Properties

Label 867.2.h.i.712.1
Level $867$
Weight $2$
Character 867.712
Analytic conductor $6.923$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [867,2,Mod(688,867)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(867, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("867.688"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-8,0,0,0,0,0,32,0,0,0,0,0,0,8,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8x^{14} + 32x^{12} + 296x^{10} + 1057x^{8} + 1184x^{6} + 512x^{4} - 512x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 712.1
Root \(-0.602575 + 0.249595i\) of defining polynomial
Character \(\chi\) \(=\) 867.712
Dual form 867.2.h.i.688.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.46119 - 1.46119i) q^{2} +(-0.382683 - 0.923880i) q^{3} +2.27016i q^{4} +(-0.321304 + 0.133089i) q^{5} +(-0.790791 + 1.90914i) q^{6} +(-4.00649 - 1.65954i) q^{7} +(0.394755 - 0.394755i) q^{8} +(-0.707107 + 0.707107i) q^{9} +(0.663955 + 0.275019i) q^{10} +(0.279298 - 0.674285i) q^{11} +(2.09735 - 0.868752i) q^{12} +5.40303i q^{13} +(3.42934 + 8.27916i) q^{14} +(0.245916 + 0.245916i) q^{15} +3.38669 q^{16} +2.06644 q^{18} +(-2.31235 - 2.31235i) q^{19} +(-0.302132 - 0.729412i) q^{20} +4.33660i q^{21} +(-1.39337 + 0.577151i) q^{22} +(1.36169 - 3.28741i) q^{23} +(-0.515772 - 0.213640i) q^{24} +(-3.45001 + 3.45001i) q^{25} +(7.89486 - 7.89486i) q^{26} +(0.923880 + 0.382683i) q^{27} +(3.76743 - 9.09538i) q^{28} +(4.04850 - 1.67694i) q^{29} -0.718659i q^{30} +(1.26456 + 3.05291i) q^{31} +(-5.73812 - 5.73812i) q^{32} -0.729840 q^{33} +1.50817 q^{35} +(-1.60525 - 1.60525i) q^{36} +(-1.09979 - 2.65513i) q^{37} +6.75758i q^{38} +(4.99175 - 2.06765i) q^{39} +(-0.0742990 + 0.179374i) q^{40} +(10.9474 + 4.53457i) q^{41} +(6.33660 - 6.33660i) q^{42} +(-2.64895 + 2.64895i) q^{43} +(1.53073 + 0.634051i) q^{44} +(0.133089 - 0.321304i) q^{45} +(-6.79323 + 2.81385i) q^{46} -0.476019i q^{47} +(-1.29603 - 3.12890i) q^{48} +(8.34815 + 8.34815i) q^{49} +10.0822 q^{50} -12.2657 q^{52} +(7.16502 + 7.16502i) q^{53} +(-0.790791 - 1.90914i) q^{54} +0.253822i q^{55} +(-2.23669 + 0.926469i) q^{56} +(-1.25144 + 3.02123i) q^{57} +(-8.36597 - 3.46530i) q^{58} +(3.74618 - 3.74618i) q^{59} +(-0.558268 + 0.558268i) q^{60} +(-3.27708 - 1.35741i) q^{61} +(2.61313 - 6.30864i) q^{62} +(4.00649 - 1.65954i) q^{63} +9.99559i q^{64} +(-0.719082 - 1.73602i) q^{65} +(1.06644 + 1.06644i) q^{66} +1.55666 q^{67} -3.55827 q^{69} +(-2.20372 - 2.20372i) q^{70} +(-3.42934 - 8.27916i) q^{71} +0.558268i q^{72} +(-3.78232 + 1.56669i) q^{73} +(-2.27265 + 5.48666i) q^{74} +(4.50766 + 1.86713i) q^{75} +(5.24941 - 5.24941i) q^{76} +(-2.23801 + 2.23801i) q^{77} +(-10.3151 - 4.27267i) q^{78} +(-0.310974 + 0.750758i) q^{79} +(-1.08816 + 0.450730i) q^{80} -1.00000i q^{81} +(-9.37040 - 22.6221i) q^{82} +(5.10072 + 5.10072i) q^{83} -9.84476 q^{84} +7.74124 q^{86} +(-3.09859 - 3.09859i) q^{87} +(-0.155923 - 0.376431i) q^{88} -9.77391i q^{89} +(-0.663955 + 0.275019i) q^{90} +(8.96657 - 21.6472i) q^{91} +(7.46295 + 3.09125i) q^{92} +(2.33660 - 2.33660i) q^{93} +(-0.695554 + 0.695554i) q^{94} +(1.05072 + 0.435221i) q^{95} +(-3.10545 + 7.49721i) q^{96} +(1.63820 - 0.678563i) q^{97} -24.3965i q^{98} +(0.279298 + 0.674285i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} + 32 q^{8} + 8 q^{15} - 24 q^{16} - 8 q^{18} + 32 q^{25} + 40 q^{26} + 16 q^{32} - 24 q^{33} + 16 q^{35} + 48 q^{42} + 48 q^{43} + 32 q^{49} + 120 q^{50} - 32 q^{52} + 16 q^{53} + 56 q^{59}+ \cdots - 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.46119 1.46119i −1.03322 1.03322i −0.999429 0.0337892i \(-0.989243\pi\)
−0.0337892 0.999429i \(-0.510757\pi\)
\(3\) −0.382683 0.923880i −0.220942 0.533402i
\(4\) 2.27016i 1.13508i
\(5\) −0.321304 + 0.133089i −0.143692 + 0.0595190i −0.453370 0.891322i \(-0.649778\pi\)
0.309679 + 0.950841i \(0.399778\pi\)
\(6\) −0.790791 + 1.90914i −0.322839 + 0.779402i
\(7\) −4.00649 1.65954i −1.51431 0.627248i −0.537870 0.843028i \(-0.680771\pi\)
−0.976442 + 0.215780i \(0.930771\pi\)
\(8\) 0.394755 0.394755i 0.139567 0.139567i
\(9\) −0.707107 + 0.707107i −0.235702 + 0.235702i
\(10\) 0.663955 + 0.275019i 0.209961 + 0.0869686i
\(11\) 0.279298 0.674285i 0.0842115 0.203304i −0.876164 0.482012i \(-0.839906\pi\)
0.960376 + 0.278708i \(0.0899061\pi\)
\(12\) 2.09735 0.868752i 0.605454 0.250787i
\(13\) 5.40303i 1.49853i 0.662269 + 0.749266i \(0.269593\pi\)
−0.662269 + 0.749266i \(0.730407\pi\)
\(14\) 3.42934 + 8.27916i 0.916530 + 2.21270i
\(15\) 0.245916 + 0.245916i 0.0634951 + 0.0634951i
\(16\) 3.38669 0.846674
\(17\) 0 0
\(18\) 2.06644 0.487064
\(19\) −2.31235 2.31235i −0.530490 0.530490i 0.390228 0.920718i \(-0.372396\pi\)
−0.920718 + 0.390228i \(0.872396\pi\)
\(20\) −0.302132 0.729412i −0.0675588 0.163101i
\(21\) 4.33660i 0.946323i
\(22\) −1.39337 + 0.577151i −0.297067 + 0.123049i
\(23\) 1.36169 3.28741i 0.283932 0.685472i −0.715988 0.698112i \(-0.754024\pi\)
0.999920 + 0.0126400i \(0.00402354\pi\)
\(24\) −0.515772 0.213640i −0.105282 0.0436090i
\(25\) −3.45001 + 3.45001i −0.690002 + 0.690002i
\(26\) 7.89486 7.89486i 1.54831 1.54831i
\(27\) 0.923880 + 0.382683i 0.177801 + 0.0736475i
\(28\) 3.76743 9.09538i 0.711977 1.71886i
\(29\) 4.04850 1.67694i 0.751787 0.311401i 0.0263167 0.999654i \(-0.491622\pi\)
0.725471 + 0.688253i \(0.241622\pi\)
\(30\) 0.718659i 0.131209i
\(31\) 1.26456 + 3.05291i 0.227121 + 0.548319i 0.995825 0.0912864i \(-0.0290979\pi\)
−0.768704 + 0.639605i \(0.779098\pi\)
\(32\) −5.73812 5.73812i −1.01437 1.01437i
\(33\) −0.729840 −0.127049
\(34\) 0 0
\(35\) 1.50817 0.254927
\(36\) −1.60525 1.60525i −0.267541 0.267541i
\(37\) −1.09979 2.65513i −0.180805 0.436501i 0.807328 0.590103i \(-0.200913\pi\)
−0.988133 + 0.153602i \(0.950913\pi\)
\(38\) 6.75758i 1.09622i
\(39\) 4.99175 2.06765i 0.799320 0.331089i
\(40\) −0.0742990 + 0.179374i −0.0117477 + 0.0283615i
\(41\) 10.9474 + 4.53457i 1.70970 + 0.708180i 0.999993 + 0.00368222i \(0.00117209\pi\)
0.709706 + 0.704498i \(0.248828\pi\)
\(42\) 6.33660 6.33660i 0.977758 0.977758i
\(43\) −2.64895 + 2.64895i −0.403961 + 0.403961i −0.879626 0.475665i \(-0.842207\pi\)
0.475665 + 0.879626i \(0.342207\pi\)
\(44\) 1.53073 + 0.634051i 0.230767 + 0.0955867i
\(45\) 0.133089 0.321304i 0.0198397 0.0478972i
\(46\) −6.79323 + 2.81385i −1.00161 + 0.414879i
\(47\) 0.476019i 0.0694345i −0.999397 0.0347172i \(-0.988947\pi\)
0.999397 0.0347172i \(-0.0110531\pi\)
\(48\) −1.29603 3.12890i −0.187066 0.451618i
\(49\) 8.34815 + 8.34815i 1.19259 + 1.19259i
\(50\) 10.0822 1.42585
\(51\) 0 0
\(52\) −12.2657 −1.70095
\(53\) 7.16502 + 7.16502i 0.984192 + 0.984192i 0.999877 0.0156854i \(-0.00499301\pi\)
−0.0156854 + 0.999877i \(0.504993\pi\)
\(54\) −0.790791 1.90914i −0.107613 0.259801i
\(55\) 0.253822i 0.0342253i
\(56\) −2.23669 + 0.926469i −0.298891 + 0.123805i
\(57\) −1.25144 + 3.02123i −0.165757 + 0.400172i
\(58\) −8.36597 3.46530i −1.09851 0.455016i
\(59\) 3.74618 3.74618i 0.487711 0.487711i −0.419872 0.907583i \(-0.637925\pi\)
0.907583 + 0.419872i \(0.137925\pi\)
\(60\) −0.558268 + 0.558268i −0.0720720 + 0.0720720i
\(61\) −3.27708 1.35741i −0.419587 0.173799i 0.162893 0.986644i \(-0.447918\pi\)
−0.582480 + 0.812845i \(0.697918\pi\)
\(62\) 2.61313 6.30864i 0.331867 0.801199i
\(63\) 4.00649 1.65954i 0.504771 0.209083i
\(64\) 9.99559i 1.24945i
