Properties

Label 1452.3.f.a.241.1
Level $1452$
Weight $3$
Character 1452.241
Analytic conductor $39.564$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,3,Mod(241,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.241"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5641343851\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.1
Root \(-1.93185i\) of defining polynomial
Character \(\chi\) \(=\) 1452.241
Dual form 1452.3.f.a.241.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{3} +3.73205 q^{5} -2.44949i q^{7} +3.00000 q^{9} -14.5582i q^{13} -6.46410 q^{15} -8.52245i q^{17} -2.07055i q^{19} +4.24264i q^{21} +21.5167 q^{23} -11.0718 q^{25} -5.19615 q^{27} +18.4219i q^{29} -15.4641 q^{31} -9.14162i q^{35} -52.5167 q^{37} +25.2156i q^{39} -67.3374i q^{41} +4.24264i q^{43} +11.1962 q^{45} -31.4641 q^{47} +43.0000 q^{49} +14.7613i q^{51} -17.0000 q^{53} +3.58630i q^{57} -22.1962 q^{59} +17.7556i q^{61} -7.34847i q^{63} -54.3321i q^{65} +63.0859 q^{67} -37.2679 q^{69} +82.7321 q^{71} -86.4900i q^{73} +19.1769 q^{75} +37.1213i q^{79} +9.00000 q^{81} +146.117i q^{83} -31.8062i q^{85} -31.9077i q^{87} -87.8756 q^{89} -35.6603 q^{91} +26.7846 q^{93} -7.72741i q^{95} -116.660 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{5} + 12 q^{9} - 12 q^{15} - 4 q^{23} - 72 q^{25} - 48 q^{31} - 120 q^{37} + 24 q^{45} - 112 q^{47} + 172 q^{49} - 68 q^{53} - 68 q^{59} - 4 q^{67} - 156 q^{69} + 324 q^{71} - 48 q^{75} + 36 q^{81}+ \cdots - 432 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73205 −0.577350
\(4\) 0 0
\(5\) 3.73205 0.746410 0.373205 0.927749i \(-0.378259\pi\)
0.373205 + 0.927749i \(0.378259\pi\)
\(6\) 0 0
\(7\) − 2.44949i − 0.349927i −0.984575 0.174964i \(-0.944019\pi\)
0.984575 0.174964i \(-0.0559808\pi\)
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) − 14.5582i − 1.11986i −0.828538 0.559932i \(-0.810827\pi\)
0.828538 0.559932i \(-0.189173\pi\)
\(14\) 0 0
\(15\) −6.46410 −0.430940
\(16\) 0 0
\(17\) − 8.52245i − 0.501320i −0.968075 0.250660i \(-0.919352\pi\)
0.968075 0.250660i \(-0.0806477\pi\)
\(18\) 0 0
\(19\) − 2.07055i − 0.108976i −0.998514 0.0544882i \(-0.982647\pi\)
0.998514 0.0544882i \(-0.0173527\pi\)
\(20\) 0 0
\(21\) 4.24264i 0.202031i
\(22\) 0 0
\(23\) 21.5167 0.935507 0.467753 0.883859i \(-0.345064\pi\)
0.467753 + 0.883859i \(0.345064\pi\)
\(24\) 0 0
\(25\) −11.0718 −0.442872
\(26\) 0 0
\(27\) −5.19615 −0.192450
\(28\) 0 0
\(29\) 18.4219i 0.635239i 0.948218 + 0.317620i \(0.102884\pi\)
−0.948218 + 0.317620i \(0.897116\pi\)
\(30\) 0 0
\(31\) −15.4641 −0.498842 −0.249421 0.968395i \(-0.580240\pi\)
−0.249421 + 0.968395i \(0.580240\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 9.14162i − 0.261189i
\(36\) 0 0
\(37\) −52.5167 −1.41937 −0.709685 0.704520i \(-0.751163\pi\)
−0.709685 + 0.704520i \(0.751163\pi\)
\(38\) 0 0
\(39\) 25.2156i 0.646554i
\(40\) 0 0
\(41\) − 67.3374i − 1.64238i −0.570658 0.821188i \(-0.693312\pi\)
0.570658 0.821188i \(-0.306688\pi\)
\(42\) 0 0
\(43\) 4.24264i 0.0986661i 0.998782 + 0.0493330i \(0.0157096\pi\)
