i 1.10762i
\(101\) 14.6089 1.45364 0.726820 0.686828i \(-0.240998\pi\)
0.726820 + 0.686828i \(0.240998\pi\)
\(102\) 0 0
\(103\) 2.86271 0.282072 0.141036 0.990005i \(-0.454957\pi\)
0.141036 + 0.990005i \(0.454957\pi\)
\(104\) 3.01634i 0.295776i
\(105\) 0 0
\(106\) 20.9389 2.03377
\(107\) 4.46759 + 4.46759i 0.431898 + 0.431898i 0.889274 0.457376i \(-0.151211\pi\)
−0.457376 + 0.889274i \(0.651211\pi\)
\(108\) 0 0
\(109\) −3.32239 + 3.32239i −0.318228 + 0.318228i −0.848086 0.529858i \(-0.822245\pi\)
0.529858 + 0.848086i \(0.322245\pi\)
\(110\) 0.524507i 0.0500097i
\(111\) 0 0
\(112\) 10.3851 10.3851i 0.981298 0.981298i
\(113\) 8.78623 8.78623i 0.826539 0.826539i −0.160497 0.987036i \(-0.551310\pi\)
0.987036 + 0.160497i \(0.0513097\pi\)
\(114\) 0 0
\(115\) 1.23748 0.115396
\(116\) −7.03429 7.03429i −0.653117 0.653117i
\(117\) 0 0
\(118\) 10.9478 1.00782
\(119\) −10.9613 + 14.1263i −1.00482 + 1.29496i
\(120\) 0 0
\(121\) 10.4673i 0.951576i
\(122\) 5.18297 + 5.18297i 0.469244 + 0.469244i
\(123\) 0 0
\(124\) −5.30445 5.30445i −0.476353 0.476353i
\(125\) 2.42941 2.42941i 0.217293 0.217293i
\(126\) 0 0
\(127\) 1.81048i 0.160654i −0.996769 0.0803270i \(-0.974404\pi\)
0.996769 0.0803270i \(-0.0255965\pi\)
\(128\) 4.42539i 0.391153i
\(129\) 0 0
\(130\) −2.74565 + 2.74565i −0.240810 + 0.240810i
\(131\) −4.51608 4.51608i −0.394571 0.394571i 0.481742 0.876313i \(-0.340004\pi\)
−0.876313 + 0.481742i \(0.840004\pi\)
\(132\) 0 0
\(133\) 10.0277 + 10.0277i 0.869515 + 0.869515i
\(134\) 3.21673i 0.277883i
\(135\) 0 0
\(136\) −0.288108 2.28369i −0.0247051 0.195825i
\(137\) 2.28156 0.194927 0.0974633 0.995239i \(-0.468927\pi\)
0.0974633 + 0.995239i \(0.468927\pi\)
\(138\) 0 0
\(139\) −11.7554 11.7554i −0.997083 0.997083i 0.00291227 0.999996i \(-0.499073\pi\)
−0.999996 + 0.00291227i \(0.999073\pi\)
\(140\) 3.42378 0.289363
\(141\) 0 0
\(142\) 13.0942 13.0942i 1.09884 1.09884i
\(143\) −2.78837 + 2.78837i −0.233175 + 0.233175i
\(144\) 0 0
\(145\) 1.52398i 0.126560i
\(146\) 5.98205 5.98205i 0.495078 0.495078i
\(147\) 0 0
\(148\) −4.61331 4.61331i −0.379211 0.379211i
\(149\) −12.1814 −0.997936 −0.498968 0.866620i \(-0.666287\pi\)
−0.498968 + 0.866620i \(0.666287\pi\)
\(150\) 0 0
\(151\) 19.3823i 1.57731i −0.614837 0.788654i \(-0.710778\pi\)
0.614837 0.788654i \(-0.289222\pi\)
\(152\) −1.82562 −0.148078
\(153\) 0 0
\(154\) 6.54032 0.527034
\(155\) 1.14921i 0.0923068i
\(156\) 0 0
\(157\) −1.81475 −0.144833 −0.0724164 0.997374i \(-0.523071\pi\)
−0.0724164 + 0.997374i \(0.523071\pi\)
\(158\) −1.18739 1.18739i −0.0944633 0.0944633i
\(159\) 0 0
\(160\) 1.99559 1.99559i 0.157765 0.157765i
\(161\) 15.4308i 1.21611i
\(162\) 0 0
\(163\) −10.4009 + 10.4009i −0.814661 + 0.814661i −0.985329 0.170668i \(-0.945408\pi\)
0.170668 + 0.985329i \(0.445408\pi\)
\(164\) 19.0212 19.0212i 1.48531 1.48531i
\(165\) 0 0
\(166\) −14.9063 −1.15695
\(167\) 5.68110 + 5.68110i 0.439617 + 0.439617i 0.891883 0.452266i \(-0.149384\pi\)
−0.452266 + 0.891883i \(0.649384\pi\)
\(168\) 0 0
\(169\) 16.1928 1.24560
\(170\) −1.81650 + 2.34101i −0.139319 + 0.179547i
\(171\) 0 0
\(172\) 8.50442i 0.648456i
\(173\) −8.51166 8.51166i −0.647130 0.647130i 0.305169 0.952298i \(-0.401287\pi\)
−0.952298 + 0.305169i \(0.901287\pi\)
\(174\) 0 0
\(175\) 14.9613 + 14.9613i 1.13097 + 1.13097i
\(176\) 1.74779 1.74779i 0.131745 0.131745i
\(177\) 0 0
\(178\) 20.1972i 1.51384i
\(179\) 9.05223i 0.676596i 0.941039 + 0.338298i \(0.109851\pi\)
−0.941039 + 0.338298i \(0.890149\pi\)
\(180\) 0 0
\(181\) −6.78973 + 6.78973i −0.504676 + 0.504676i −0.912888 0.408211i \(-0.866153\pi\)
0.408211 + 0.912888i \(0.366153\pi\)
\(182\) −34.2368 34.2368i −2.53780 2.53780i
\(183\) 0 0
\(184\) −1.40464 1.40464i −0.103552 0.103552i
\(185\) 0.999475i 0.0734828i
\(186\) 0 0
\(187\) −1.84476 + 2.37743i −0.134903 + 0.173855i
\(188\) −1.08064 −0.0788136
\(189\) 0 0
\(190\) 1.66179 + 1.66179i 0.120559 + 0.120559i
\(191\) 18.9231 1.36923 0.684615 0.728905i \(-0.259971\pi\)
0.684615 + 0.728905i \(0.259971\pi\)
\(192\) 0 0
\(193\) 17.5681 17.5681i 1.26458 1.26458i 0.315726 0.948850i \(-0.397752\pi\)
0.948850 0.315726i \(-0.102248\pi\)
\(194\) 2.59094 2.59094i 0.186019 0.186019i
\(195\) 0 0
\(196\) 26.8017i 1.91440i
\(197\) 7.90277 7.90277i 0.563049 0.563049i −0.367123 0.930172i \(-0.619657\pi\)
0.930172 + 0.367123i \(0.119657\pi\)
\(198\) 0 0
\(199\) −12.1105 12.1105i −0.858491 0.858491i 0.132669 0.991160i \(-0.457645\pi\)
−0.991160 + 0.132669i \(0.957645\pi\)
\(200\) −2.72382 −0.192603
\(201\) 0 0
\(202\) 30.1883i 2.12404i
\(203\) −19.0032 −1.33377
\(204\) 0 0
\(205\) −4.12095 −0.287820
\(206\) 5.91562i 0.412160i
\(207\) 0 0
\(208\) −18.2984 −1.26877
\(209\) 1.68765 + 1.68765i 0.116737 + 0.116737i
\(210\) 0 0
\(211\) 3.25596 3.25596i 0.224149 0.224149i −0.586094 0.810243i \(-0.699335\pi\)