\(65\) −0.719082 1.73602i −0.0891911 0.215326i
\(66\) 1.06644 + 1.06644i 0.131269 + 0.131269i
\(67\) 1.55666 0.190176 0.0950880 0.995469i \(-0.469687\pi\)
0.0950880 + 0.995469i \(0.469687\pi\)
\(68\) 0 0
\(69\) −3.55827 −0.428365
\(70\) −2.20372 2.20372i −0.263395 0.263395i
\(71\) −3.42934 8.27916i −0.406988 0.982556i −0.985926 0.167184i \(-0.946533\pi\)
0.578938 0.815372i \(-0.303467\pi\)
\(72\) 0.558268i 0.0657925i
\(73\) −3.78232 + 1.56669i −0.442687 + 0.183367i −0.592882 0.805289i \(-0.702010\pi\)
0.150195 + 0.988656i \(0.452010\pi\)
\(74\) −2.27265 + 5.48666i −0.264190 + 0.637812i
\(75\) 4.50766 + 1.86713i 0.520499 + 0.215598i
\(76\) 5.24941 5.24941i 0.602148 0.602148i
\(77\) −2.23801 + 2.23801i −0.255045 + 0.255045i
\(78\) −10.3151 4.27267i −1.16796 0.483785i
\(79\) −0.310974 + 0.750758i −0.0349873 + 0.0844669i −0.940407 0.340050i \(-0.889556\pi\)
0.905420 + 0.424517i \(0.139556\pi\)
\(80\) −1.08816 + 0.450730i −0.121660 + 0.0503932i
\(81\) 1.00000i 0.111111i
\(82\) −9.37040 22.6221i −1.03479 2.49820i
\(83\) 5.10072 + 5.10072i 0.559877 + 0.559877i 0.929272 0.369395i \(-0.120435\pi\)
−0.369395 + 0.929272i \(0.620435\pi\)
\(84\) −9.84476 −1.07415
\(85\) 0 0
\(86\) 7.74124 0.834759
\(87\) −3.09859 3.09859i −0.332203 0.332203i
\(88\) −0.155923 0.376431i −0.0166214 0.0401277i
\(89\) 9.77391i 1.03603i −0.855371 0.518016i \(-0.826671\pi\)
0.855371 0.518016i \(-0.173329\pi\)
\(90\) −0.663955 + 0.275019i −0.0699870 + 0.0289895i
\(91\) 8.96657 21.6472i 0.939952 2.26924i
\(92\) 7.46295 + 3.09125i 0.778066 + 0.322285i
\(93\) 2.33660 2.33660i 0.242294 0.242294i
\(94\) −0.695554 + 0.695554i −0.0717409 + 0.0717409i
\(95\) 1.05072 + 0.435221i 0.107801 + 0.0446527i
\(96\) −3.10545 + 7.49721i −0.316948 + 0.765181i
\(97\) 1.63820 0.678563i 0.166334 0.0688977i −0.297963 0.954577i \(-0.596307\pi\)
0.464297 + 0.885680i \(0.346307\pi\)
\(98\) 24.3965i 2.46442i
\(99\) 0.279298 + 0.674285i 0.0280705 + 0.0677682i
\(100\) −7.83207 7.83207i −0.783207 0.783207i
\(101\) 14.6089 1.45364 0.726820 0.686828i \(-0.240998\pi\)
0.726820 + 0.686828i \(0.240998\pi\)
\(102\) 0 0
\(103\) 2.86271 0.282072 0.141036 0.990005i \(-0.454957\pi\)
0.141036 + 0.990005i \(0.454957\pi\)
\(104\) 2.13287 + 2.13287i 0.209145 + 0.209145i
\(105\) −0.577151 1.39337i −0.0563242 0.135979i
\(106\) 20.9389i 2.03377i
\(107\) −5.83718 + 2.41784i −0.564302 + 0.233741i −0.646552 0.762870i \(-0.723789\pi\)
0.0822497 + 0.996612i \(0.473789\pi\)
\(108\) −0.868752 + 2.09735i −0.0835957 + 0.201818i
\(109\) −4.34092 1.79807i −0.415784 0.172224i 0.164977 0.986297i \(-0.447245\pi\)
−0.580761 + 0.814074i \(0.697245\pi\)
\(110\) 0.370882 0.370882i 0.0353622 0.0353622i
\(111\) −2.03215 + 2.03215i −0.192883 + 0.192883i
\(112\) −13.5688 5.62037i −1.28213 0.531075i
\(113\) −4.75508 + 11.4798i −0.447320 + 1.07993i 0.526002 + 0.850483i \(0.323690\pi\)
−0.973322 + 0.229443i \(0.926310\pi\)
\(114\) 6.24319 2.58601i 0.584728 0.242202i
\(115\) 1.23748i 0.115396i
\(116\) 3.80693 + 9.19074i 0.353464 + 0.853339i
\(117\) −3.82052 3.82052i −0.353207 0.353207i
\(118\) −10.9478 −1.00782
\(119\) 0 0
\(120\) 0.194153 0.0177236
\(121\) 7.40152 + 7.40152i 0.672866 + 0.672866i
\(122\) 2.80500 + 6.77188i 0.253953 + 0.613097i
\(123\) 11.8494i 1.06842i
\(124\) −6.93059 + 2.87075i −0.622386 + 0.257801i
\(125\) 1.31479 3.17418i 0.117598 0.283907i
\(126\) −8.27916 3.42934i −0.737566 0.305510i
\(127\) −1.28020 + 1.28020i −0.113600 + 0.113600i −0.761622 0.648022i \(-0.775596\pi\)
0.648022 + 0.761622i \(0.275596\pi\)
\(128\) 3.12923 3.12923i 0.276587 0.276587i
\(129\) 3.46102 + 1.43360i 0.304726 + 0.126221i
\(130\) −1.48594 + 3.58737i −0.130325 + 0.314633i
\(131\) −5.90054 + 2.44408i −0.515532 + 0.213540i −0.625253 0.780422i \(-0.715004\pi\)
0.109721 + 0.993962i \(0.465004\pi\)
\(132\) 1.65685i 0.144211i
\(133\) 5.42697 + 13.1019i 0.470578 + 1.13608i
\(134\) −2.27457 2.27457i −0.196493 0.196493i
\(135\) −0.347777 −0.0299319
\(136\) 0 0
\(137\) −2.28156 −0.194927 −0.0974633 0.995239i \(-0.531073\pi\)
−0.0974633 + 0.995239i \(0.531073\pi\)
\(138\) 5.19931 + 5.19931i 0.442595 + 0.442595i
\(139\) 6.36200 + 15.3592i 0.539618 + 1.30275i 0.924990 + 0.379991i \(0.124073\pi\)
−0.385372 + 0.922761i \(0.625927\pi\)
\(140\) 3.42378i 0.289363i
\(141\) −0.439784 + 0.182164i −0.0370365 + 0.0153410i
\(142\) −7.08652 + 17.1084i −0.594687 + 1.43570i
\(143\) 3.64318 + 1.50906i 0.304658 + 0.126194i
\(144\) −2.39475 + 2.39475i −0.199563 + 0.199563i
\(145\) −1.07762 + 1.07762i −0.0894913 + 0.0894913i
\(146\) 7.81593 + 3.23746i 0.646851 + 0.267934i
\(147\) 4.51799 10.9074i 0.372637 0.899626i
\(148\) 6.02757 2.49670i 0.495464 0.205228i
\(149\) 12.1814i 0.997936i 0.866620 + 0.498968i \(0.166287\pi\)
−0.866620 + 0.498968i \(0.833713\pi\)
\(150\) −3.85831 9.31478i −0.315030 0.760549i
\(151\) 13.7053 + 13.7053i 1.11532 + 1.11532i 0.992418 + 0.122907i \(0.0392216\pi\)
0.122907 + 0.992418i \(0.460778\pi\)
\(152\) −1.82562 −0.148078
\(153\) 0 0
\(154\) 6.54032 0.527034
\(155\) −0.812615 0.812615i −0.0652708 0.0652708i
\(156\) 4.69390 + 11.3321i 0.375813 + 0.907292i
\(157\) 1.81475i 0.144833i 0.997374 + 0.0724164i \(0.0230711\pi\)
−0.997374 + 0.0724164i \(0.976929\pi\)
\(158\) 1.55139 0.642608i 0.123422 0.0511232i
\(159\) 3.87768 9.36155i 0.307520 0.742420i
\(160\) 2.60736 + 1.08000i 0.206130 + 0.0853818i
\(161\) −10.9112 + 10.9112i −0.859923 + 0.859923i
\(162\) −1.46119 + 1.46119i −0.114802 + 0.114802i
\(163\) 13.5894 + 5.62892i 1.06441 + 0.440891i 0.845013 0.534745i \(-0.179592\pi\)
0.219393 + 0.975637i \(0.429592\pi\)
\(164\) −10.2942 + 24.8524i −0.803841 + 1.94064i
\(165\) 0.234501 0.0971334i 0.0182559 0.00756182i
\(166\) 14.9063i 1.15695i
\(167\) −3.07459 7.42271i −0.237919 0.574387i 0.759148 0.650918i \(-0.225616\pi\)
−0.997067 + 0.0765308i \(0.975616\pi\)
\(168\) 1.71189 + 1.71189i 0.132075 + 0.132075i
\(169\) −16.1928 −1.24560
\(170\) 0 0
\(171\) 3.27016 0.250075
\(172\) −6.01353 6.01353i −0.458528 0.458528i
\(173\) −4.60648 11.1210i −0.350224 0.845516i −0.996592 0.0824897i \(-0.973713\pi\)
0.646368 0.763026i \(-0.276287\pi\)
\(174\) 9.05526i 0.686477i
\(175\) 19.5479 8.09700i 1.47768 0.612075i
\(176\) 0.945897 2.28360i 0.0712996 0.172133i
\(177\) −4.89462 2.02742i −0.367902 0.152390i
\(178\) −14.2816 + 14.2816i −1.07045 + 1.07045i
\(179\) 6.40090 6.40090i 0.478425 0.478425i −0.426202 0.904628i \(-0.640149\pi\)
0.904628 + 0.426202i \(0.140149\pi\)
\(180\) 0.729412 + 0.302132i 0.0543671 + 0.0225196i
\(181\) −3.67457 + 8.87121i −0.273129 + 0.659392i −0.999614 0.0277909i \(-0.991153\pi\)
0.726485 + 0.687182i \(0.241153\pi\)
\(182\) −44.7326 + 18.5288i −3.31580 + 1.37345i
\(183\) 3.54709i 0.262208i
\(184\) −0.760187 1.83525i −0.0560418 0.135297i
\(185\) 0.706735 + 0.706735i 0.0519602 + 0.0519602i
\(186\) −6.82843 −0.500685
\(187\) 0 0
\(188\) 1.08064 0.0788136
\(189\) −3.06644 3.06644i −0.223050 0.223050i
\(190\) −0.899356 2.17124i −0.0652461 0.157518i
\(191\) 18.9231i 1.36923i 0.728905 + 0.684615i \(0.240029\pi\)
−0.728905 + 0.684615i \(0.759971\pi\)
\(192\) 9.23472 3.82515i 0.666458 0.276056i
\(193\) −9.50776 + 22.9538i −0.684384 + 1.65225i 0.0714167 + 0.997447i \(0.477248\pi\)
−0.755800 + 0.654802i \(0.772752\pi\)
\(194\) −3.38523 1.40221i −0.243045 0.100673i
\(195\) −1.32869 + 1.32869i −0.0951494 + 0.0951494i