−0.998782 + 0.0493330i \(0.984290\pi\)
\(44\) 0 0
\(45\) 11.1962 0.248803
\(46\) 0 0
\(47\) −31.4641 −0.669449 −0.334724 0.942316i \(-0.608643\pi\)
−0.334724 + 0.942316i \(0.608643\pi\)
\(48\) 0 0
\(49\) 43.0000 0.877551
\(50\) 0 0
\(51\) 14.7613i 0.289437i
\(52\) 0 0
\(53\) −17.0000 −0.320755 −0.160377 0.987056i \(-0.551271\pi\)
−0.160377 + 0.987056i \(0.551271\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.58630i 0.0629176i
\(58\) 0 0
\(59\) −22.1962 −0.376206 −0.188103 0.982149i \(-0.560234\pi\)
−0.188103 + 0.982149i \(0.560234\pi\)
\(60\) 0 0
\(61\) 17.7556i 0.291076i 0.989353 + 0.145538i \(0.0464913\pi\)
−0.989353 + 0.145538i \(0.953509\pi\)
\(62\) 0 0
\(63\) − 7.34847i − 0.116642i
\(64\) 0 0
\(65\) − 54.3321i − 0.835878i
\(66\) 0 0
\(67\) 63.0859 0.941580 0.470790 0.882245i \(-0.343969\pi\)
0.470790 + 0.882245i \(0.343969\pi\)
\(68\) 0 0
\(69\) −37.2679 −0.540115
\(70\) 0 0
\(71\) 82.7321 1.16524 0.582620 0.812745i \(-0.302028\pi\)
0.582620 + 0.812745i \(0.302028\pi\)
\(72\) 0 0
\(73\) − 86.4900i − 1.18479i −0.805646 0.592397i \(-0.798182\pi\)
0.805646 0.592397i \(-0.201818\pi\)
\(74\) 0 0
\(75\) 19.1769 0.255692
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 37.1213i 0.469890i 0.972009 + 0.234945i \(0.0754909\pi\)
−0.972009 + 0.234945i \(0.924509\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 146.117i 1.76045i 0.474558 + 0.880224i \(0.342608\pi\)
−0.474558 + 0.880224i \(0.657392\pi\)
\(84\) 0 0
\(85\) − 31.8062i − 0.374191i
\(86\) 0 0
\(87\) − 31.9077i − 0.366756i
\(88\) 0 0
\(89\) −87.8756 −0.987367 −0.493683 0.869642i \(-0.664350\pi\)
−0.493683 + 0.869642i \(0.664350\pi\)
\(90\) 0 0
\(91\) −35.6603 −0.391871
\(92\) 0 0
\(93\) 26.7846 0.288007
\(94\) 0 0
\(95\) − 7.72741i − 0.0813411i
\(96\) 0 0
\(97\) −116.660 −1.20268 −0.601342 0.798992i \(-0.705367\pi\)
−0.601342 + 0.798992i \(0.705367\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 50.9389i − 0.504345i −0.967682 0.252173i \(-0.918855\pi\)
0.967682 0.252173i \(-0.0811451\pi\)
\(102\) 0 0
\(103\) −160.904 −1.56217 −0.781086 0.624423i \(-0.785334\pi\)
−0.781086 + 0.624423i \(0.785334\pi\)
\(104\) 0 0
\(105\) 15.8338i 0.150798i
\(106\) 0 0
\(107\) − 172.121i − 1.60860i −0.594221 0.804302i \(-0.702539\pi\)
0.594221 0.804302i \(-0.297461\pi\)
\(108\) 0 0
\(109\) − 215.775i − 1.97959i −0.142495 0.989795i \(-0.545513\pi\)
0.142495 0.989795i \(-0.454487\pi\)
\(110\) 0 0
\(111\) 90.9615 0.819473
\(112\) 0 0
\(113\) −20.0718 −0.177627 −0.0888133 0.996048i \(-0.528307\pi\)
−0.0888133 + 0.996048i \(0.528307\pi\)
\(114\) 0 0
\(115\) 80.3013 0.698272
\(116\) 0 0
\(117\) − 43.6747i − 0.373288i
\(118\) 0 0
\(119\) −20.8756 −0.175426
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 116.632i 0.948226i
\(124\) 0 0
\(125\) −134.622 −1.07697
\(126\) 0 0
\(127\) 11.2394i 0.0884990i 0.999021 + 0.0442495i \(0.0140897\pi\)
−0.999021 + 0.0442495i \(0.985910\pi\)
\(128\) 0 0
\(129\) − 7.34847i − 0.0569649i
\(130\) 0 0
\(131\) − 158.493i − 1.20987i −0.796273 0.604937i \(-0.793198\pi\)