0.810243 + 0.586094i \(0.199335\pi\)
\(212\) 23.0032i 1.57987i
\(213\) 0 0
\(214\) −9.23198 + 9.23198i −0.631085 + 0.631085i
\(215\) −0.921244 + 0.921244i −0.0628283 + 0.0628283i
\(216\) 0 0
\(217\) −14.3300 −0.972787
\(218\) −6.86552 6.86552i −0.464991 0.464991i
\(219\) 0 0
\(220\) 0.576216 0.0388485
\(221\) 22.1021 2.78837i 1.48675 0.187566i
\(222\) 0 0
\(223\) 4.04355i 0.270776i 0.990793 + 0.135388i \(0.0432281\pi\)
−0.990793 + 0.135388i \(0.956772\pi\)
\(224\) 24.8839 + 24.8839i 1.66263 + 1.66263i
\(225\) 0 0
\(226\) 18.1562 + 18.1562i 1.20773 + 1.20773i
\(227\) −12.2742 + 12.2742i −0.814666 + 0.814666i −0.985329 0.170664i \(-0.945409\pi\)
0.170664 + 0.985329i \(0.445409\pi\)
\(228\) 0 0
\(229\) 18.7418i 1.23849i 0.785198 + 0.619245i \(0.212561\pi\)
−0.785198 + 0.619245i \(0.787439\pi\)
\(230\) 2.55718i 0.168616i
\(231\) 0 0
\(232\) 1.72984 1.72984i 0.113570 0.113570i
\(233\) 6.91911 + 6.91911i 0.453286 + 0.453286i 0.896444 0.443158i \(-0.146142\pi\)
−0.443158 + 0.896444i \(0.646142\pi\)
\(234\) 0 0
\(235\) 0.117060 + 0.117060i 0.00763618 + 0.00763618i
\(236\) 12.0271i 0.782896i
\(237\) 0 0
\(238\) −29.1911 22.6508i −1.89218 1.46824i
\(239\) 14.2984 0.924888 0.462444 0.886648i \(-0.346973\pi\)
0.462444 + 0.886648i \(0.346973\pi\)
\(240\) 0 0
\(241\) −4.50817 4.50817i −0.290397 0.290397i 0.546840 0.837237i \(-0.315830\pi\)
−0.837237 + 0.546840i \(0.815830\pi\)
\(242\) −21.6301 −1.39043
\(243\) 0 0
\(244\) −5.69394 + 5.69394i −0.364517 + 0.364517i
\(245\) 2.90330 2.90330i 0.185485 0.185485i
\(246\) 0 0
\(247\) 17.6688i 1.12424i
\(248\) 1.30445 1.30445i 0.0828324 0.0828324i
\(249\) 0 0
\(250\) 5.02023 + 5.02023i 0.317507 + 0.317507i
\(251\) −27.4308 −1.73141 −0.865707 0.500550i \(-0.833131\pi\)
−0.865707 + 0.500550i \(0.833131\pi\)
\(252\) 0 0
\(253\) 2.59697i 0.163270i
\(254\) 3.74124 0.234746
\(255\) 0 0
\(256\) 10.8464 0.677898
\(257\) 0.657380i 0.0410062i 0.999790 + 0.0205031i \(0.00652680\pi\)
−0.999790 + 0.0205031i \(0.993473\pi\)
\(258\) 0 0
\(259\) −12.4629 −0.774408
\(260\) −3.01634 3.01634i −0.187065 0.187065i
\(261\) 0 0
\(262\) 9.33218 9.33218i 0.576544 0.576544i
\(263\) 9.50817i 0.586299i 0.956067 + 0.293149i \(0.0947033\pi\)
−0.956067 + 0.293149i \(0.905297\pi\)
\(264\) 0 0
\(265\) 2.49183 2.49183i 0.153072 0.153072i
\(266\) −20.7217 + 20.7217i −1.27053 + 1.27053i
\(267\) 0 0
\(268\) 3.53386 0.215865
\(269\) −12.2170 12.2170i −0.744884 0.744884i 0.228630 0.973513i \(-0.426576\pi\)
−0.973513 + 0.228630i \(0.926576\pi\)
\(270\) 0 0
\(271\) 21.2897 1.29326 0.646630 0.762804i \(-0.276178\pi\)
0.646630 + 0.762804i \(0.276178\pi\)
\(272\) −13.8539 + 1.74779i −0.840015 + 0.105975i
\(273\) 0 0
\(274\) 4.71470i 0.284825i
\(275\) 2.51796 + 2.51796i 0.151839 + 0.151839i
\(276\) 0 0
\(277\) −8.01140 8.01140i −0.481358 0.481358i 0.424207 0.905565i \(-0.360553\pi\)
−0.905565 + 0.424207i \(0.860553\pi\)
\(278\) 24.2919 24.2919i 1.45693 1.45693i
\(279\) 0 0
\(280\) 0.841962i 0.0503168i
\(281\) 19.0233i 1.13484i −0.823430 0.567418i \(-0.807942\pi\)
0.823430 0.567418i \(-0.192058\pi\)
\(282\) 0 0
\(283\) −8.30003 + 8.30003i −0.493386 + 0.493386i −0.909371 0.415986i \(-0.863437\pi\)
0.415986 + 0.909371i \(0.363437\pi\)
\(284\) 14.3851 + 14.3851i 0.853598 + 0.853598i
\(285\) 0 0
\(286\) −5.76199 5.76199i −0.340714 0.340714i
\(287\) 51.3860i 3.03322i
\(288\) 0 0
\(289\) 16.4673 4.22220i 0.968667 0.248365i
\(290\) −3.14921 −0.184928
\(291\) 0 0
\(292\) 6.57180 + 6.57180i 0.384586 + 0.384586i
\(293\) −20.9548 −1.22419 −0.612095 0.790784i \(-0.709673\pi\)
−0.612095 + 0.790784i \(0.709673\pi\)
\(294\) 0 0
\(295\) 1.30284 1.30284i 0.0758540 0.0758540i
\(296\) 1.13448 1.13448i 0.0659405 0.0659405i
\(297\) 0 0
\(298\) 25.1720i 1.45818i
\(299\) 13.5944 13.5944i 0.786187 0.786187i
\(300\) 0 0
\(301\) −11.4874 11.4874i −0.662124 0.662124i
\(302\) 40.0523 2.30475
\(303\) 0 0
\(304\) 11.0750i 0.635197i
\(305\) 1.23360 0.0706355
\(306\) 0 0
\(307\) 33.4019 1.90634 0.953172 0.302428i \(-0.0977971\pi\)
0.953172 + 0.302428i \(0.0977971\pi\)
\(308\) 7.18511i 0.409409i
\(309\) 0 0
\(310\) −2.37477 −0.134878
\(311\) 11.4858 + 11.4858i 0.651300 + 0.651300i 0.953306 0.302006i \(-0.0976562\pi\)
−0.302006 + 0.953306i \(0.597656\pi\)
\(312\) 0 0
\(313\) −5.59697 + 5.59697i −0.316359 + 0.316359i −0.847367 0.531008i \(-0.821814\pi\)
0.531008 + 0.847367i \(0.321814\pi\)
\(314\) 3.75007i 0.211629i
\(315\) 0 0
\(316\) 1.30445 1.30445i 0.0733808 0.0733808i
\(317\) −7.63891 + 7.63891i −0.429044 + 0.429044i −0.888303 0.459259i \(-0.848115\pi\)
0.459259 + 0.888303i \(0.348115\pi\)
\(318\) 0 0
\(319\) −3.19821 −0.179065
\(320\) 2.45807 + 2.45807i 0.137410 + 0.137410i
\(321\) 0 0
\(322\) −31.8867 −1.77698
\(323\) −1.68765 13.3772i −0.0939032 0.744326i
\(324\) 0 0
\(325\) 26.3617i 1.46228i
\(326\) −21.4928 21.4928i −1.19038 1.19038i
\(327\) 0 0