\(196\) −18.9516 + 18.9516i −1.35369 + 1.35369i
\(197\) 10.3255 + 4.27695i 0.735659 + 0.304720i 0.718875 0.695139i \(-0.244657\pi\)
0.0167839 + 0.999859i \(0.494657\pi\)
\(198\) 0.577151 1.39337i 0.0410164 0.0990222i
\(199\) 15.8231 6.55416i 1.12167 0.464612i 0.256730 0.966483i \(-0.417355\pi\)
0.864943 + 0.501871i \(0.167355\pi\)
\(200\) 2.72382i 0.192603i
\(201\) −0.595707 1.43816i −0.0420179 0.101440i
\(202\) −21.3464 21.3464i −1.50193 1.50193i
\(203\) −19.0032 −1.33377
\(204\) 0 0
\(205\) −4.12095 −0.287820
\(206\) −4.18297 4.18297i −0.291441 0.291441i
\(207\) 1.36169 + 3.28741i 0.0946440 + 0.228491i
\(208\) 18.2984i 1.26877i
\(209\) −2.20502 + 0.913349i −0.152524 + 0.0631776i
\(210\) −1.19265 + 2.87930i −0.0823004 + 0.198691i
\(211\) 4.25411 + 1.76211i 0.292865 + 0.121309i 0.524279 0.851547i \(-0.324335\pi\)
−0.231413 + 0.972855i \(0.574335\pi\)
\(212\) −16.2657 + 16.2657i −1.11714 + 1.11714i
\(213\) −6.33660 + 6.33660i −0.434176 + 0.434176i
\(214\) 12.0622 + 4.99631i 0.824553 + 0.341541i
\(215\) 0.498573 1.20366i 0.0340024 0.0820891i
\(216\) 0.515772 0.213640i 0.0350938 0.0145363i
\(217\) 14.3300i 0.972787i
\(218\) 3.71559 + 8.97023i 0.251652 + 0.607541i
\(219\) 2.89486 + 2.89486i 0.195617 + 0.195617i
\(220\) −0.576216 −0.0388485
\(221\) 0 0
\(222\) 5.93872 0.398581
\(223\) 2.85922 + 2.85922i 0.191468 + 0.191468i 0.796330 0.604862i \(-0.206772\pi\)
−0.604862 + 0.796330i \(0.706772\pi\)
\(224\) 13.4671 + 32.5124i 0.899806 + 2.17232i
\(225\) 4.87905i 0.325270i
\(226\) 23.7222 9.82606i 1.57798 0.653620i
\(227\) −6.64274 + 16.0370i −0.440894 + 1.06441i 0.534742 + 0.845015i \(0.320409\pi\)
−0.975636 + 0.219397i \(0.929591\pi\)
\(228\) −6.85868 2.84096i −0.454227 0.188147i
\(229\) 13.2524 13.2524i 0.875745 0.875745i −0.117346 0.993091i \(-0.537439\pi\)
0.993091 + 0.117346i \(0.0374386\pi\)
\(230\) 1.80820 1.80820i 0.119229 0.119229i
\(231\) 2.92410 + 1.21120i 0.192392 + 0.0796912i
\(232\) 0.936183 2.26015i 0.0614634 0.148386i
\(233\) 9.04025 3.74459i 0.592246 0.245317i −0.0663703 0.997795i \(-0.521142\pi\)
0.658617 + 0.752479i \(0.271142\pi\)
\(234\) 11.1650i 0.729880i
\(235\) 0.0633526 + 0.152947i 0.00413267 + 0.00997715i
\(236\) 8.50442 + 8.50442i 0.553591 + 0.553591i
\(237\) 0.812615 0.0527850
\(238\) 0 0
\(239\) −14.2984 −0.924888 −0.462444 0.886648i \(-0.653027\pi\)
−0.462444 + 0.886648i \(0.653027\pi\)
\(240\) 0.832841 + 0.832841i 0.0537597 + 0.0537597i
\(241\) 2.43980 + 5.89021i 0.157162 + 0.379422i 0.982773 0.184818i \(-0.0591695\pi\)
−0.825611 + 0.564239i \(0.809170\pi\)
\(242\) 21.6301i 1.39043i
\(243\) −0.923880 + 0.382683i −0.0592669 + 0.0245492i
\(244\) 3.08154 7.43950i 0.197275 0.476265i
\(245\) −3.79334 1.57125i −0.242347 0.100384i
\(246\) −17.3142 + 17.3142i −1.10392 + 1.10392i
\(247\) 12.4937 12.4937i 0.794956 0.794956i
\(248\) 1.70434 + 0.705961i 0.108226 + 0.0448286i
\(249\) 2.76049 6.66442i 0.174939 0.422340i
\(250\) −6.55924 + 2.71693i −0.414843 + 0.171834i
\(251\) 27.4308i 1.73141i 0.500550 + 0.865707i \(0.333131\pi\)
−0.500550 + 0.865707i \(0.666869\pi\)
\(252\) 3.76743 + 9.09538i 0.237326 + 0.572955i
\(253\) −1.83633 1.83633i −0.115449 0.115449i
\(254\) 3.74124 0.234746
\(255\) 0 0
\(256\) 10.8464 0.677898
\(257\) −0.464838 0.464838i −0.0289958 0.0289958i 0.692460 0.721456i \(-0.256527\pi\)
−0.721456 + 0.692460i \(0.756527\pi\)
\(258\) −2.96244 7.15197i −0.184434 0.445262i
\(259\) 12.4629i 0.774408i
\(260\) 3.94104 1.63243i 0.244413 0.101239i
\(261\) −1.67694 + 4.04850i −0.103800 + 0.250596i
\(262\) 12.1931 + 5.05054i 0.753291 + 0.312023i
\(263\) −6.72329 + 6.72329i −0.414576 + 0.414576i −0.883329 0.468753i \(-0.844703\pi\)
0.468753 + 0.883329i \(0.344703\pi\)
\(264\) −0.288108 + 0.288108i −0.0177318 + 0.0177318i
\(265\) −3.25573 1.34857i −0.199998 0.0828420i
\(266\) 11.2145 27.0742i 0.687605 1.66002i
\(267\) −9.02992 + 3.74032i −0.552622 + 0.228904i
\(268\) 3.53386i 0.215865i
\(269\) 6.61179 + 15.9623i 0.403128 + 0.973238i 0.986902 + 0.161321i \(0.0515755\pi\)
−0.583774 + 0.811916i \(0.698424\pi\)
\(270\) 0.508169 + 0.508169i 0.0309262 + 0.0309262i
\(271\) −21.2897 −1.29326 −0.646630 0.762804i \(-0.723822\pi\)
−0.646630 + 0.762804i \(0.723822\pi\)
\(272\) 0 0
\(273\) −23.4308 −1.41809
\(274\) 3.33379 + 3.33379i 0.201402 + 0.201402i
\(275\) 1.36271 + 3.28987i 0.0821744 + 0.198387i
\(276\) 8.07784i 0.486229i
\(277\) −10.4674 + 4.33574i −0.628925 + 0.260509i −0.674296 0.738461i \(-0.735553\pi\)
0.0453713 + 0.998970i \(0.485553\pi\)
\(278\) 13.1467 31.7389i 0.788485 1.90357i
\(279\) −3.05291 1.26456i −0.182773 0.0757070i
\(280\) 0.595357 0.595357i 0.0355794 0.0355794i
\(281\) −13.4515 + 13.4515i −0.802450 + 0.802450i −0.983478 0.181028i \(-0.942058\pi\)
0.181028 + 0.983478i \(0.442058\pi\)
\(282\) 0.908785 + 0.376431i 0.0541174 + 0.0224162i
\(283\) −4.49194 + 10.8445i −0.267018 + 0.644639i −0.999340 0.0363192i \(-0.988437\pi\)
0.732322 + 0.680959i \(0.238437\pi\)
\(284\) 18.7950 7.78515i 1.11528 0.461964i
\(285\) 1.13729i 0.0673670i
\(286\) −3.11837 7.52840i −0.184393 0.445164i
\(287\) −36.3354 36.3354i −2.14481 2.14481i
\(288\) 8.11492 0.478177
\(289\) 0 0
\(290\) 3.14921 0.184928
\(291\) −1.25382 1.25382i −0.0735003 0.0735003i
\(292\) −3.55663 8.58647i −0.208136 0.502485i
\(293\) 20.9548i 1.22419i −0.790784 0.612095i \(-0.790327\pi\)
0.790784 0.612095i \(-0.209673\pi\)
\(294\) −22.5394 + 9.33613i −1.31453 + 0.544494i
\(295\) −0.705089 + 1.70224i −0.0410519 + 0.0991080i
\(296\) −1.48227 0.613978i −0.0861554 0.0356868i
\(297\) 0.516075 0.516075i 0.0299457 0.0299457i
\(298\) 17.7993 17.7993i 1.03109 1.03109i
\(299\) 17.7620 + 7.35726i 1.02720 + 0.425481i
\(300\) −4.23869 + 10.2331i −0.244721 + 0.590808i
\(301\) 15.0090 6.21695i 0.865106 0.358339i
\(302\) 40.0523i 2.30475i
\(303\) −5.59058 13.4969i −0.321170 0.775374i
\(304\) −7.83123 7.83123i −0.449152 0.449152i
\(305\) 1.23360 0.0706355
\(306\) 0 0
\(307\) 33.4019 1.90634 0.953172 0.302428i \(-0.0977971\pi\)
0.953172 + 0.302428i \(0.0977971\pi\)
\(308\) −5.08064 5.08064i −0.289496 0.289496i
\(309\) −1.09551 2.64480i −0.0623216 0.150458i
\(310\) 2.37477i 0.134878i
\(311\) −15.0069 + 6.21607i −0.850965 + 0.352481i −0.765167 0.643831i \(-0.777344\pi\)
−0.0857975 + 0.996313i \(0.527344\pi\)
\(312\) 1.15430 2.78673i 0.0653495 0.157768i
\(313\) −7.31279 3.02906i −0.413343 0.171212i 0.166314 0.986073i \(-0.446814\pi\)
−0.579657 + 0.814860i \(0.696814\pi\)
\(314\) 2.65170 2.65170i 0.149644 0.149644i
\(315\) −1.06644 + 1.06644i −0.0600869 + 0.0600869i
\(316\) −1.70434 0.705961i −0.0958766 0.0397134i
\(317\) 4.13415 9.98071i 0.232197 0.560573i −0.764238 0.644934i \(-0.776885\pi\)
0.996435 + 0.0843612i \(0.0268849\pi\)
\(318\) −19.3451 + 8.01298i −1.08482 + 0.449346i
\(319\) 3.19821i 0.179065i
\(320\) −1.33030 3.21162i −0.0743659 0.179535i
\(321\) 4.46759 + 4.46759i 0.249356 + 0.249356i
\(322\) 31.8867 1.77698
\(323\) 0 0
\(324\) 2.27016 0.126120
\(325\) −18.6405 18.6405i −1.03399 1.03399i
\(326\) −11.6318 28.0817i −0.644227 1.55530i
\(327\) 4.69857i 0.259832i
\(328\) 6.11159 2.53150i 0.337456 0.139779i
\(329\) −0.789974 + 1.90716i −0.0435527 + 0.105145i
\(330\) −0.484581 0.200720i −0.0266753 0.0110493i
\(331\) 15.8667 15.8667i 0.872114 0.872114i −0.120588 0.992703i \(-0.538478\pi\)
0.992703 + 0.120588i \(0.0384781\pi\)