0.796273 0.604937i \(-0.206802\pi\)
\(132\) 0 0
\(133\) −5.07180 −0.0381338
\(134\) 0 0
\(135\) −19.3923 −0.143647
\(136\) 0 0
\(137\) −131.205 −0.957701 −0.478851 0.877896i \(-0.658946\pi\)
−0.478851 + 0.877896i \(0.658946\pi\)
\(138\) 0 0
\(139\) − 71.9417i − 0.517566i −0.965935 0.258783i \(-0.916678\pi\)
0.965935 0.258783i \(-0.0833215\pi\)
\(140\) 0 0
\(141\) 54.4974 0.386507
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 68.7516i 0.474149i
\(146\) 0 0
\(147\) −74.4782 −0.506654
\(148\) 0 0
\(149\) − 14.5509i − 0.0976574i −0.998807 0.0488287i \(-0.984451\pi\)
0.998807 0.0488287i \(-0.0155488\pi\)
\(150\) 0 0
\(151\) − 126.413i − 0.837169i −0.908178 0.418585i \(-0.862526\pi\)
0.908178 0.418585i \(-0.137474\pi\)
\(152\) 0 0
\(153\) − 25.5673i − 0.167107i
\(154\) 0 0
\(155\) −57.7128 −0.372341
\(156\) 0 0
\(157\) −124.967 −0.795966 −0.397983 0.917393i \(-0.630290\pi\)
−0.397983 + 0.917393i \(0.630290\pi\)
\(158\) 0 0
\(159\) 29.4449 0.185188
\(160\) 0 0
\(161\) − 52.7048i − 0.327359i
\(162\) 0 0
\(163\) 203.899 1.25091 0.625456 0.780259i \(-0.284913\pi\)
0.625456 + 0.780259i \(0.284913\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 157.384i − 0.942418i −0.882022 0.471209i \(-0.843818\pi\)
0.882022 0.471209i \(-0.156182\pi\)
\(168\) 0 0
\(169\) −42.9423 −0.254096
\(170\) 0 0
\(171\) − 6.21166i − 0.0363255i
\(172\) 0 0
\(173\) − 221.774i − 1.28193i −0.767570 0.640965i \(-0.778534\pi\)
0.767570 0.640965i \(-0.221466\pi\)
\(174\) 0 0
\(175\) 27.1203i 0.154973i
\(176\) 0 0
\(177\) 38.4449 0.217203
\(178\) 0 0
\(179\) −155.310 −0.867655 −0.433827 0.900996i \(-0.642837\pi\)
−0.433827 + 0.900996i \(0.642837\pi\)
\(180\) 0 0
\(181\) 2.01924 0.0111560 0.00557801 0.999984i \(-0.498224\pi\)
0.00557801 + 0.999984i \(0.498224\pi\)
\(182\) 0 0
\(183\) − 30.7537i − 0.168053i
\(184\) 0 0
\(185\) −195.995 −1.05943
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 12.7279i 0.0673435i
\(190\) 0 0
\(191\) 95.4256 0.499611 0.249805 0.968296i \(-0.419633\pi\)
0.249805 + 0.968296i \(0.419633\pi\)
\(192\) 0 0
\(193\) 65.3684i 0.338696i 0.985556 + 0.169348i \(0.0541662\pi\)
−0.985556 + 0.169348i \(0.945834\pi\)
\(194\) 0 0
\(195\) 94.1059i 0.482595i
\(196\) 0 0
\(197\) − 343.406i − 1.74318i −0.490236 0.871590i \(-0.663089\pi\)
0.490236 0.871590i \(-0.336911\pi\)
\(198\) 0 0
\(199\) 258.081 1.29689 0.648444 0.761262i \(-0.275420\pi\)
0.648444 + 0.761262i \(0.275420\pi\)
\(200\) 0 0
\(201\) −109.268 −0.543622
\(202\) 0 0
\(203\) 45.1244 0.222287
\(204\) 0 0
\(205\) − 251.307i − 1.22589i
\(206\) 0 0
\(207\) 64.5500 0.311836
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 11.1923i − 0.0530439i −0.999648 0.0265219i \(-0.991557\pi\)
0.999648 0.0265219i \(-0.00844318\pi\)
\(212\) 0 0
\(213\) −143.296 −0.672752
\(214\) 0 0
\(215\) 15.8338i 0.0736454i
\(216\) 0 0
\(217\) 37.8792i 0.174558i
\(218\) 0 0
\(219\) 149.805i 0.684042i
\(220\) 0 0
\(221\) −124.072 −0.561411
\(222\) 0 0
\(223\) −312.956 −1.40339 −0.701696 0.712477i \(-0.747573\pi\)