\(328\) 4.67761 + 4.67761i 0.258278 + 0.258278i
\(329\) −1.45968 + 1.45968i −0.0804748 + 0.0804748i
\(330\) 0 0
\(331\) 22.4389i 1.23336i 0.787215 + 0.616678i \(0.211522\pi\)
−0.787215 + 0.616678i \(0.788478\pi\)
\(332\) 16.3758i 0.898740i
\(333\) 0 0
\(334\) −11.7396 + 11.7396i −0.642364 + 0.642364i
\(335\) −0.382806 0.382806i −0.0209149 0.0209149i
\(336\) 0 0
\(337\) 11.6405 + 11.6405i 0.634099 + 0.634099i 0.949094 0.314994i \(-0.102003\pi\)
−0.314994 + 0.949094i \(0.602003\pi\)
\(338\) 33.4613i 1.82006i
\(339\) 0 0
\(340\) −2.57180 1.99559i −0.139476 0.108226i
\(341\) −2.41172 −0.130602
\(342\) 0 0
\(343\) 14.7375 + 14.7375i 0.795750 + 0.795750i
\(344\) 2.09137 0.112759
\(345\) 0 0
\(346\) 17.5888 17.5888i 0.945580 0.945580i
\(347\) 15.0457 15.0457i 0.807695 0.807695i −0.176590 0.984285i \(-0.556507\pi\)
0.984285 + 0.176590i \(0.0565066\pi\)
\(348\) 0 0
\(349\) 6.41832i 0.343565i 0.985135 + 0.171782i \(0.0549526\pi\)
−0.985135 + 0.171782i \(0.945047\pi\)
\(350\) −30.9166 + 30.9166i −1.65256 + 1.65256i
\(351\) 0 0
\(352\) 4.18791 + 4.18791i 0.223216 + 0.223216i
\(353\) −10.0201 −0.533315 −0.266658 0.963791i \(-0.585919\pi\)
−0.266658 + 0.963791i \(0.585919\pi\)
\(354\) 0 0
\(355\) 3.11654i 0.165409i
\(356\) 22.1883 1.17598
\(357\) 0 0
\(358\) −18.7059 −0.988636
\(359\) 30.1366i 1.59055i −0.606248 0.795275i \(-0.707326\pi\)
0.606248 0.795275i \(-0.292674\pi\)
\(360\) 0 0
\(361\) 8.30606 0.437161
\(362\) −14.0305 14.0305i −0.737429 0.737429i
\(363\) 0 0
\(364\) 37.6121 37.6121i 1.97141 1.97141i
\(365\) 1.42378i 0.0745243i
\(366\) 0 0
\(367\) 17.5620 17.5620i 0.916731 0.916731i −0.0800595 0.996790i \(-0.525511\pi\)
0.996790 + 0.0800595i \(0.0255110\pi\)
\(368\) −8.52118 + 8.52118i −0.444197 + 0.444197i
\(369\) 0 0
\(370\) −2.06535 −0.107372
\(371\) 31.0718 + 31.0718i 1.61317 + 1.61317i
\(372\) 0 0
\(373\) −6.09593 −0.315635 −0.157818 0.987468i \(-0.550446\pi\)
−0.157818 + 0.987468i \(0.550446\pi\)
\(374\) −4.91281 3.81209i −0.254035 0.197118i
\(375\) 0 0
\(376\) 0.265746i 0.0137048i
\(377\) 16.7418 + 16.7418i 0.862245 + 0.862245i
\(378\) 0 0
\(379\) −19.7723 19.7723i −1.01564 1.01564i −0.999876 0.0157592i \(-0.994983\pi\)
−0.0157592 0.999876i \(-0.505017\pi\)
\(380\) −1.82562 + 1.82562i −0.0936525 + 0.0936525i
\(381\) 0 0
\(382\) 39.1034i 2.00071i
\(383\) 36.1155i 1.84542i 0.385500 + 0.922708i \(0.374029\pi\)
−0.385500 + 0.922708i \(0.625971\pi\)
\(384\) 0 0
\(385\) 0.778328 0.778328i 0.0396673 0.0396673i
\(386\) 36.3033 + 36.3033i 1.84779 + 1.84779i
\(387\) 0 0
\(388\) 2.84638 + 2.84638i 0.144503 + 0.144503i
\(389\) 23.1246i 1.17246i 0.810144 + 0.586231i \(0.199389\pi\)
−0.810144 + 0.586231i \(0.800611\pi\)
\(390\) 0 0
\(391\) 8.99398 11.5909i 0.454845 0.586179i
\(392\) −6.59094 −0.332893
\(393\) 0 0
\(394\) 16.3306 + 16.3306i 0.822722 + 0.822722i
\(395\) −0.282609 −0.0142196
\(396\) 0 0
\(397\) 2.97925 2.97925i 0.149524 0.149524i −0.628381 0.777905i \(-0.716282\pi\)
0.777905 + 0.628381i \(0.216282\pi\)
\(398\) 25.0256 25.0256i 1.25442 1.25442i
\(399\) 0 0
\(400\) 16.5239i 0.826193i
\(401\) −4.37879 + 4.37879i −0.218666 + 0.218666i −0.807936 0.589270i \(-0.799415\pi\)
0.589270 + 0.807936i \(0.299415\pi\)
\(402\) 0 0
\(403\) 12.6247 + 12.6247i 0.628881 + 0.628881i
\(404\) −33.1645 −1.65000
\(405\) 0 0
\(406\) 39.2690i 1.94889i
\(407\) −2.09748 −0.103968
\(408\) 0 0
\(409\) −34.6034 −1.71103 −0.855515 0.517778i \(-0.826759\pi\)
−0.855515 + 0.517778i \(0.826759\pi\)
\(410\) 8.51568i 0.420559i
\(411\) 0 0
\(412\) −6.49882 −0.320174
\(413\) 16.2457 + 16.2457i 0.799397 + 0.799397i
\(414\) 0 0
\(415\) −1.77391 + 1.77391i −0.0870780 + 0.0870780i
\(416\) 43.8452i 2.14969i
\(417\) 0 0
\(418\) −3.48742 + 3.48742i −0.170575 + 0.170575i
\(419\) −4.12632 + 4.12632i −0.201584 + 0.201584i −0.800678 0.599094i \(-0.795527\pi\)
0.599094 + 0.800678i \(0.295527\pi\)
\(420\) 0 0
\(421\) −27.0152 −1.31664 −0.658319 0.752739i \(-0.728732\pi\)
−0.658319 + 0.752739i \(0.728732\pi\)
\(422\) 6.72823 + 6.72823i 0.327525 + 0.327525i
\(423\) 0 0
\(424\) −5.65685 −0.274721
\(425\) −2.51796 19.9586i −0.122139 0.968136i
\(426\) 0 0
\(427\) 15.3823i 0.744401i
\(428\) −10.1421 10.1421i −0.490239 0.490239i
\(429\) 0 0
\(430\) −1.90369 1.90369i −0.0918041 0.0918041i
\(431\) 12.2592 12.2592i 0.590505 0.590505i −0.347263 0.937768i \(-0.612889\pi\)
0.937768 + 0.347263i \(0.112889\pi\)
\(432\) 0 0
\(433\) 3.97603i 0.191076i 0.995426 + 0.0955378i \(0.0304571\pi\)
−0.995426 + 0.0955378i \(0.969543\pi\)
\(434\) 29.6121i 1.42143i
\(435\) 0 0
\(436\) 7.54236 7.54236i 0.361214 0.361214i
\(437\) −8.22797 8.22797i −0.393597 0.393597i
\(438\) 0 0
\(439\) −1.97764 1.97764i −0.0943875 0.0943875i 0.658336 0.752724i \(-0.271260\pi\)
−0.752724 + 0.658336i \(0.771260\pi\)
\(440\) 0.141700i 0.00675531i
\(441\) 0 0
\(442\) 5.76199 + 45.6725i 0.274070 + 2.17242i