\(332\) −11.5795 + 11.5795i −0.635505 + 0.635505i
\(333\) 2.65513 + 1.09979i 0.145500 + 0.0602682i
\(334\) −6.35344 + 15.3386i −0.347645 + 0.839289i
\(335\) −0.500160 + 0.207173i −0.0273267 + 0.0113191i
\(336\) 14.6867i 0.801227i
\(337\) 6.29980 + 15.2091i 0.343172 + 0.828491i 0.997391 + 0.0721857i \(0.0229974\pi\)
−0.654219 + 0.756305i \(0.727003\pi\)
\(338\) 23.6607 + 23.6607i 1.28697 + 1.28697i
\(339\) 12.4256 0.674867
\(340\) 0 0
\(341\) 2.41172 0.130602
\(342\) −4.77833 4.77833i −0.258382 0.258382i
\(343\) −7.97587 19.2555i −0.430657 1.03970i
\(344\) 2.09137i 0.112759i
\(345\) 1.14329 0.473565i 0.0615525 0.0254959i
\(346\) −9.51899 + 22.9809i −0.511744 + 1.23546i
\(347\) −19.6581 8.14267i −1.05530 0.437121i −0.213522 0.976938i \(-0.568493\pi\)
−0.841782 + 0.539817i \(0.818493\pi\)
\(348\) 7.03429 7.03429i 0.377077 0.377077i
\(349\) −4.53844 + 4.53844i −0.242937 + 0.242937i −0.818064 0.575127i \(-0.804953\pi\)
0.575127 + 0.818064i \(0.304953\pi\)
\(350\) −40.3945 16.7319i −2.15917 0.894359i
\(351\) −2.06765 + 4.99175i −0.110363 + 0.266440i
\(352\) −5.47177 + 2.26648i −0.291646 + 0.120804i
\(353\) 10.0201i 0.533315i 0.963791 + 0.266658i \(0.0859193\pi\)
−0.963791 + 0.266658i \(0.914081\pi\)
\(354\) 4.18953 + 10.1144i 0.222671 + 0.537575i
\(355\) 2.20372 + 2.20372i 0.116961 + 0.116961i
\(356\) 22.1883 1.17598
\(357\) 0 0
\(358\) −18.7059 −0.988636
\(359\) 21.3098 + 21.3098i 1.12469 + 1.12469i 0.991027 + 0.133662i \(0.0426738\pi\)
0.133662 + 0.991027i \(0.457326\pi\)
\(360\) −0.0742990 0.179374i −0.00391590 0.00945382i
\(361\) 8.30606i 0.437161i
\(362\) 18.3318 7.59327i 0.963497 0.399094i
\(363\) 4.00567 9.67055i 0.210243 0.507572i
\(364\) 49.1426 + 20.3555i 2.57577 + 1.06692i
\(365\) 1.00677 1.00677i 0.0526966 0.0526966i
\(366\) 5.18297 5.18297i 0.270918 0.270918i
\(367\) −22.9459 9.50450i −1.19777 0.496131i −0.307490 0.951551i \(-0.599489\pi\)
−0.890277 + 0.455420i \(0.849489\pi\)
\(368\) 4.61163 11.1335i 0.240398 0.580372i
\(369\) −10.9474 + 4.53457i −0.569900 + 0.236060i
\(370\) 2.06535i 0.107372i
\(371\) −16.8159 40.5973i −0.873040 2.10771i
\(372\) 5.30445 + 5.30445i 0.275023 + 0.275023i
\(373\) 6.09593 0.315635 0.157818 0.987468i \(-0.449554\pi\)
0.157818 + 0.987468i \(0.449554\pi\)
\(374\) 0 0
\(375\) −3.43571 −0.177419
\(376\) −0.187911 0.187911i −0.00969075 0.00969075i
\(377\) 9.06058 + 21.8742i 0.466643 + 1.12658i
\(378\) 8.96130i 0.460920i
\(379\) −25.8338 + 10.7007i −1.32699 + 0.549658i −0.929796 0.368076i \(-0.880017\pi\)
−0.397196 + 0.917734i \(0.630017\pi\)
\(380\) −0.988021 + 2.38529i −0.0506844 + 0.122363i
\(381\) 1.67266 + 0.692840i 0.0856932 + 0.0354953i
\(382\) 27.6503 27.6503i 1.41471 1.41471i
\(383\) 25.5375 25.5375i 1.30491 1.30491i 0.379864 0.925043i \(-0.375971\pi\)
0.925043 0.379864i \(-0.124029\pi\)
\(384\) −4.08853 1.69353i −0.208642 0.0864223i
\(385\) 0.421228 1.01694i 0.0214678 0.0518278i
\(386\) 47.4325 19.6472i 2.41425 1.00002i
\(387\) 3.74618i 0.190429i
\(388\) 1.54045 + 3.71897i 0.0782044 + 0.188802i
\(389\) 16.3515 + 16.3515i 0.829056 + 0.829056i 0.987386 0.158330i \(-0.0506110\pi\)
−0.158330 + 0.987386i \(0.550611\pi\)
\(390\) 3.88294 0.196620
\(391\) 0 0
\(392\) 6.59094 0.332893
\(393\) 4.51608 + 4.51608i 0.227806 + 0.227806i
\(394\) −8.83804 21.3369i −0.445254 1.07494i
\(395\) 0.282609i 0.0142196i
\(396\) −1.53073 + 0.634051i −0.0769223 + 0.0318622i
\(397\) −1.61236 + 3.89258i −0.0809219 + 0.195363i −0.959162 0.282857i \(-0.908718\pi\)
0.878240 + 0.478220i \(0.158718\pi\)
\(398\) −32.6975 13.5438i −1.63898 0.678887i
\(399\) 10.0277 10.0277i 0.502015 0.502015i
\(400\) −11.6841 + 11.6841i −0.584207 + 0.584207i
\(401\) −5.72116 2.36978i −0.285701 0.118341i 0.235231 0.971940i \(-0.424415\pi\)
−0.520932 + 0.853598i \(0.674415\pi\)
\(402\) −1.23099 + 2.97187i −0.0613962 + 0.148224i
\(403\) −16.4950 + 6.83244i −0.821673 + 0.340348i
\(404\) 33.1645i 1.65000i
\(405\) 0.133089 + 0.321304i 0.00661322 + 0.0159657i
\(406\) 27.7674 + 27.7674i 1.37807 + 1.37807i
\(407\) −2.09748 −0.103968
\(408\) 0 0
\(409\) −34.6034 −1.71103 −0.855515 0.517778i \(-0.826759\pi\)
−0.855515 + 0.517778i \(0.826759\pi\)
\(410\) 6.02149 + 6.02149i 0.297380 + 0.297380i
\(411\) 0.873115 + 2.10788i 0.0430676 + 0.103974i
\(412\) 6.49882i 0.320174i
\(413\) −21.2260 + 8.79209i −1.04446 + 0.432630i
\(414\) 2.81385 6.79323i 0.138293 0.333869i
\(415\) −2.31773 0.960036i −0.113773 0.0471263i
\(416\) 31.0032 31.0032i 1.52006 1.52006i
\(417\) 11.7554 11.7554i 0.575666 0.575666i
\(418\) 4.55653 + 1.88738i 0.222867 + 0.0923146i
\(419\) 2.23315 5.39130i 0.109097 0.263382i −0.859897 0.510467i \(-0.829473\pi\)
0.968994 + 0.247085i \(0.0794726\pi\)
\(420\) 3.16316 1.31023i 0.154347 0.0639325i
\(421\) 27.0152i 1.31664i −0.752739 0.658319i \(-0.771268\pi\)
0.752739 0.658319i \(-0.228732\pi\)
\(422\) −3.64129 8.79086i −0.177255 0.427932i
\(423\) 0.336596 + 0.336596i 0.0163659 + 0.0163659i
\(424\) 5.65685 0.274721
\(425\) 0 0
\(426\) 18.5180 0.897198
\(427\) 10.8769 + 10.8769i 0.526371 + 0.526371i
\(428\) −5.48888 13.2513i −0.265315 0.640528i
\(429\) 3.94335i 0.190387i
\(430\) −2.48729 + 1.03027i −0.119948 + 0.0496840i
\(431\) 6.63463 16.0174i 0.319579 0.771532i −0.679697 0.733493i \(-0.737889\pi\)
0.999276 0.0380389i \(-0.0121111\pi\)
\(432\) 3.12890 + 1.29603i 0.150539 + 0.0623554i
\(433\) 2.81148 2.81148i 0.135111 0.135111i −0.636317 0.771428i \(-0.719543\pi\)
0.771428 + 0.636317i \(0.219543\pi\)
\(434\) −20.9389 + 20.9389i −1.00510 + 1.00510i
\(435\) 1.40798 + 0.583202i 0.0675072 + 0.0279624i
\(436\) 4.08190 9.85457i 0.195487 0.471949i
\(437\) −10.7504 + 4.45294i −0.514259 + 0.213013i
\(438\) 8.45990i 0.404230i
\(439\) −1.07029 2.58391i −0.0510821 0.123323i 0.896278 0.443492i \(-0.146260\pi\)
−0.947361 + 0.320169i \(0.896260\pi\)
\(440\) 0.100197 + 0.100197i 0.00477672 + 0.00477672i
\(441\) −11.8061 −0.562194
\(442\) 0 0
\(443\) 9.88565 0.469682 0.234841 0.972034i \(-0.424543\pi\)
0.234841 + 0.972034i \(0.424543\pi\)
\(444\) −4.61331 4.61331i −0.218938 0.218938i
\(445\) 1.30080 + 3.14040i 0.0616636 + 0.148869i
\(446\) 8.35574i 0.395656i
\(447\) 11.2541 4.66160i 0.532301 0.220486i
\(448\) 16.5881 40.0472i 0.783715 1.89205i
\(449\) 37.0007 + 15.3262i 1.74617 + 0.723287i 0.998227 + 0.0595234i \(0.0189581\pi\)
0.747942 + 0.663764i \(0.231042\pi\)
\(450\) −7.12923 + 7.12923i −0.336075 + 0.336075i
\(451\) 6.11518 6.11518i 0.287953 0.287953i
\(452\) −26.0609 10.7948i −1.22580 0.507744i
\(453\) 7.41728 17.9069i 0.348494 0.841339i
\(454\) 33.1394 13.7268i 1.55531 0.644230i
\(455\) 8.14869i 0.382016i
\(456\) 0.698636 + 1.68666i 0.0327166 + 0.0789849i
\(457\) −0.319645 0.319645i −0.0149523 0.0149523i 0.699591 0.714543i \(-0.253366\pi\)
−0.714543 + 0.699591i \(0.753366\pi\)
\(458\) −38.7287 −1.80967
\(459\) 0 0
\(460\) −2.80929 −0.130984
\(461\) −8.15362 8.15362i −0.379752 0.379752i 0.491261 0.871013i \(-0.336536\pi\)
−0.871013 + 0.491261i \(0.836536\pi\)
\(462\) −2.50287 6.04247i −0.116444 0.281121i
\(463\) 4.41067i 0.204981i 0.994734 + 0.102491i \(0.0326811\pi\)
−0.994734 + 0.102491i \(0.967319\pi\)
\(464\) 13.7110 5.67929i 0.636519 0.263655i
\(465\) −0.439784 + 1.06173i −0.0203945 + 0.0492367i
\(466\) −18.6811 7.73797i −0.865385 0.358454i
\(467\) 5.90141 5.90141i 0.273085 0.273085i −0.557256 0.830341i \(-0.688146\pi\)
0.830341 + 0.557256i \(0.188146\pi\)