−0.701696 + 0.712477i \(0.747573\pi\)
\(224\) 0 0
\(225\) −33.2154 −0.147624
\(226\) 0 0
\(227\) 240.984i 1.06160i 0.847496 + 0.530801i \(0.178109\pi\)
−0.847496 + 0.530801i \(0.821891\pi\)
\(228\) 0 0
\(229\) 241.406 1.05418 0.527088 0.849811i \(-0.323284\pi\)
0.527088 + 0.849811i \(0.323284\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 267.391i − 1.14760i −0.818996 0.573800i \(-0.805469\pi\)
0.818996 0.573800i \(-0.194531\pi\)
\(234\) 0 0
\(235\) −117.426 −0.499684
\(236\) 0 0
\(237\) − 64.2959i − 0.271291i
\(238\) 0 0
\(239\) − 301.849i − 1.26297i −0.775389 0.631484i \(-0.782446\pi\)
0.775389 0.631484i \(-0.217554\pi\)
\(240\) 0 0
\(241\) 68.1125i 0.282625i 0.989965 + 0.141312i \(0.0451322\pi\)
−0.989965 + 0.141312i \(0.954868\pi\)
\(242\) 0 0
\(243\) −15.5885 −0.0641500
\(244\) 0 0
\(245\) 160.478 0.655013
\(246\) 0 0
\(247\) −30.1436 −0.122039
\(248\) 0 0
\(249\) − 253.083i − 1.01640i
\(250\) 0 0
\(251\) −480.147 −1.91294 −0.956469 0.291834i \(-0.905734\pi\)
−0.956469 + 0.291834i \(0.905734\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 55.0900i 0.216039i
\(256\) 0 0
\(257\) 205.252 0.798648 0.399324 0.916810i \(-0.369245\pi\)
0.399324 + 0.916810i \(0.369245\pi\)
\(258\) 0 0
\(259\) 128.639i 0.496676i
\(260\) 0 0
\(261\) 55.2658i 0.211746i
\(262\) 0 0
\(263\) 138.355i 0.526066i 0.964787 + 0.263033i \(0.0847228\pi\)
−0.964787 + 0.263033i \(0.915277\pi\)
\(264\) 0 0
\(265\) −63.4449 −0.239415
\(266\) 0 0
\(267\) 152.205 0.570056
\(268\) 0 0
\(269\) −92.6640 −0.344476 −0.172238 0.985055i \(-0.555100\pi\)
−0.172238 + 0.985055i \(0.555100\pi\)
\(270\) 0 0
\(271\) 456.662i 1.68510i 0.538618 + 0.842550i \(0.318947\pi\)
−0.538618 + 0.842550i \(0.681053\pi\)
\(272\) 0 0
\(273\) 61.7654 0.226247
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 517.511i 1.86827i 0.356921 + 0.934135i \(0.383827\pi\)
−0.356921 + 0.934135i \(0.616173\pi\)
\(278\) 0 0
\(279\) −46.3923 −0.166281
\(280\) 0 0
\(281\) − 345.987i − 1.23127i −0.788031 0.615636i \(-0.788899\pi\)
0.788031 0.615636i \(-0.211101\pi\)
\(282\) 0 0
\(283\) 153.689i 0.543070i 0.962429 + 0.271535i \(0.0875312\pi\)
−0.962429 + 0.271535i \(0.912469\pi\)
\(284\) 0 0
\(285\) 13.3843i 0.0469623i
\(286\) 0 0
\(287\) −164.942 −0.574712
\(288\) 0 0
\(289\) 216.368 0.748678
\(290\) 0 0
\(291\) 202.061 0.694369
\(292\) 0 0
\(293\) 8.66382i 0.0295693i 0.999891 + 0.0147847i \(0.00470628\pi\)
−0.999891 + 0.0147847i \(0.995294\pi\)
\(294\) 0 0
\(295\) −82.8372 −0.280804
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 313.245i − 1.04764i
\(300\) 0 0
\(301\) 10.3923 0.0345259
\(302\) 0 0
\(303\) 88.2288i 0.291184i
\(304\) 0 0
\(305\) 66.2650i 0.217262i
\(306\) 0 0
\(307\) 335.263i 1.09206i 0.837765 + 0.546031i \(0.183862\pi\)
−0.837765 + 0.546031i \(0.816138\pi\)
\(308\) 0 0
\(309\) 278.694 0.901921
\(310\) 0 0
\(311\) 376.105 1.20934 0.604671 0.796476i \(-0.293305\pi\)
0.604671 + 0.796476i \(0.293305\pi\)
\(312\) 0 0
\(313\) 6.06149 0.0193658 0.00968289 0.999953i \(-0.496918\pi\)