\(443\) −9.88565 −0.469682 −0.234841 0.972034i \(-0.575457\pi\)
−0.234841 + 0.972034i \(0.575457\pi\)
\(444\) 0 0
\(445\) −2.40356 2.40356i −0.113940 0.113940i
\(446\) −8.35574 −0.395656
\(447\) 0 0
\(448\) −30.6508 + 30.6508i −1.44812 + 1.44812i
\(449\) −28.3191 + 28.3191i −1.33646 + 1.33646i −0.436997 + 0.899463i \(0.643958\pi\)
−0.899463 + 0.436997i \(0.856042\pi\)
\(450\) 0 0
\(451\) 8.64817i 0.407226i
\(452\) −19.9462 + 19.9462i −0.938188 + 0.938188i
\(453\) 0 0
\(454\) −25.3638 25.3638i −1.19038 1.19038i
\(455\) −8.14869 −0.382016
\(456\) 0 0
\(457\) 0.452046i 0.0211458i 0.999944 + 0.0105729i \(0.00336552\pi\)
−0.999944 + 0.0105729i \(0.996634\pi\)
\(458\) −38.7287 −1.80967
\(459\) 0 0
\(460\) −2.80929 −0.130984
\(461\) 11.5310i 0.537051i 0.963273 + 0.268525i \(0.0865363\pi\)
−0.963273 + 0.268525i \(0.913464\pi\)
\(462\) 0 0
\(463\) −4.41067 −0.204981 −0.102491 0.994734i \(-0.532681\pi\)
−0.102491 + 0.994734i \(0.532681\pi\)
\(464\) −10.4940 10.4940i −0.487170 0.487170i
\(465\) 0 0
\(466\) −14.2979 + 14.2979i −0.662337 + 0.662337i
\(467\) 8.34586i 0.386200i −0.981179 0.193100i \(-0.938146\pi\)
0.981179 0.193100i \(-0.0618542\pi\)
\(468\) 0 0
\(469\) 4.77339 4.77339i 0.220415 0.220415i
\(470\) −0.241898 + 0.241898i −0.0111579 + 0.0111579i
\(471\) 0 0
\(472\) −2.95764 −0.136137
\(473\) −1.93331 1.93331i −0.0888937 0.0888937i
\(474\) 0 0
\(475\) −15.9553 −0.732078
\(476\) 24.8839 32.0690i 1.14055 1.46988i
\(477\) 0 0
\(478\) 29.5468i 1.35144i
\(479\) −9.02477 9.02477i −0.412352 0.412352i 0.470205 0.882557i \(-0.344180\pi\)
−0.882557 + 0.470205i \(0.844180\pi\)
\(480\) 0 0
\(481\) 10.9798 + 10.9798i 0.500635 + 0.500635i
\(482\) 9.31584 9.31584i 0.424325 0.424325i
\(483\) 0 0
\(484\) 23.7625i 1.08011i
\(485\) 0.616669i 0.0280015i
\(486\) 0 0
\(487\) 9.08225 9.08225i 0.411556 0.411556i −0.470724 0.882280i \(-0.656007\pi\)
0.882280 + 0.470724i \(0.156007\pi\)
\(488\) −1.40023 1.40023i −0.0633854 0.0633854i
\(489\) 0 0
\(490\) 5.99947 + 5.99947i 0.271029 + 0.271029i
\(491\) 20.4629i 0.923479i −0.887016 0.461739i \(-0.847226\pi\)
0.887016 0.461739i \(-0.152774\pi\)
\(492\) 0 0
\(493\) 14.2744 + 11.0762i 0.642888 + 0.498848i
\(494\) 36.5114 1.64273
\(495\) 0 0
\(496\) −7.91334 7.91334i −0.355319 0.355319i
\(497\) 38.8615 1.74318
\(498\) 0 0
\(499\) −5.00979 + 5.00979i −0.224269 + 0.224269i −0.810293 0.586024i \(-0.800692\pi\)
0.586024 + 0.810293i \(0.300692\pi\)
\(500\) −5.51515 + 5.51515i −0.246645 + 0.246645i
\(501\) 0 0
\(502\) 56.6839i 2.52993i
\(503\) −12.9594 + 12.9594i −0.577832 + 0.577832i −0.934305 0.356474i \(-0.883979\pi\)
0.356474 + 0.934305i \(0.383979\pi\)
\(504\) 0 0
\(505\) 3.59255 + 3.59255i 0.159867 + 0.159867i
\(506\) −5.36647 −0.238569
\(507\) 0 0
\(508\) 4.11008i 0.182355i
\(509\) −9.62950 −0.426820 −0.213410 0.976963i \(-0.568457\pi\)
−0.213410 + 0.976963i \(0.568457\pi\)
\(510\) 0 0
\(511\) 17.7538 0.785383
\(512\) 31.2641i 1.38169i
\(513\) 0 0
\(514\) −1.35843 −0.0599179
\(515\) 0.703986 + 0.703986i 0.0310213 + 0.0310213i
\(516\) 0 0
\(517\) −0.245661 + 0.245661i −0.0108042 + 0.0108042i
\(518\) 25.7538i 1.13156i
\(519\) 0 0
\(520\) 0.741764 0.741764i 0.0325285 0.0325285i
\(521\) −2.29440 + 2.29440i −0.100520 + 0.100520i −0.755578 0.655059i \(-0.772644\pi\)
0.655059 + 0.755578i \(0.272644\pi\)
\(522\) 0 0
\(523\) 6.77444 0.296226 0.148113 0.988970i \(-0.452680\pi\)
0.148113 + 0.988970i \(0.452680\pi\)
\(524\) 10.2522 + 10.2522i 0.447870 + 0.447870i
\(525\) 0 0
\(526\) −19.6480 −0.856695
\(527\) 10.7641 + 8.35241i 0.468893 + 0.363837i
\(528\) 0 0
\(529\) 10.3387i 0.449510i
\(530\) 5.14921 + 5.14921i 0.223667 + 0.223667i
\(531\) 0 0
\(532\) −22.7646 22.7646i −0.986969 0.986969i
\(533\) −45.2709 + 45.2709i −1.96090 + 1.96090i
\(534\) 0 0
\(535\) 2.19730i 0.0949975i
\(536\) 0.869031i 0.0375364i
\(537\) 0 0
\(538\) 25.2457 25.2457i 1.08842 1.08842i
\(539\) 6.09282 + 6.09282i 0.262436 + 0.262436i
\(540\) 0 0
\(541\) 17.4144 + 17.4144i 0.748705 + 0.748705i 0.974236 0.225531i \(-0.0724117\pi\)
−0.225531 + 0.974236i \(0.572412\pi\)
\(542\) 43.9939i 1.88970i
\(543\) 0 0
\(544\) −4.18791 33.1956i −0.179555 1.42325i
\(545\) −1.63406 −0.0699953
\(546\) 0 0
\(547\) −22.7233 22.7233i −0.971578 0.971578i 0.0280293 0.999607i \(-0.491077\pi\)
−0.999607 + 0.0280293i \(0.991077\pi\)
\(548\) −5.17950 −0.221257
\(549\) 0 0
\(550\) −5.20320 + 5.20320i −0.221865 + 0.221865i
\(551\) 10.1329 10.1329i 0.431675 0.431675i
\(552\) 0 0
\(553\) 3.52398i 0.149855i
\(554\) 16.5550 16.5550i 0.703357 0.703357i
\(555\) 0 0
\(556\) 26.6867 + 26.6867i 1.13177 + 1.13177i
\(557\) 43.4415 1.84068 0.920338 0.391124i \(-0.127914\pi\)
0.920338 + 0.391124i \(0.127914\pi\)
\(558\) 0 0
\(559\) 20.2407i 0.856091i
\(560\) 5.10771 0.215840
\(561\) 0 0
\(562\) 39.3105 1.65821