\(468\) 8.67319 8.67319i 0.400918 0.400918i
\(469\) −6.23673 2.58334i −0.287986 0.119288i
\(470\) 0.130914 0.316055i 0.00603862 0.0145785i
\(471\) 1.67661 0.694475i 0.0772542 0.0319997i
\(472\) 2.95764i 0.136137i
\(473\) 1.04630 + 2.52599i 0.0481089 + 0.116145i
\(474\) −1.18739 1.18739i −0.0545384 0.0545384i
\(475\) 15.9553 0.732078
\(476\) 0 0
\(477\) −10.1329 −0.463952
\(478\) 20.8927 + 20.8927i 0.955611 + 0.955611i
\(479\) −4.88417 11.7914i −0.223163 0.538764i 0.772153 0.635437i \(-0.219180\pi\)
−0.995316 + 0.0966727i \(0.969180\pi\)
\(480\) 2.82219i 0.128815i
\(481\) 14.3458 5.94221i 0.654111 0.270941i
\(482\) 5.04170 12.1717i 0.229643 0.554407i
\(483\) 14.2562 + 5.90510i 0.648678 + 0.268691i
\(484\) −16.8026 + 16.8026i −0.763756 + 0.763756i
\(485\) −0.436051 + 0.436051i −0.0198000 + 0.0198000i
\(486\) 1.90914 + 0.790791i 0.0866003 + 0.0358710i
\(487\) 4.91528 11.8665i 0.222732 0.537724i −0.772527 0.634982i \(-0.781007\pi\)
0.995259 + 0.0972585i \(0.0310074\pi\)
\(488\) −1.82949 + 0.757799i −0.0828170 + 0.0343039i
\(489\) 14.7091i 0.665168i
\(490\) 3.24689 + 7.83869i 0.146680 + 0.354116i
\(491\) −14.4695 14.4695i −0.652998 0.652998i 0.300716 0.953714i \(-0.402774\pi\)
−0.953714 + 0.300716i \(0.902774\pi\)
\(492\) 26.9000 1.21275
\(493\) 0 0
\(494\) −36.5114 −1.64273
\(495\) −0.179479 0.179479i −0.00806699 0.00806699i
\(496\) 4.28267 + 10.3393i 0.192297 + 0.464247i
\(497\) 38.8615i 1.74318i
\(498\) −13.7716 + 5.70438i −0.617120 + 0.255619i
\(499\) 2.71128 6.54560i 0.121373 0.293021i −0.851502 0.524352i \(-0.824308\pi\)
0.972875 + 0.231330i \(0.0743078\pi\)
\(500\) 7.20590 + 2.98478i 0.322257 + 0.133483i
\(501\) −5.68110 + 5.68110i −0.253813 + 0.253813i
\(502\) 40.0816 40.0816i 1.78893 1.78893i
\(503\) −16.9323 7.01359i −0.754974 0.312720i −0.0282046 0.999602i \(-0.508979\pi\)
−0.726769 + 0.686882i \(0.758979\pi\)
\(504\) 0.926469 2.23669i 0.0412682 0.0996303i
\(505\) −4.69390 + 1.94428i −0.208876 + 0.0865192i
\(506\) 5.36647i 0.238569i
\(507\) 6.19670 + 14.9602i 0.275205 + 0.664404i
\(508\) −2.90626 2.90626i −0.128945 0.128945i
\(509\) −9.62950 −0.426820 −0.213410 0.976963i \(-0.568457\pi\)
−0.213410 + 0.976963i \(0.568457\pi\)
\(510\) 0 0
\(511\) 17.7538 0.785383
\(512\) −22.1071 22.1071i −0.977004 0.977004i
\(513\) −1.25144 3.02123i −0.0552522 0.133391i
\(514\) 1.35843i 0.0599179i
\(515\) −0.919802 + 0.380994i −0.0405313 + 0.0167886i
\(516\) −3.25450 + 7.85706i −0.143271 + 0.345888i
\(517\) −0.320972 0.132951i −0.0141163 0.00584718i
\(518\) 18.2107 18.2107i 0.800133 0.800133i
\(519\) −8.51166 + 8.51166i −0.373620 + 0.373620i
\(520\) −0.969162 0.401440i −0.0425006 0.0176043i
\(521\) 1.24172 2.99778i 0.0544008 0.131335i −0.894342 0.447383i \(-0.852356\pi\)
0.948743 + 0.316048i \(0.102356\pi\)
\(522\) 8.36597 3.46530i 0.366168 0.151672i
\(523\) 6.77444i 0.296226i 0.988970 + 0.148113i \(0.0473199\pi\)
−0.988970 + 0.148113i \(0.952680\pi\)
\(524\) −5.54846 13.3952i −0.242385 0.585170i
\(525\) −14.9613 14.9613i −0.652965 0.652965i
\(526\) 19.6480 0.856695
\(527\) 0 0
\(528\) −2.47175 −0.107569
\(529\) 7.31059 + 7.31059i 0.317852 + 0.317852i
\(530\) 2.78673 + 6.72777i 0.121048 + 0.292236i
\(531\) 5.29790i 0.229909i
\(532\) −29.7433 + 12.3201i −1.28954 + 0.534144i
\(533\) −24.5004 + 59.1492i −1.06123 + 2.56204i
\(534\) 18.6598 + 7.72912i 0.807487 + 0.334472i
\(535\) 1.55372 1.55372i 0.0671734 0.0671734i
\(536\) 0.614498 0.614498i 0.0265423 0.0265423i
\(537\) −8.36317 3.46414i −0.360898 0.149489i
\(538\) 13.6629 32.9850i 0.589047 1.42209i
\(539\) 7.96065 3.29741i 0.342889 0.142029i
\(540\) 0.789510i 0.0339751i
\(541\) 9.42462 + 22.7531i 0.405196 + 0.978230i 0.986384 + 0.164460i \(0.0525883\pi\)
−0.581188 + 0.813770i \(0.697412\pi\)
\(542\) 31.1084 + 31.1084i 1.33622 + 1.33622i
\(543\) 9.60212 0.412067
\(544\) 0 0
\(545\) 1.63406 0.0699953
\(546\) 34.2368 + 34.2368i 1.46520 + 1.46520i
\(547\) 12.2978 + 29.6894i 0.525814 + 1.26943i 0.934243 + 0.356637i \(0.116077\pi\)
−0.408429 + 0.912790i \(0.633923\pi\)
\(548\) 5.17950i 0.221257i
\(549\) 3.27708 1.35741i 0.139862 0.0579329i
\(550\) 2.81595 6.79831i 0.120073 0.289881i
\(551\) −13.2392 5.48387i −0.564010 0.233621i
\(552\) −1.40464 + 1.40464i −0.0597856 + 0.0597856i
\(553\) 2.49183 2.49183i 0.105963 0.105963i
\(554\) 21.6302 + 8.95953i 0.918980 + 0.380654i
\(555\) 0.382482 0.923394i 0.0162355 0.0391959i
\(556\) −34.8679 + 14.4428i −1.47873 + 0.612509i
\(557\) 43.4415i 1.84068i −0.391124 0.920338i \(-0.627914\pi\)
0.391124 0.920338i \(-0.372086\pi\)
\(558\) 2.61313 + 6.30864i 0.110622 + 0.267066i
\(559\) −14.3124 14.3124i −0.605348 0.605348i
\(560\) 5.10771 0.215840
\(561\) 0 0
\(562\) 39.3105 1.65821
\(563\) −10.1814 10.1814i −0.429093 0.429093i 0.459226 0.888319i \(-0.348127\pi\)
−0.888319 + 0.459226i \(0.848127\pi\)
\(564\) −0.413542 0.998380i −0.0174133 0.0420394i
\(565\) 4.32134i 0.181800i
\(566\) 22.4095 9.28232i 0.941942 0.390165i
\(567\) −1.65954 + 4.00649i −0.0696943 + 0.168257i
\(568\) −4.62199 1.91449i −0.193934 0.0803302i
\(569\) 11.8867 11.8867i 0.498317 0.498317i −0.412597 0.910914i \(-0.635378\pi\)
0.910914 + 0.412597i \(0.135378\pi\)
\(570\) −1.66179 + 1.66179i −0.0696049 + 0.0696049i
\(571\) 20.9654 + 8.68415i 0.877374 + 0.363420i 0.775478 0.631375i \(-0.217509\pi\)
0.101896 + 0.994795i \(0.467509\pi\)
\(572\) −3.42580 + 8.27060i −0.143240 + 0.345811i
\(573\) 17.4827 7.24157i 0.730350 0.302521i
\(574\) 106.186i 4.43212i
\(575\) 6.64376 + 16.0394i 0.277064 + 0.668891i
\(576\) −7.06795 7.06795i −0.294498 0.294498i
\(577\) 20.5881 0.857095 0.428548 0.903519i \(-0.359025\pi\)
0.428548 + 0.903519i \(0.359025\pi\)
\(578\) 0 0
\(579\) 24.8450 1.03252
\(580\) −2.44636 2.44636i −0.101580 0.101580i
\(581\) −11.9711 28.9009i −0.496646 1.19901i
\(582\) 3.66415i 0.151884i
\(583\) 6.83244 2.83009i 0.282971 0.117210i
\(584\) −0.874632 + 2.11155i −0.0361925 + 0.0873765i
\(585\) 1.73602 + 0.719082i 0.0717755 + 0.0297304i
\(586\) −30.6189 + 30.6189i −1.26485 + 1.26485i
\(587\) −7.43305 + 7.43305i −0.306795 + 0.306795i −0.843665 0.536870i \(-0.819606\pi\)
0.536870 + 0.843665i \(0.319606\pi\)
\(588\) 24.7615 + 10.2565i 1.02115 + 0.422973i
\(589\) 4.13530 9.98350i 0.170392 0.411363i
\(590\) 3.51756 1.45702i 0.144816 0.0599847i
\(591\) 11.1762i 0.459728i
\(592\) −3.72466 8.99212i −0.153083 0.369574i
\(593\) 5.51139 + 5.51139i 0.226326 + 0.226326i 0.811156 0.584830i \(-0.198839\pi\)
−0.584830 + 0.811156i \(0.698839\pi\)
\(594\) −1.50817 −0.0618809
\(595\) 0 0
\(596\) −27.6536 −1.13274
\(597\) −12.1105 12.1105i −0.495650 0.495650i
\(598\) −15.2033 36.7040i −0.621709 1.50094i
\(599\) 16.8503i 0.688484i 0.938881 + 0.344242i \(0.111864\pi\)
−0.938881 + 0.344242i \(0.888136\pi\)
\(600\) 2.51648 1.04236i 0.102735 0.0425541i
\(601\) 11.6206 28.0547i 0.474016 1.14437i −0.488358 0.872644i \(-0.662404\pi\)
0.962373 0.271731i \(-0.0875961\pi\)
\(602\) −31.0152 12.8469i −1.26409 0.523601i
\(603\) −1.10072 + 1.10072i −0.0448249 + 0.0448249i
\(604\) −31.1133 + 31.1133i −1.26598 + 1.26598i
\(605\) −3.36320 1.39308i −0.136733 0.0566368i
\(606\) −11.5526 + 27.8904i −0.469291 + 1.13297i
\(607\) −23.1402 + 9.58497i −0.939230 + 0.389042i −0.799173 0.601101i \(-0.794729\pi\)
−0.140058 + 0.990143i \(0.544729\pi\)
\(608\) 26.5371i 1.07622i
\(609\) 7.27222 + 17.5567i 0.294685 + 0.711434i
\(610\) −1.80252 1.80252i −0.0729819 0.0729819i
\(611\) 2.57194 0.104050
\(612\) 0 0
\(613\) −31.5000 −1.27227 −0.636137 0.771576i \(-0.719469\pi\)
−0.636137 + 0.771576i \(0.719469\pi\)
\(614\) −48.8065 48.8065i −1.96967 1.96967i
\(615\) 1.57702 + 3.80726i 0.0635915 + 0.153524i
\(616\) 1.76693i 0.0711916i
\(617\) 10.6751 4.42179i 0.429765 0.178014i −0.157306 0.987550i \(-0.550281\pi\)
0.587071 + 0.809535i \(0.300281\pi\)
\(618\) −2.26381 + 5.46532i −0.0910637 + 0.219847i
\(619\) −21.9190 9.07913i −0.880998 0.364921i −0.104114 0.994565i \(-0.533201\pi\)
−0.776884 + 0.629644i \(0.783201\pi\)
\(620\) 1.84476 1.84476i 0.0740875 0.0740875i
\(621\) 2.51608 2.51608i 0.100967 0.100967i
\(622\) 31.0109 + 12.8451i 1.24342 + 0.515042i
\(623\) −16.2202 + 39.1591i −0.649850 + 1.56888i
\(624\) 16.9055 7.00250i 0.676763 0.280324i
\(625\) 23.2004i 0.928016i
\(626\) 6.25935 + 15.1114i 0.250174 + 0.603974i
\(627\) 1.68765 + 1.68765i 0.0673982 + 0.0673982i
\(628\) −4.11977 −0.164397
\(629\) 0 0
\(630\) 3.11654 0.124166
\(631\) −26.0280 26.0280i −1.03616 1.03616i −0.999321 0.0368373i \(-0.988272\pi\)
−0.0368373 0.999321i \(-0.511728\pi\)
\(632\) 0.173607 + 0.419124i 0.00690571 + 0.0166719i
\(633\) 4.60462i 0.183017i
\(634\) −20.6245 + 8.54295i −0.819104 + 0.339284i
\(635\) 0.240954 0.581714i 0.00956197 0.0230846i
\(636\) 21.2522 + 8.80296i 0.842705 + 0.349060i
\(637\) −45.1053 + 45.1053i −1.78714 + 1.78714i
\(638\) −4.67319 + 4.67319i −0.185013 + 0.185013i
\(639\) 8.27916 + 3.42934i 0.327519 + 0.135663i
\(640\) −0.588969 + 1.42190i −0.0232811 + 0.0562054i
\(641\) −33.0736 + 13.6995i −1.30633 + 0.541099i −0.923811 0.382848i \(-0.874943\pi\)
−0.382518 + 0.923948i \(0.624943\pi\)
\(642\) 13.0560i 0.515279i
\(643\) −6.38557 15.4161i −0.251822 0.607953i 0.746529 0.665353i \(-0.231719\pi\)
−0.998351 + 0.0574003i \(0.981719\pi\)
\(644\) −24.7702 24.7702i −0.976081 0.976081i
\(645\) −1.30284 −0.0512991
\(646\) 0 0
\(647\) 19.2205 0.755636 0.377818 0.925880i \(-0.376675\pi\)
0.377818 + 0.925880i \(0.376675\pi\)
\(648\) −0.394755 0.394755i −0.0155074 0.0155074i
\(649\) −1.47969 3.57229i −0.0580829 0.140225i
\(650\) 54.4747i 2.13667i
\(651\) −13.2392 + 5.48387i −0.518887 + 0.214930i
\(652\) −12.7786 + 30.8502i −0.500447 + 1.20819i
\(653\) −25.9238 10.7380i −1.01447 0.420209i −0.187390 0.982286i \(-0.560003\pi\)
−0.827085 + 0.562076i \(0.810003\pi\)
\(654\) 6.86552 6.86552i 0.268463 0.268463i
\(655\) 1.57059 1.57059i 0.0613679 0.0613679i
\(656\) 37.0756 + 15.3572i 1.44756 + 0.599598i
\(657\) 1.56669 3.78232i 0.0611224 0.147562i
\(658\) 3.94104 1.63243i 0.153638 0.0636388i
\(659\) 27.6727i 1.07797i 0.842314 + 0.538987i \(0.181193\pi\)
−0.842314 + 0.538987i \(0.818807\pi\)
\(660\) 0.220508 + 0.532354i 0.00858327 + 0.0207219i
\(661\) −9.76776 9.76776i −0.379922 0.379922i 0.491152 0.871074i \(-0.336576\pi\)
−0.871074 + 0.491152i \(0.836576\pi\)
\(662\) −46.3687 −1.80217
\(663\) 0 0
\(664\) 4.02707 0.156281
\(665\) −3.48742 3.48742i −0.135236 0.135236i
\(666\) −2.27265 5.48666i −0.0880634 0.212604i
\(667\) 15.5926i 0.603746i
\(668\) 16.8507 6.97981i 0.651975 0.270057i
\(669\) 1.54740 3.73575i 0.0598259 0.144433i
\(670\) 1.03355 + 0.428110i 0.0399295 + 0.0165393i
\(671\) −1.83056 + 1.83056i −0.0706681 + 0.0706681i
\(672\) 24.8839 24.8839i 0.959917 0.959917i
\(673\) 18.0747 + 7.48680i 0.696730 + 0.288595i 0.702801 0.711387i \(-0.251933\pi\)
−0.00607110 + 0.999982i \(0.501933\pi\)
\(674\) 13.0181 31.4286i 0.501440 1.21058i
\(675\) −4.50766 + 1.86713i −0.173500 + 0.0718659i
\(676\) 36.7601i 1.41385i
\(677\) −13.0257 31.4468i −0.500618 1.20860i −0.949148 0.314830i \(-0.898052\pi\)
0.448530 0.893768i \(-0.351948\pi\)
\(678\) −18.1562 18.1562i −0.697284 0.697284i
\(679\) −7.68953 −0.295097
\(680\) 0 0
\(681\) 17.3583 0.665172
\(682\) −3.52398 3.52398i −0.134940 0.134940i
\(683\) −2.55788 6.17527i −0.0978746 0.236290i 0.867357 0.497687i \(-0.165817\pi\)
−0.965232 + 0.261396i \(0.915817\pi\)
\(684\) 7.42378i 0.283855i
\(685\) 0.733074 0.303649i 0.0280093 0.0116018i
\(686\) −16.4816 + 39.7902i −0.629272 + 1.51920i
\(687\) −17.3151 7.17216i −0.660614 0.273635i
\(688\) −8.97118 + 8.97118i −0.342023 + 0.342023i
\(689\) −38.7129 + 38.7129i −1.47484 + 1.47484i
\(690\) −2.36253 0.978591i −0.0899399 0.0372543i
\(691\) 13.4152 32.3870i 0.510337 1.23206i −0.433352 0.901225i \(-0.642669\pi\)
0.943688 0.330836i \(-0.107331\pi\)
\(692\) 25.2465 10.4574i 0.959728 0.397532i
\(693\) 3.16502i 0.120229i
\(694\) 16.8263 + 40.6223i 0.638718 + 1.54200i
\(695\) −4.08827 4.08827i −0.155077 0.155077i
\(696\) −2.44636 −0.0927292
\(697\) 0 0
\(698\) 13.2630 0.502014
\(699\) −6.91911 6.91911i −0.261705 0.261705i
\(700\) 18.3815 + 44.3768i 0.694754 + 1.67729i
\(701\) 39.3006i 1.48436i −0.670199 0.742182i \(-0.733791\pi\)
0.670199 0.742182i \(-0.266209\pi\)
\(702\) 10.3151 4.27267i 0.389320 0.161262i
\(703\) −3.59649 + 8.68271i −0.135644 + 0.327474i
\(704\) 6.73987 + 2.79175i 0.254018 + 0.105218i
\(705\) 0.117060 0.117060i 0.00440875 0.00440875i
\(706\) 14.6413 14.6413i 0.551031 0.551031i
\(707\) −58.5304 24.2441i −2.20126 0.911793i
\(708\) 4.60256 11.1116i 0.172975 0.417598i
\(709\) −11.2801 + 4.67236i −0.423632 + 0.175474i −0.584306 0.811533i \(-0.698633\pi\)
0.160674 + 0.987008i \(0.448633\pi\)
\(710\) 6.44012i 0.241693i
\(711\) −0.310974 0.750758i −0.0116624 0.0281556i
\(712\) −3.85830 3.85830i −0.144596 0.144596i
\(713\) 11.7581 0.440344
\(714\) 0 0
\(715\) −1.37141 −0.0512877
\(716\) 14.5311 + 14.5311i 0.543051 + 0.543051i
\(717\) 5.47177 + 13.2100i 0.204347 + 0.493337i
\(718\) 62.2754i 2.32410i
\(719\) 28.8601 11.9542i 1.07630 0.445818i 0.227090 0.973874i \(-0.427079\pi\)
0.849209 + 0.528056i \(0.177079\pi\)
\(720\) 0.450730 1.08816i 0.0167977 0.0405533i
\(721\) −11.4694 4.75080i −0.427144 0.176929i
\(722\) −12.1367 + 12.1367i −0.451683 + 0.451683i
\(723\) 4.50817 4.50817i 0.167661 0.167661i
\(724\) −20.1391 8.34187i −0.748462 0.310023i
\(725\) −8.18189 + 19.7528i −0.303868 + 0.733602i
\(726\) −19.9836 + 8.27747i −0.741660 + 0.307206i
\(727\) 36.9344i 1.36982i 0.728627 + 0.684910i \(0.240159\pi\)
−0.728627 + 0.684910i \(0.759841\pi\)
\(728\) −5.00574 12.0849i −0.185525 0.447897i
\(729\) 0.707107 + 0.707107i 0.0261891 + 0.0261891i
\(730\) −2.94216 −0.108894
\(731\) 0 0
\(732\) −8.05245 −0.297627
\(733\) −5.86713 5.86713i −0.216707 0.216707i 0.590402 0.807109i \(-0.298969\pi\)
−0.807109 + 0.590402i \(0.798969\pi\)
\(734\) 19.6405 + 47.4162i 0.724942 + 1.75017i
\(735\) 4.10588i 0.151448i
\(736\) −26.6771 + 11.0500i −0.983331 + 0.407309i
\(737\) 0.434771 1.04963i 0.0160150 0.0386636i
\(738\) 22.6221 + 9.37040i 0.832732 + 0.344929i
\(739\) −15.0340 + 15.0340i −0.553036 + 0.553036i −0.927316 0.374280i \(-0.877890\pi\)
0.374280 + 0.927316i \(0.377890\pi\)
\(740\) −1.60440 + 1.60440i −0.0589790 + 0.0589790i
\(741\) −16.3238 6.76155i −0.599671 0.248392i
\(742\) −34.7491 + 83.8917i −1.27568 + 3.07976i
\(743\) 44.6998 18.5153i 1.63988 0.679259i 0.643592 0.765369i \(-0.277444\pi\)
0.996286 + 0.0861097i \(0.0274436\pi\)
\(744\) 1.84476i 0.0676324i
\(745\) −1.62120 3.91392i −0.0593962 0.143395i
\(746\) −8.90731 8.90731i −0.326120 0.326120i
\(747\) −7.21351 −0.263929
\(748\) 0 0
\(749\) 27.3991 1.00114
\(750\) 5.02023 + 5.02023i 0.183313 + 0.183313i