\(563\) 14.3986i 0.606829i 0.952859 + 0.303415i \(0.0981267\pi\)
−0.952859 + 0.303415i \(0.901873\pi\)
\(564\) 0 0
\(565\) 4.32134 0.181800
\(566\) −17.1515 17.1515i −0.720931 0.720931i
\(567\) 0 0
\(568\) −3.53752 + 3.53752i −0.148431 + 0.148431i
\(569\) 16.8103i 0.704726i −0.935863 0.352363i \(-0.885378\pi\)
0.935863 0.352363i \(-0.114622\pi\)
\(570\) 0 0
\(571\) −16.0462 + 16.0462i −0.671513 + 0.671513i −0.958065 0.286552i \(-0.907491\pi\)
0.286552 + 0.958065i \(0.407491\pi\)
\(572\) 6.33005 6.33005i 0.264673 0.264673i
\(573\) 0 0
\(574\) 106.186 4.43212
\(575\) −12.2761 12.2761i −0.511947 0.511947i
\(576\) 0 0
\(577\) −20.5881 −0.857095 −0.428548 0.903519i \(-0.640975\pi\)
−0.428548 + 0.903519i \(0.640975\pi\)
\(578\) 8.72490 + 34.0287i 0.362908 + 1.41541i
\(579\) 0 0
\(580\) 3.45968i 0.143655i
\(581\) −22.1198 22.1198i −0.917683 0.917683i
\(582\) 0 0
\(583\) 5.22932 + 5.22932i 0.216576 + 0.216576i
\(584\) −1.61611 + 1.61611i −0.0668750 + 0.0668750i
\(585\) 0 0
\(586\) 43.3017i 1.78878i
\(587\) 10.5119i 0.433873i −0.976186 0.216937i \(-0.930394\pi\)
0.976186 0.216937i \(-0.0696065\pi\)
\(588\) 0 0
\(589\) 7.64104 7.64104i 0.314844 0.314844i
\(590\) 2.69223 + 2.69223i 0.110837 + 0.110837i
\(591\) 0 0
\(592\) −6.88227 6.88227i −0.282860 0.282860i
\(593\) 7.79428i 0.320073i 0.987111 + 0.160036i \(0.0511612\pi\)
−0.987111 + 0.160036i \(0.948839\pi\)
\(594\) 0 0
\(595\) −6.16944 + 0.778328i −0.252922 + 0.0319084i
\(596\) 27.6536 1.13274
\(597\) 0 0
\(598\) 28.0920 + 28.0920i 1.14877 + 1.14877i
\(599\) 16.8503 0.688484 0.344242 0.938881i \(-0.388136\pi\)
0.344242 + 0.938881i \(0.388136\pi\)
\(600\) 0 0
\(601\) −21.4721 + 21.4721i −0.875866 + 0.875866i −0.993104 0.117237i \(-0.962596\pi\)
0.117237 + 0.993104i \(0.462596\pi\)
\(602\) 23.7380 23.7380i 0.967489 0.967489i
\(603\) 0 0
\(604\) 44.0009i 1.79037i
\(605\) −2.57408 + 2.57408i −0.104651 + 0.104651i
\(606\) 0 0
\(607\) 17.7107 + 17.7107i 0.718856 + 0.718856i 0.968371 0.249515i \(-0.0802712\pi\)
−0.249515 + 0.968371i \(0.580271\pi\)
\(608\) −26.5371 −1.07622
\(609\) 0 0
\(610\) 2.54915i 0.103212i
\(611\) 2.57194 0.104050
\(612\) 0 0
\(613\) −31.5000 −1.27227 −0.636137 0.771576i \(-0.719469\pi\)
−0.636137 + 0.771576i \(0.719469\pi\)
\(614\) 69.0228i 2.78553i
\(615\) 0 0
\(616\) −1.76693 −0.0711916
\(617\) −8.17040 8.17040i −0.328928 0.328928i 0.523251 0.852179i \(-0.324719\pi\)
−0.852179 + 0.523251i \(0.824719\pi\)
\(618\) 0 0
\(619\) −16.7761 + 16.7761i −0.674286 + 0.674286i −0.958701 0.284415i \(-0.908201\pi\)
0.284415 + 0.958701i \(0.408201\pi\)
\(620\) 2.60889i 0.104776i
\(621\) 0 0
\(622\) −23.7347 + 23.7347i −0.951674 + 0.951674i
\(623\) 29.9711 29.9711i 1.20077 1.20077i
\(624\) 0 0
\(625\) −23.2004 −0.928016
\(626\) −11.5658 11.5658i −0.462261 0.462261i
\(627\) 0 0
\(628\) 4.11977 0.164397
\(629\) 9.36162 + 7.26414i 0.373272 + 0.289640i
\(630\) 0 0
\(631\) 36.8092i 1.46535i −0.680579 0.732675i \(-0.738272\pi\)
0.680579 0.732675i \(-0.261728\pi\)
\(632\) 0.320784 + 0.320784i 0.0127601 + 0.0127601i
\(633\) 0 0
\(634\) −15.7853 15.7853i −0.626915 0.626915i
\(635\) 0.445225 0.445225i 0.0176682 0.0176682i
\(636\) 0 0
\(637\) 63.7886i 2.52739i
\(638\) 6.60889i 0.261649i
\(639\) 0 0
\(640\) −1.08827 + 1.08827i −0.0430178 + 0.0430178i
\(641\) −25.3135 25.3135i −0.999821 0.999821i 0.000178651 1.00000i \(-0.499943\pi\)
−1.00000 0.000178651i \(0.999943\pi\)
\(642\) 0 0
\(643\) −11.7990 11.7990i −0.465307 0.465307i 0.435083 0.900390i \(-0.356719\pi\)
−0.900390 + 0.435083i \(0.856719\pi\)
\(644\) 35.0303i 1.38039i
\(645\) 0 0
\(646\) 27.6431 3.48742i 1.08760 0.137211i
\(647\) −19.2205 −0.755636 −0.377818 0.925880i \(-0.623325\pi\)
−0.377818 + 0.925880i \(0.623325\pi\)
\(648\) 0 0
\(649\) 2.73411 + 2.73411i 0.107323 + 0.107323i
\(650\) 54.4747 2.13667
\(651\) 0 0
\(652\) 23.6117 23.6117i 0.924705 0.924705i
\(653\) 19.8412 19.8412i 0.776445 0.776445i −0.202779 0.979225i \(-0.564997\pi\)
0.979225 + 0.202779i \(0.0649973\pi\)
\(654\) 0 0
\(655\) 2.22115i 0.0867874i
\(656\) 28.3764 28.3764i 1.10791 1.10791i
\(657\) 0 0
\(658\) −3.01634 3.01634i −0.117589 0.117589i
\(659\) −27.6727 −1.07797 −0.538987 0.842314i \(-0.681193\pi\)
−0.538987 + 0.842314i \(0.681193\pi\)
\(660\) 0 0
\(661\) 13.8137i 0.537291i 0.963239 + 0.268645i \(0.0865760\pi\)
−0.963239 + 0.268645i \(0.913424\pi\)
\(662\) −46.3687 −1.80217
\(663\) 0 0
\(664\) 4.02707 0.156281
\(665\) 4.93195i 0.191253i
\(666\) 0 0
\(667\) 15.5926 0.603746
\(668\) −12.8970 12.8970i −0.499000 0.499000i
\(669\) 0 0
\(670\) 0.791045 0.791045i 0.0305607 0.0305607i
\(671\) 2.58881i 0.0999398i
\(672\) 0 0
\(673\) −13.8338 + 13.8338i −0.533254 + 0.533254i −0.921539 0.388285i \(-0.873067\pi\)
0.388285 + 0.921539i \(0.373067\pi\)
\(674\) −24.0544 + 24.0544i −0.926540 + 0.926540i
\(675\) 0 0
\(676\) −36.7601 −1.41385