\(751\) 11.1847 + 27.0023i 0.408136 + 0.985327i 0.985628 + 0.168931i \(0.0540314\pi\)
−0.577492 + 0.816396i \(0.695969\pi\)
\(752\) 1.61213i 0.0587883i
\(753\) 25.3427 10.4973i 0.923540 0.382543i
\(754\) 18.7231 45.2016i 0.681855 1.64614i
\(755\) −6.22761 2.57956i −0.226646 0.0938798i
\(756\) 6.96130 6.96130i 0.253180 0.253180i
\(757\) −29.9765 + 29.9765i −1.08951 + 1.08951i −0.0939362 + 0.995578i \(0.529945\pi\)
−0.995578 + 0.0939362i \(0.970055\pi\)
\(758\) 53.3838 + 22.1123i 1.93899 + 0.803155i
\(759\) −0.993816 + 2.39929i −0.0360733 + 0.0870885i
\(760\) 0.586581 0.242970i 0.0212775 0.00881344i
\(761\) 15.1503i 0.549197i 0.961559 + 0.274598i \(0.0885449\pi\)
−0.961559 + 0.274598i \(0.911455\pi\)
\(762\) −1.43171 3.45645i −0.0518654 0.125214i
\(763\) 14.4079 + 14.4079i 0.521600 + 0.521600i
\(764\) −42.9585 −1.55418
\(765\) 0 0
\(766\) −74.6304 −2.69651
\(767\) 20.2407 + 20.2407i 0.730850 + 0.730850i
\(768\) −4.15073 10.0207i −0.149777 0.361592i
\(769\) 28.3540i 1.02247i 0.859440 + 0.511236i \(0.170812\pi\)
−0.859440 + 0.511236i \(0.829188\pi\)
\(770\) −2.10143 + 0.870442i −0.0757303 + 0.0313685i
\(771\) −0.251568 + 0.607339i −0.00906001 + 0.0218728i
\(772\) −52.1087 21.5841i −1.87543 0.776830i
\(773\) −14.9910 + 14.9910i −0.539187 + 0.539187i −0.923290 0.384103i \(-0.874511\pi\)
0.384103 + 0.923290i \(0.374511\pi\)
\(774\) −5.47388 + 5.47388i −0.196755 + 0.196755i
\(775\) −14.8953 6.16984i −0.535055 0.221627i
\(776\) 0.378820 0.914552i 0.0135988 0.0328305i
\(777\) 11.5142 4.76935i 0.413071 0.171100i
\(778\) 47.7855i 1.71319i
\(779\) −14.8288 35.7998i −0.531295 1.28266i
\(780\) −3.01634 3.01634i −0.108002 0.108002i
\(781\) −6.54032 −0.234031
\(782\) 0 0
\(783\) 4.38206 0.156602
\(784\) 28.2726 + 28.2726i 1.00974 + 1.00974i
\(785\) −0.241523 0.583087i −0.00862031 0.0208113i
\(786\) 13.1977i 0.470746i
\(787\) 33.2768 13.7837i 1.18619 0.491336i 0.299677 0.954041i \(-0.403121\pi\)
0.886512 + 0.462705i \(0.153121\pi\)
\(788\) −9.70935 + 23.4405i −0.345881 + 0.835032i
\(789\) 8.78440 + 3.63862i 0.312733 + 0.129538i
\(790\) −0.412945 + 0.412945i −0.0146919 + 0.0146919i
\(791\) 38.1024 38.1024i 1.35476 1.35476i
\(792\) 0.376431 + 0.155923i 0.0133759 + 0.00554048i
\(793\) 7.33414 17.7062i 0.260443 0.628765i
\(794\) 8.04376 3.33183i 0.285462 0.118242i
\(795\) 3.52398i 0.124983i
\(796\) 14.8790 + 35.9211i 0.527372 + 1.27319i
\(797\) −0.379043 0.379043i −0.0134264 0.0134264i 0.700362 0.713788i \(-0.253022\pi\)
−0.713788 + 0.700362i \(0.753022\pi\)
\(798\) −29.3049 −1.03738
\(799\) 0 0
\(800\) 39.5931 1.39983
\(801\) 6.91120 + 6.91120i 0.244195 + 0.244195i
\(802\) 4.89701 + 11.8224i 0.172919 + 0.417464i
\(803\) 2.98793i 0.105442i
\(804\) 3.26486 1.35235i 0.115143 0.0476937i
\(805\) 2.05366 4.95797i 0.0723820 0.174745i
\(806\) 34.0858 + 14.1188i 1.20062 + 0.497314i
\(807\) 12.2170 12.2170i 0.430059 0.430059i
\(808\) 5.76693 5.76693i 0.202880 0.202880i
\(809\) 4.58398 + 1.89874i 0.161164 + 0.0667563i 0.461807 0.886980i \(-0.347201\pi\)
−0.300643 + 0.953737i \(0.597201\pi\)
\(810\) 0.275019 0.663955i 0.00966318 0.0233290i
\(811\) −42.9855 + 17.8052i −1.50943 + 0.625225i −0.975439 0.220268i \(-0.929307\pi\)
−0.533987 + 0.845493i \(0.679307\pi\)
\(812\) 43.1404i 1.51393i
\(813\) 8.14723 + 19.6692i 0.285736 + 0.689827i
\(814\) 3.06483 + 3.06483i 0.107422 + 0.107422i
\(815\) −5.11548 −0.179188
\(816\) 0 0
\(817\) 12.2506 0.428594
\(818\) 50.5622 + 50.5622i 1.76787 + 1.76787i
\(819\) 8.96657 + 21.6472i 0.313317 + 0.756415i
\(820\) 9.35521i 0.326698i
\(821\) −28.9219 + 11.9798i −1.00938 + 0.418099i −0.825229 0.564799i \(-0.808954\pi\)
−0.184152 + 0.982898i \(0.558954\pi\)
\(822\) 1.80424 4.35581i 0.0629299 0.151926i
\(823\) 42.1814 + 17.4721i 1.47035 + 0.609039i 0.966939 0.255008i \(-0.0820782\pi\)
0.503411 + 0.864047i \(0.332078\pi\)
\(824\) 1.13007 1.13007i 0.0393678 0.0393678i
\(825\) 2.51796 2.51796i 0.0876640 0.0876640i
\(826\) 43.8621 + 18.1683i 1.52616 + 0.632156i
\(827\) −0.279298 + 0.674285i −0.00971214 + 0.0234472i −0.928661 0.370929i \(-0.879039\pi\)
0.918949 + 0.394376i \(0.129039\pi\)
\(828\) −7.46295 + 3.09125i −0.259355 + 0.107428i
\(829\) 24.0881i 0.836616i 0.908305 + 0.418308i \(0.137377\pi\)
−0.908305 + 0.418308i \(0.862623\pi\)
\(830\) 1.98385 + 4.78944i 0.0688605 + 0.166244i
\(831\) 8.01140 + 8.01140i 0.277912 + 0.277912i
\(832\) −54.0065 −1.87234
\(833\) 0 0
\(834\) −34.3539 −1.18958
\(835\) 1.97576 + 1.97576i 0.0683739 + 0.0683739i
\(836\) −2.07345 5.00574i −0.0717117 0.173127i
\(837\) 3.30445i 0.114218i
\(838\) −11.1408 + 4.61466i −0.384852 + 0.159411i
\(839\) 12.4886 30.1502i 0.431155 1.04090i −0.547760 0.836635i \(-0.684519\pi\)
0.978916 0.204265i \(-0.0654806\pi\)
\(840\) −0.777871 0.322205i −0.0268391 0.0111171i
\(841\) −6.92789 + 6.92789i −0.238893 + 0.238893i
\(842\) −39.4743 + 39.4743i −1.36037 + 1.36037i
\(843\) 17.5753 + 7.27991i 0.605324 + 0.250733i
\(844\) −4.00027 + 9.65752i −0.137695 + 0.332425i
\(845\) 5.20280 2.15507i 0.178982 0.0741367i
\(846\) 0.983662i 0.0338190i
\(847\) −17.3710 41.9373i −0.596874 1.44098i
\(848\) 24.2657 + 24.2657i 0.833289 + 0.833289i
\(849\) 11.7380 0.402848
\(850\) 0 0
\(851\) −10.2261 −0.350546
\(852\) −14.3851 14.3851i −0.492825 0.492825i
\(853\) −9.10191 21.9739i −0.311643 0.752374i −0.999644 0.0266640i \(-0.991512\pi\)
0.688001 0.725710i \(-0.258488\pi\)
\(854\) 31.7865i 1.08771i
\(855\) −1.05072 + 0.435221i −0.0359337 + 0.0148842i
\(856\) −1.34980 + 3.25871i −0.0461353 + 0.111380i
\(857\) 39.7356 + 16.4590i 1.35734 + 0.562229i 0.938327 0.345750i \(-0.112376\pi\)
0.419015 + 0.907979i \(0.362376\pi\)
\(858\) −5.76199 + 5.76199i −0.196711 + 0.196711i
\(859\) −4.23962 + 4.23962i −0.144654 + 0.144654i −0.775725 0.631071i \(-0.782616\pi\)
0.631071 + 0.775725i \(0.282616\pi\)
\(860\) 2.73251 + 1.13184i 0.0931777 + 0.0385955i
\(861\) −19.6646 + 47.4745i −0.670167 + 1.61793i
\(862\) −33.0990 + 13.7100i −1.12736 + 0.466966i
\(863\) 54.1552i 1.84346i −0.387828 0.921732i \(-0.626775\pi\)
0.387828 0.921732i \(-0.373225\pi\)
\(864\) −3.10545 7.49721i −0.105649 0.255060i
\(865\) 2.96016 + 2.96016i 0.100648 + 0.100648i
\(866\) −8.21621 −0.279198
\(867\) 0 0
\(868\) 32.5315 1.10419
\(869\) 0.419370 + 0.419370i 0.0142262 + 0.0142262i
\(870\) −1.20515 2.90949i −0.0408584 0.0986410i
\(871\) 8.41067i 0.284985i
\(872\) −2.42339 + 1.00380i −0.0820665 + 0.0339930i
\(873\) −0.678563 + 1.63820i −0.0229659 + 0.0554446i
\(874\) 22.2149 + 9.20173i 0.751431 + 0.311253i
\(875\) −10.5354 + 10.5354i −0.356161 + 0.356161i
\(876\) −6.57180 + 6.57180i −0.222041 + 0.222041i
\(877\) −24.6822 10.2237i −0.833460 0.345231i −0.0751887 0.997169i \(-0.523956\pi\)
−0.758272 + 0.651939i \(0.773956\pi\)
\(878\) −2.21169 + 5.33948i −0.0746408 + 0.180199i
\(879\) −19.3597 + 8.01904i −0.652985 + 0.270475i
\(880\) 0.859617i 0.0289777i
\(881\) −4.63852 11.1984i −0.156276 0.377283i 0.826278 0.563263i \(-0.190454\pi\)
−0.982554 + 0.185980i \(0.940454\pi\)
\(882\) 17.2509 + 17.2509i 0.580869 + 0.580869i
\(883\) 44.5718 1.49996 0.749981 0.661460i \(-0.230063\pi\)
0.749981 + 0.661460i \(0.230063\pi\)
\(884\) 0 0
\(885\) 1.84249 0.0619345
\(886\) −14.4448 14.4448i −0.485284 0.485284i
\(887\) 8.41668 + 20.3197i 0.282604 + 0.682267i 0.999895 0.0145071i \(-0.00461792\pi\)
−0.717290 + 0.696774i \(0.754618\pi\)