\(677\) 24.0683 + 24.0683i 0.925021 + 0.925021i 0.997379 0.0723581i \(-0.0230524\pi\)
−0.0723581 + 0.997379i \(0.523052\pi\)
\(678\) 0 0
\(679\) 7.68953 0.295097
\(680\) 0.490746 0.632446i 0.0188192 0.0242532i
\(681\) 0 0
\(682\) 4.98366i 0.190834i
\(683\) −4.72635 4.72635i −0.180849 0.180849i 0.610877 0.791726i \(-0.290817\pi\)
−0.791726 + 0.610877i \(0.790817\pi\)
\(684\) 0 0
\(685\) 0.561071 + 0.561071i 0.0214374 + 0.0214374i
\(686\) −30.4541 + 30.4541i −1.16274 + 1.16274i
\(687\) 0 0
\(688\) 12.6872i 0.483694i
\(689\) 54.7482i 2.08574i
\(690\) 0 0
\(691\) 24.7880 24.7880i 0.942979 0.942979i −0.0554808 0.998460i \(-0.517669\pi\)
0.998460 + 0.0554808i \(0.0176691\pi\)
\(692\) 19.3228 + 19.3228i 0.734544 + 0.734544i
\(693\) 0 0
\(694\) 31.0910 + 31.0910i 1.18020 + 1.18020i
\(695\) 5.78169i 0.219312i
\(696\) 0 0
\(697\) −29.9509 + 38.5990i −1.13447 + 1.46204i
\(698\) −13.2630 −0.502014
\(699\) 0 0
\(700\) −33.9645 33.9645i −1.28374 1.28374i
\(701\) −39.3006 −1.48436 −0.742182 0.670199i \(-0.766209\pi\)
−0.742182 + 0.670199i \(0.766209\pi\)
\(702\) 0 0
\(703\) 6.64546 6.64546i 0.250638 0.250638i
\(704\) −5.15847 + 5.15847i −0.194417 + 0.194417i
\(705\) 0 0
\(706\) 20.7059i 0.779276i
\(707\) −44.7972 + 44.7972i −1.68477 + 1.68477i
\(708\) 0 0
\(709\) 8.63339 + 8.63339i 0.324234 + 0.324234i 0.850389 0.526155i \(-0.176367\pi\)
−0.526155 + 0.850389i \(0.676367\pi\)
\(710\) 6.44012 0.241693
\(711\) 0 0
\(712\) 5.45646i 0.204489i
\(713\) 11.7581 0.440344
\(714\) 0 0
\(715\) −1.37141 −0.0512877
\(716\) 20.5500i 0.767990i
\(717\) 0 0
\(718\) 62.2754 2.32410
\(719\) −22.0885 22.0885i −0.823764 0.823764i 0.162882 0.986646i \(-0.447921\pi\)
−0.986646 + 0.162882i \(0.947921\pi\)
\(720\) 0 0
\(721\) −8.77833 + 8.77833i −0.326922 + 0.326922i
\(722\) 17.1639i 0.638776i
\(723\) 0 0
\(724\) 15.4138 15.4138i 0.572848 0.572848i
\(725\) 15.1182 15.1182i 0.561474 0.561474i
\(726\) 0 0
\(727\) 36.9344 1.36982 0.684910 0.728627i \(-0.259841\pi\)
0.684910 + 0.728627i \(0.259841\pi\)
\(728\) 9.24941 + 9.24941i 0.342806 + 0.342806i
\(729\) 0 0
\(730\) 2.94216 0.108894
\(731\) 1.93331 + 15.3244i 0.0715060 + 0.566794i
\(732\) 0 0
\(733\) 8.29737i 0.306470i −0.988190 0.153235i \(-0.951031\pi\)
0.988190 0.153235i \(-0.0489692\pi\)
\(734\) 36.2908 + 36.2908i 1.33952 + 1.33952i
\(735\) 0 0
\(736\) −20.4178 20.4178i −0.752609 0.752609i
\(737\) 0.803352 0.803352i 0.0295918 0.0295918i
\(738\) 0 0
\(739\) 21.2613i 0.782111i −0.920367 0.391055i \(-0.872110\pi\)
0.920367 0.391055i \(-0.127890\pi\)
\(740\) 2.26897i 0.0834089i
\(741\) 0 0
\(742\) −64.2079 + 64.2079i −2.35715 + 2.35715i
\(743\) 34.2118 + 34.2118i 1.25511 + 1.25511i 0.953401 + 0.301707i \(0.0975564\pi\)
0.301707 + 0.953401i \(0.402444\pi\)
\(744\) 0 0
\(745\) −2.99559 2.99559i −0.109750 0.109750i
\(746\) 12.5968i 0.461203i
\(747\) 0 0
\(748\) 4.18791 5.39715i 0.153125 0.197339i
\(749\) −27.3991 −1.00114
\(750\) 0 0
\(751\) −20.6666 20.6666i −0.754136 0.754136i 0.221112 0.975248i \(-0.429031\pi\)
−0.975248 + 0.221112i \(0.929031\pi\)
\(752\) −1.61213 −0.0587883
\(753\) 0 0
\(754\) −34.5958 + 34.5958i −1.25990 + 1.25990i
\(755\) 4.76640 4.76640i 0.173467 0.173467i
\(756\) 0 0
\(757\) 42.3932i 1.54081i 0.637557 + 0.770403i \(0.279945\pi\)
−0.637557 + 0.770403i \(0.720055\pi\)
\(758\) 40.8582 40.8582i 1.48404 1.48404i
\(759\) 0 0
\(760\) −0.448949 0.448949i −0.0162851 0.0162851i
\(761\) −15.1503 −0.549197 −0.274598 0.961559i \(-0.588545\pi\)
−0.274598 + 0.961559i \(0.588545\pi\)
\(762\) 0 0
\(763\) 20.3758i 0.737654i
\(764\) −42.9585 −1.55418
\(765\) 0 0
\(766\) −74.6304 −2.69651
\(767\) 28.6247i 1.03358i
\(768\) 0 0
\(769\) −28.3540 −1.02247 −0.511236 0.859440i \(-0.670812\pi\)
−0.511236 + 0.859440i \(0.670812\pi\)
\(770\) 1.60837 + 1.60837i 0.0579615 + 0.0579615i
\(771\) 0 0
\(772\) −39.8823 + 39.8823i −1.43540 + 1.43540i
\(773\) 21.2004i 0.762526i 0.924467 + 0.381263i \(0.124511\pi\)
−0.924467 + 0.381263i \(0.875489\pi\)
\(774\) 0 0
\(775\) 11.4004 11.4004i 0.409513 0.409513i
\(776\) −0.699968 + 0.699968i −0.0251274 + 0.0251274i
\(777\) 0 0
\(778\) −47.7855 −1.71319
\(779\) 27.4000 + 27.4000i 0.981706 + 0.981706i
\(780\) 0 0
\(781\) 6.54032 0.234031
\(782\) 23.9519 + 18.5855i 0.856520 + 0.664615i
\(783\) 0 0
\(784\) 39.9835i 1.42798i
\(785\) −0.446275 0.446275i −0.0159283 0.0159283i
\(786\) 0 0
\(787\) 25.4689 + 25.4689i 0.907870 + 0.907870i 0.996100 0.0882303i \(-0.0281211\pi\)
−0.0882303 + 0.996100i \(0.528121\pi\)
\(788\) −17.9405 + 17.9405i −0.639106 + 0.639106i
\(789\) 0 0
\(790\) 0.583993i 0.0207775i
\(791\) 53.8849i 1.91593i
\(792\) 0 0
\(793\) 13.5517 13.5517i 0.481236 0.481236i
\(794\) 6.15643 + 6.15643i 0.218483 + 0.218483i
\(795\) 0 0
\(796\) 27.4928 + 27.4928i 0.974456 + 0.974456i
\(797\) 0.536047i 0.0189878i −0.999955 0.00949388i \(-0.996978\pi\)