\(888\) 1.60440i 0.0538402i
\(889\) 7.25367 3.00457i 0.243280 0.100770i
\(890\) 2.68801 6.48944i 0.0901024 0.217526i
\(891\) −0.674285 0.279298i −0.0225894 0.00935683i
\(892\) −6.49089 + 6.49089i −0.217331 + 0.217331i
\(893\) −1.10072 + 1.10072i −0.0368343 + 0.0368343i
\(894\) −23.2559 9.63291i −0.777794 0.322173i
\(895\) −1.20475 + 2.90852i −0.0402703 + 0.0972211i
\(896\) −17.7303 + 7.34413i −0.592328 + 0.245350i
\(897\) 19.2254i 0.641919i
\(898\) −31.6706 76.4595i −1.05686 2.55149i
\(899\) 10.2391 + 10.2391i 0.341493 + 0.341493i
\(900\) 11.0762 0.369207
\(901\) 0 0
\(902\) −17.8709 −0.595036
\(903\) −11.4874 11.4874i −0.382277 0.382277i
\(904\) 2.65460 + 6.40878i 0.0882908 + 0.213153i
\(905\) 3.33940i 0.111005i
\(906\) −37.0035 + 15.3273i −1.22936 + 0.509217i
\(907\) 6.11147 14.7544i 0.202928 0.489912i −0.789350 0.613943i \(-0.789582\pi\)
0.992278 + 0.124032i \(0.0395824\pi\)
\(908\) −36.4065 15.0801i −1.20819 0.500450i
\(909\) −10.3300 + 10.3300i −0.342626 + 0.342626i
\(910\) 11.9068 11.9068i 0.394706 0.394706i
\(911\) −35.1451 14.5576i −1.16441 0.482314i −0.285068 0.958507i \(-0.592016\pi\)
−0.879341 + 0.476193i \(0.842016\pi\)
\(912\) −4.23823 + 10.2320i −0.140342 + 0.338815i
\(913\) 4.86396 2.01472i 0.160974 0.0666774i
\(914\) 0.934124i 0.0308981i
\(915\) −0.472077 1.13969i −0.0156064 0.0376771i
\(916\) 30.0851 + 30.0851i 0.994041 + 0.994041i
\(917\) 27.6965 0.914619
\(918\) 0 0
\(919\) 7.23321 0.238602 0.119301 0.992858i \(-0.461935\pi\)
0.119301 + 0.992858i \(0.461935\pi\)
\(920\) 0.488503 + 0.488503i 0.0161055 + 0.0161055i
\(921\) −12.7823 30.8593i −0.421192 1.01685i
\(922\) 23.8280i 0.784734i
\(923\) 44.7326 18.5288i 1.47239 0.609884i
\(924\) −2.74962 + 6.63817i −0.0904559 + 0.218380i
\(925\) 12.9545 + 5.36594i 0.425942 + 0.176431i
\(926\) 6.44483 6.44483i 0.211790 0.211790i
\(927\) −2.02424 + 2.02424i −0.0664849 + 0.0664849i
\(928\) −32.8533 13.6083i −1.07846 0.446713i
\(929\) −16.9119 + 40.8290i −0.554862 + 1.33956i 0.358927 + 0.933366i \(0.383143\pi\)
−0.913789 + 0.406190i \(0.866857\pi\)
\(930\) 2.19400 0.908785i 0.0719442 0.0298002i
\(931\) 38.6077i 1.26532i
\(932\) 8.50083 + 20.5228i 0.278454 + 0.672247i
\(933\) 11.4858 + 11.4858i 0.376028 + 0.376028i
\(934\) −17.2462 −0.564312
\(935\) 0 0
\(936\) −3.01634 −0.0985921
\(937\) 15.9199 + 15.9199i 0.520080 + 0.520080i 0.917595 0.397515i \(-0.130127\pi\)
−0.397515 + 0.917595i \(0.630127\pi\)
\(938\) 5.33831 + 12.8878i 0.174302 + 0.420802i
\(939\) 7.91531i 0.258306i
\(940\) −0.347214 + 0.143821i −0.0113249 + 0.00469091i
\(941\) −0.853914 + 2.06153i −0.0278368 + 0.0672040i −0.937187 0.348828i \(-0.886580\pi\)
0.909350 + 0.416032i \(0.136580\pi\)
\(942\) −3.46461 1.43509i −0.112883 0.0467577i
\(943\) 29.8140 29.8140i 0.970876 0.970876i
\(944\) 12.6872 12.6872i 0.412932 0.412932i
\(945\) 1.39337 + 0.577151i 0.0453262 + 0.0187747i
\(946\) 2.16211 5.21980i 0.0702963 0.169710i
\(947\) −12.7581 + 5.28459i −0.414584 + 0.171726i −0.580218 0.814461i \(-0.697033\pi\)
0.165635 + 0.986187i \(0.447033\pi\)
\(948\) 1.84476i 0.0599152i
\(949\) −8.46487 20.4360i −0.274781 0.663381i
\(950\) −23.3137 23.3137i −0.756397 0.756397i
\(951\) −10.8030 −0.350313
\(952\) 0 0
\(953\) −7.23736 −0.234441 −0.117221 0.993106i \(-0.537398\pi\)
−0.117221 + 0.993106i \(0.537398\pi\)
\(954\) 14.8061 + 14.8061i 0.479364 + 0.479364i
\(955\) −2.51845 6.08008i −0.0814952 0.196747i
\(956\) 32.4597i 1.04982i
\(957\) −2.95476 + 1.22390i −0.0955138 + 0.0395631i
\(958\) −10.0928 + 24.3662i −0.326084 + 0.787237i
\(959\) 9.14105 + 3.78635i 0.295180 + 0.122267i
\(960\) −2.45807 + 2.45807i −0.0793339 + 0.0793339i
\(961\) 14.1992 14.1992i 0.458037 0.458037i
\(962\) −29.6446 12.2792i −0.955781 0.395897i
\(963\) 2.41784 5.83718i 0.0779138 0.188101i
\(964\) −13.3717 + 5.53874i −0.430674 + 0.178391i
\(965\) 8.64052i 0.278148i
\(966\) −12.2025 29.4595i −0.392609 0.947843i
\(967\) −7.51233 7.51233i −0.241580 0.241580i 0.575923 0.817504i \(-0.304643\pi\)
−0.817504 + 0.575923i \(0.804643\pi\)
\(968\) 5.84357 0.187820
\(969\) 0 0
\(970\) 1.27431 0.0409155
\(971\) 18.1366 + 18.1366i 0.582032 + 0.582032i 0.935461 0.353429i \(-0.114984\pi\)
−0.353429 + 0.935461i \(0.614984\pi\)
\(972\) −0.868752 2.09735i −0.0278652 0.0672727i
\(973\) 72.0946i 2.31125i
\(974\) −24.5214 + 10.1571i −0.785717 + 0.325455i
\(975\) −10.0882 + 24.3550i −0.323080 + 0.779985i
\(976\) −11.0985 4.59714i −0.355253 0.147151i
\(977\) 12.2091 12.2091i 0.390604 0.390604i −0.484299 0.874903i \(-0.660925\pi\)
0.874903 + 0.484299i \(0.160925\pi\)
\(978\) −21.4928 + 21.4928i −0.687264 + 0.687264i
\(979\) −6.59040 2.72983i −0.210630 0.0872459i
\(980\) 3.56699 8.61148i 0.113943 0.275084i
\(981\) 4.34092 1.79807i 0.138595 0.0574079i
\(982\) 42.2853i 1.34938i
\(983\) 13.3924 + 32.3321i 0.427151 + 1.03123i 0.980187 + 0.198076i \(0.0634694\pi\)
−0.553035 + 0.833158i \(0.686531\pi\)
\(984\) −4.67761 4.67761i −0.149117 0.149117i
\(985\) −3.88683 −0.123845
\(986\) 0 0
\(987\) 2.06430 0.0657074
\(988\) 28.3627 + 28.3627i 0.902338 + 0.902338i
\(989\) 5.10113 + 12.3152i 0.162207 + 0.391601i
\(990\) 0.524507i 0.0166699i
\(991\) 21.1761 8.77143i 0.672681 0.278634i −0.0200826 0.999798i \(-0.506393\pi\)
0.692764 + 0.721165i \(0.256393\pi\)
\(992\) 10.2618 24.7741i 0.325812 0.786579i
\(993\) −20.7309 8.58701i −0.657875 0.272501i
\(994\) 56.7841 56.7841i 1.80108 1.80108i
\(995\) −4.21176 + 4.21176i −0.133522 + 0.133522i
\(996\) 15.1293 + 6.26676i 0.479390 + 0.198570i
\(997\) −22.8935 + 55.2698i −0.725044 + 1.75041i −0.0666028 + 0.997780i \(0.521216\pi\)
−0.658441 + 0.752632i \(0.728784\pi\)
\(998\) −13.5261 + 5.60268i −0.428160 + 0.177350i
\(999\) 2.87389i 0.0909260i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.h.i.712.1 16
17.2 even 8 867.2.h.k.757.3 16
17.3 odd 16 867.2.d.f.577.1 8
17.4 even 4 867.2.h.k.733.3 16
17.5 odd 16 867.2.a.l.1.4 4
17.6 odd 16 867.2.e.g.829.1 8
17.7 odd 16 867.2.e.g.616.4 8
17.8 even 8 inner 867.2.h.i.688.1 16
17.9 even 8 inner 867.2.h.i.688.2 16
17.10 odd 16 51.2.e.a.4.4 8
17.11 odd 16 51.2.e.a.13.1 yes 8
17.12 odd 16 867.2.a.k.1.4 4
17.13 even 4 867.2.h.k.733.4 16
17.14 odd 16 867.2.d.f.577.2 8
17.15 even 8 867.2.h.k.757.4 16
17.16 even 2 inner 867.2.h.i.712.2 16
51.5 even 16 2601.2.a.be.1.1 4
51.11 even 16 153.2.f.b.64.4 8
51.29 even 16 2601.2.a.bf.1.1 4
51.44 even 16 153.2.f.b.55.1 8
68.11 even 16 816.2.bd.e.625.2 8
68.27 even 16 816.2.bd.e.769.2 8
204.11 odd 16 2448.2.be.x.1441.2 8
204.95 odd 16 2448.2.be.x.1585.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.e.a.4.4 8 17.10 odd 16
51.2.e.a.13.1 yes 8 17.11 odd 16
153.2.f.b.55.1 8 51.44 even 16
153.2.f.b.64.4 8 51.11 even 16
816.2.bd.e.625.2 8 68.11 even 16
816.2.bd.e.769.2 8 68.27 even 16
867.2.a.k.1.4 4 17.12 odd 16
867.2.a.l.1.4 4 17.5 odd 16
867.2.d.f.577.1 8 17.3 odd 16
867.2.d.f.577.2 8 17.14 odd 16
867.2.e.g.616.4 8 17.7 odd 16
867.2.e.g.829.1 8 17.6 odd 16
867.2.h.i.688.1 16 17.8 even 8 inner
867.2.h.i.688.2 16 17.9 even 8 inner
867.2.h.i.712.1 16 1.1 even 1 trivial
867.2.h.i.712.2 16 17.16 even 2 inner
867.2.h.k.733.3 16 17.4 even 4
867.2.h.k.733.4 16 17.13 even 4
867.2.h.k.757.3 16 17.2 even 8
867.2.h.k.757.4 16 17.15 even 8
2448.2.be.x.1441.2 8 204.11 odd 16
2448.2.be.x.1585.2 8 204.95 odd 16
2601.2.a.be.1.1 4 51.5 even 16
2601.2.a.bf.1.1 4 51.29 even 16