0.999955 0.00949388i \(-0.00302204\pi\)
\(798\) 0 0
\(799\) 1.94724 0.245661i 0.0688884 0.00869087i
\(800\) −39.5931 −1.39983
\(801\) 0 0
\(802\) −9.04849 9.04849i −0.319513 0.319513i
\(803\) 2.98793 0.105442
\(804\) 0 0
\(805\) −3.79467 + 3.79467i −0.133744 + 0.133744i
\(806\) −26.0881 + 26.0881i −0.918916 + 0.918916i
\(807\) 0 0
\(808\) 8.15567i 0.286915i
\(809\) 3.50842 3.50842i 0.123350 0.123350i −0.642737 0.766087i \(-0.722201\pi\)
0.766087 + 0.642737i \(0.222201\pi\)
\(810\) 0 0
\(811\) 32.8997 + 32.8997i 1.15527 + 1.15527i 0.985481 + 0.169784i \(0.0543069\pi\)
0.169784 + 0.985481i \(0.445693\pi\)
\(812\) 43.1404 1.51393
\(813\) 0 0
\(814\) 4.33432i 0.151918i
\(815\) −5.11548 −0.179188
\(816\) 0 0
\(817\) 12.2506 0.428594
\(818\) 71.5058i 2.50014i
\(819\) 0 0
\(820\) 9.35521 0.326698
\(821\) 22.1358 + 22.1358i 0.772546 + 0.772546i 0.978551 0.206005i \(-0.0660463\pi\)
−0.206005 + 0.978551i \(0.566046\pi\)
\(822\) 0 0
\(823\) 32.2842 32.2842i 1.12536 1.12536i 0.134435 0.990922i \(-0.457078\pi\)
0.990922 0.134435i \(-0.0429218\pi\)
\(824\) 1.59816i 0.0556745i
\(825\) 0 0
\(826\) −33.5706 + 33.5706i −1.16807 + 1.16807i
\(827\) 0.516075 0.516075i 0.0179457 0.0179457i −0.698077 0.716023i \(-0.745961\pi\)
0.716023 + 0.698077i \(0.245961\pi\)
\(828\) 0 0
\(829\) 24.0881 0.836616 0.418308 0.908305i \(-0.362623\pi\)
0.418308 + 0.908305i \(0.362623\pi\)
\(830\) −3.66568 3.66568i −0.127238 0.127238i
\(831\) 0 0
\(832\) 54.0065 1.87234
\(833\) −6.09282 48.2948i −0.211104 1.67332i
\(834\) 0 0
\(835\) 2.79414i 0.0966952i
\(836\) −3.83123 3.83123i −0.132506 0.132506i
\(837\) 0 0
\(838\) −8.52678 8.52678i −0.294553 0.294553i
\(839\) 23.0760 23.0760i 0.796671 0.796671i −0.185898 0.982569i \(-0.559519\pi\)
0.982569 + 0.185898i \(0.0595194\pi\)
\(840\) 0 0
\(841\) 9.79752i 0.337846i
\(842\) 55.8251i 1.92386i
\(843\) 0 0
\(844\) −7.39154 + 7.39154i −0.254427 + 0.254427i
\(845\) 3.98205 + 3.98205i 0.136987 + 0.136987i
\(846\) 0 0
\(847\) −32.0974 32.0974i −1.10288 1.10288i
\(848\) 34.3169i 1.17845i
\(849\) 0 0
\(850\) 41.2433 5.20320i 1.41463 0.178468i
\(851\) 10.2261 0.350546
\(852\) 0 0
\(853\) 16.8181 + 16.8181i 0.575842 + 0.575842i 0.933755 0.357913i \(-0.116512\pi\)
−0.357913 + 0.933755i \(0.616512\pi\)
\(854\) −31.7865 −1.08771
\(855\) 0 0
\(856\) 2.49411 2.49411i 0.0852469 0.0852469i
\(857\) −30.4123 + 30.4123i −1.03886 + 1.03886i −0.0396506 + 0.999214i \(0.512624\pi\)
−0.999214 + 0.0396506i \(0.987376\pi\)
\(858\) 0 0
\(859\) 5.99573i 0.204572i 0.994755 + 0.102286i \(0.0326156\pi\)
−0.994755 + 0.102286i \(0.967384\pi\)
\(860\) 2.09137 2.09137i 0.0713151 0.0713151i
\(861\) 0 0
\(862\) 25.3328 + 25.3328i 0.862840 + 0.862840i
\(863\) 54.1552 1.84346 0.921732 0.387828i \(-0.126775\pi\)
0.921732 + 0.387828i \(0.126775\pi\)
\(864\) 0 0
\(865\) 4.18630i 0.142338i
\(866\) −8.21621 −0.279198
\(867\) 0 0
\(868\) 32.5315 1.10419
\(869\) 0.593079i 0.0201188i
\(870\) 0 0
\(871\) −8.41067 −0.284985
\(872\) 1.85478 + 1.85478i 0.0628109 + 0.0628109i
\(873\) 0 0
\(874\) 17.0026 17.0026i 0.575121 0.575121i
\(875\) 14.8993i 0.503688i
\(876\) 0 0
\(877\) 18.8910 18.8910i 0.637903 0.637903i −0.312135 0.950038i \(-0.601044\pi\)
0.950038 + 0.312135i \(0.101044\pi\)
\(878\) 4.08666 4.08666i 0.137918 0.137918i
\(879\) 0 0
\(880\) 0.859617 0.0289777
\(881\) 8.57086 + 8.57086i 0.288760 + 0.288760i 0.836590 0.547830i \(-0.184546\pi\)
−0.547830 + 0.836590i \(0.684546\pi\)
\(882\) 0 0
\(883\) −44.5718 −1.49996 −0.749981 0.661460i \(-0.769937\pi\)
−0.749981 + 0.661460i \(0.769937\pi\)
\(884\) −50.1752 + 6.33005i −1.68758 + 0.212902i
\(885\) 0 0
\(886\) 20.4281i 0.686295i
\(887\) 15.5520 + 15.5520i 0.522185 + 0.522185i 0.918231 0.396046i \(-0.129618\pi\)
−0.396046 + 0.918231i \(0.629618\pi\)
\(888\) 0 0
\(889\) 5.55172 + 5.55172i 0.186199 + 0.186199i
\(890\) 4.96680 4.96680i 0.166487 0.166487i
\(891\) 0 0
\(892\) 9.17950i 0.307352i
\(893\) 1.55666i 0.0520915i
\(894\) 0 0
\(895\) −2.22609 + 2.22609i −0.0744098 + 0.0744098i
\(896\) −13.5702 13.5702i −0.453348 0.453348i
\(897\) 0 0
\(898\) −58.5196 58.5196i −1.95282 1.95282i
\(899\) 14.4803i 0.482945i
\(900\) 0 0
\(901\) −5.22932 41.4503i −0.174214 1.38091i
\(902\) 17.8709 0.595036
\(903\) 0 0
\(904\) −4.90507 4.90507i −0.163140 0.163140i
\(905\) −3.33940 −0.111005
\(906\) 0 0
\(907\) −11.2925 + 11.2925i −0.374962 + 0.374962i −0.869281 0.494319i \(-0.835418\pi\)
0.494319 + 0.869281i \(0.335418\pi\)
\(908\) 27.8643 27.8643i 0.924711 0.924711i
\(909\) 0 0
\(910\) 16.8387i 0.558199i
\(911\) −26.8989 + 26.8989i −0.891200 + 0.891200i −0.994636 0.103436i \(-0.967016\pi\)
0.103436 + 0.994636i \(0.467016\pi\)
\(912\) 0 0
\(913\) −3.72271 3.72271i −0.123204 0.123204i
\(914\) −0.934124 −0.0308981
\(915\) 0 0
\(916\) 42.5468i 1.40579i
\(917\) 27.6965 0.914619
\(918\) 0 0
\(919\) 7.23321 0.238602 0.119301 0.992858i \(-0.461935\pi\)
0.119301 + 0.992858i \(0.461935\pi\)
\(920\) 0.690847i 0.0227766i
\(921\) 0 0
\(922\) −23.8280 −0.784734
\(923\) −34.2368 34.2368i −1.12692 1.12692i
\(924\) 0 0
\(925\) 9.91496 9.91496i 0.326002 0.326002i
\(926\) 9.11436i 0.299517i
\(927\) 0 0
\(928\) 25.1448 25.1448i 0.825418 0.825418i
\(929\) 31.2492 31.2492i 1.02525 1.02525i 0.0255787 0.999673i \(-0.491857\pi\)
0.999673 0.0255787i \(-0.00814283\pi\)
\(930\) 0 0
\(931\) −38.6077 −1.26532
\(932\) −15.7075 15.7075i −0.514516 0.514516i
\(933\) 0 0
\(934\) 17.2462 0.564312
\(935\) −1.03830 + 0.130991i −0.0339562 + 0.00428387i
\(936\) 0 0
\(937\) 22.5141i 0.735504i 0.929924 + 0.367752i \(0.119873\pi\)
−0.929924 + 0.367752i \(0.880127\pi\)
\(938\) 9.86391 + 9.86391i 0.322068 + 0.322068i
\(939\) 0 0
\(940\) −0.265746 0.265746i −0.00866767 0.00866767i
\(941\) −1.57783 + 1.57783i −0.0514357 + 0.0514357i −0.732357 0.680921i \(-0.761580\pi\)
0.680921 + 0.732357i \(0.261580\pi\)
\(942\) 0 0
\(943\) 42.1633i 1.37303i
\(944\) 17.9424i 0.583974i
\(945\) 0 0
\(946\) 3.99506 3.99506i 0.129891 0.129891i
\(947\) −9.76465 9.76465i −0.317309 0.317309i 0.530424 0.847733i \(-0.322033\pi\)
−0.847733 + 0.530424i \(0.822033\pi\)
\(948\) 0 0
\(949\) −15.6410 15.6410i −0.507730 0.507730i
\(950\) 32.9706i 1.06971i
\(951\) 0 0
\(952\) 7.88627 + 6.11934i 0.255595 + 0.198329i
\(953\) 7.23736 0.234441 0.117221 0.993106i \(-0.462602\pi\)
0.117221 + 0.993106i \(0.462602\pi\)
\(954\) 0 0
\(955\) 4.65349 + 4.65349i 0.150583 + 0.150583i
\(956\) −32.4597 −1.04982
\(957\) 0 0
\(958\) 18.6491 18.6491i 0.602525 0.602525i
\(959\) −6.99625 + 6.99625i −0.225921 + 0.225921i
\(960\) 0 0
\(961\) 20.0806i 0.647763i
\(962\) −22.6890 + 22.6890i −0.731523 + 0.731523i
\(963\) 0 0
\(964\) 10.2343 + 10.2343i 0.329623 + 0.329623i
\(965\) 8.64052 0.278148
\(966\) 0 0
\(967\) 10.6240i 0.341646i 0.985302 + 0.170823i \(0.0546426\pi\)
−0.985302 + 0.170823i \(0.945357\pi\)
\(968\) 5.84357 0.187820
\(969\) 0 0
\(970\) 1.27431 0.0409155
\(971\) 25.6491i 0.823118i −0.911383 0.411559i \(-0.864984\pi\)
0.911383 0.411559i \(-0.135016\pi\)
\(972\) 0 0
\(973\) 72.0946 2.31125
\(974\) 18.7679 + 18.7679i 0.601362 + 0.601362i
\(975\) 0 0
\(976\) −8.49440 + 8.49440i −0.271899 + 0.271899i
\(977\) 17.2663i 0.552397i −0.961101 0.276198i \(-0.910925\pi\)
0.961101 0.276198i \(-0.0890747\pi\)
\(978\) 0 0
\(979\) 5.04407 5.04407i 0.161209 0.161209i
\(980\) −6.59094 + 6.59094i −0.210540 + 0.210540i
\(981\) 0 0
\(982\) 42.2853 1.34938
\(983\) −24.7459 24.7459i −0.789272 0.789272i 0.192102 0.981375i \(-0.438469\pi\)
−0.981375 + 0.192102i \(0.938469\pi\)
\(984\) 0 0
\(985\) 3.88683 0.123845
\(986\) −22.8883 + 29.4972i −0.728912 + 0.939382i
\(987\) 0 0
\(988\) 40.1109i 1.27610i
\(989\) 9.42567 + 9.42567i 0.299719 + 0.299719i
\(990\) 0 0
\(991\) 16.2075 + 16.2075i 0.514848 + 0.514848i 0.916008 0.401160i \(-0.131393\pi\)
−0.401160 + 0.916008i \(0.631393\pi\)
\(992\) 18.9613 18.9613i 0.602022 0.602022i
\(993\) 0 0
\(994\) 80.3049i 2.54712i
\(995\) 5.95633i 0.188828i
\(996\) 0 0
\(997\) −42.3017 + 42.3017i −1.33971 + 1.33971i −0.443367 + 0.896340i \(0.646216\pi\)
−0.896340 + 0.443367i \(0.853784\pi\)
\(998\) −10.3524 10.3524i −0.327700 0.327700i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 153.2.f.b.64.4 8
3.2 odd 2 51.2.e.a.13.1 yes 8
4.3 odd 2 2448.2.be.x.1441.2 8
12.11 even 2 816.2.bd.e.625.2 8
17.2 even 8 2601.2.a.be.1.1 4
17.4 even 4 inner 153.2.f.b.55.1 8
17.15 even 8 2601.2.a.bf.1.1 4
51.2 odd 8 867.2.a.l.1.4 4
51.5 even 16 867.2.h.k.733.3 16
51.8 odd 8 867.2.d.f.577.1 8
51.11 even 16 867.2.h.k.757.3 16
51.14 even 16 867.2.h.i.712.1 16
51.20 even 16 867.2.h.i.712.2 16
51.23 even 16 867.2.h.k.757.4 16
51.26 odd 8 867.2.d.f.577.2 8
51.29 even 16 867.2.h.k.733.4 16
51.32 odd 8 867.2.a.k.1.4 4
51.38 odd 4 51.2.e.a.4.4 8
51.41 even 16 867.2.h.i.688.2 16
51.44 even 16 867.2.h.i.688.1 16
51.47 odd 4 867.2.e.g.616.4 8
51.50 odd 2 867.2.e.g.829.1 8
68.55 odd 4 2448.2.be.x.1585.2 8
204.191 even 4 816.2.bd.e.769.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.4 8 51.38 odd 4
51.2.e.a.13.1 yes 8 3.2 odd 2
153.2.f.b.55.1 8 17.4 even 4 inner
153.2.f.b.64.4 8 1.1 even 1 trivial
816.2.bd.e.625.2 8 12.11 even 2
816.2.bd.e.769.2 8 204.191 even 4
867.2.a.k.1.4 4 51.32 odd 8
867.2.a.l.1.4 4 51.2 odd 8
867.2.d.f.577.1 8 51.8 odd 8
867.2.d.f.577.2 8 51.26 odd 8
867.2.e.g.616.4 8 51.47 odd 4
867.2.e.g.829.1 8 51.50 odd 2
867.2.h.i.688.1 16 51.44 even 16
867.2.h.i.688.2 16 51.41 even 16
867.2.h.i.712.1 16 51.14 even 16
867.2.h.i.712.2 16 51.20 even 16
867.2.h.k.733.3 16 51.5 even 16
867.2.h.k.733.4 16 51.29 even 16
867.2.h.k.757.3 16 51.11 even 16
867.2.h.k.757.4 16 51.23 even 16
2448.2.be.x.1441.2 8 4.3 odd 2
2448.2.be.x.1585.2 8 68.55 odd 4
2601.2.a.be.1.1 4 17.2 even 8
2601.2.a.bf.1.1 4 17.15 even 8