0.00968289 + 0.999953i \(0.496918\pi\)
\(314\) 0 0
\(315\) − 27.4249i − 0.0870630i
\(316\) 0 0
\(317\) −3.98969 −0.0125858 −0.00629289 0.999980i \(-0.502003\pi\)
−0.00629289 + 0.999980i \(0.502003\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 298.122i 0.928728i
\(322\) 0 0
\(323\) −17.6462 −0.0546321
\(324\) 0 0
\(325\) 161.186i 0.495956i
\(326\) 0 0
\(327\) 373.734i 1.14292i
\(328\) 0 0
\(329\) 77.0710i 0.234258i
\(330\) 0 0
\(331\) 310.105 0.936873 0.468437 0.883497i \(-0.344817\pi\)
0.468437 + 0.883497i \(0.344817\pi\)
\(332\) 0 0
\(333\) −157.550 −0.473123
\(334\) 0 0
\(335\) 235.440 0.702805
\(336\) 0 0
\(337\) − 79.5849i − 0.236157i −0.993004 0.118078i \(-0.962327\pi\)
0.993004 0.118078i \(-0.0376734\pi\)
\(338\) 0 0
\(339\) 34.7654 0.102553
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 225.353i − 0.657006i
\(344\) 0 0
\(345\) −139.086 −0.403147
\(346\) 0 0
\(347\) 338.639i 0.975904i 0.872870 + 0.487952i \(0.162256\pi\)
−0.872870 + 0.487952i \(0.837744\pi\)
\(348\) 0 0
\(349\) 228.618i 0.655064i 0.944840 + 0.327532i \(0.106217\pi\)
−0.944840 + 0.327532i \(0.893783\pi\)
\(350\) 0 0
\(351\) 75.6468i 0.215518i
\(352\) 0 0
\(353\) −699.932 −1.98281 −0.991405 0.130828i \(-0.958236\pi\)
−0.991405 + 0.130828i \(0.958236\pi\)
\(354\) 0 0
\(355\) 308.760 0.869747
\(356\) 0 0
\(357\) 36.1577 0.101282
\(358\) 0 0
\(359\) 469.666i 1.30826i 0.756382 + 0.654130i \(0.226965\pi\)
−0.756382 + 0.654130i \(0.773035\pi\)
\(360\) 0 0
\(361\) 356.713 0.988124
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 322.785i − 0.884343i
\(366\) 0 0
\(367\) 457.373 1.24625 0.623124 0.782123i \(-0.285863\pi\)
0.623124 + 0.782123i \(0.285863\pi\)
\(368\) 0 0
\(369\) − 202.012i − 0.547459i
\(370\) 0 0
\(371\) 41.6413i 0.112241i
\(372\) 0 0
\(373\) − 70.3915i − 0.188717i −0.995538 0.0943586i \(-0.969920\pi\)
0.995538 0.0943586i \(-0.0300800\pi\)
\(374\) 0 0
\(375\) 233.172 0.621791
\(376\) 0 0
\(377\) 268.191 0.711382
\(378\) 0 0
\(379\) 195.611 0.516125 0.258063 0.966128i \(-0.416916\pi\)
0.258063 + 0.966128i \(0.416916\pi\)
\(380\) 0 0
\(381\) − 19.4672i − 0.0510949i
\(382\) 0 0
\(383\) −257.458 −0.672213 −0.336106 0.941824i \(-0.609110\pi\)
−0.336106 + 0.941824i \(0.609110\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 12.7279i 0.0328887i
\(388\) 0 0
\(389\) 734.878 1.88915 0.944573 0.328301i \(-0.106476\pi\)
0.944573 + 0.328301i \(0.106476\pi\)
\(390\) 0 0
\(391\) − 183.375i − 0.468989i
\(392\) 0 0
\(393\) 274.519i 0.698521i
\(394\) 0 0
\(395\) 138.539i 0.350730i
\(396\) 0 0
\(397\) 154.138 0.388258 0.194129 0.980976i \(-0.437812\pi\)
0.194129 + 0.980976i \(0.437812\pi\)
\(398\) 0 0
\(399\) 8.78461 0.0220166
\(400\) 0 0
\(401\) −456.128 −1.13748 −0.568738 0.822519i \(-0.692568\pi\)
−0.568738 + 0.822519i \(0.692568\pi\)
\(402\) 0 0
\(403\) 225.130i 0.558635i
\(404\) 0 0
\(405\) 33.5885 0.0829345
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 401.803i 0.982402i 0.871046 + 0.491201i \(0.163442\pi\)
−0.871046 + 0.491201i \(0.836558\pi\)
\(410\) 0 0
\(411\) 227.254 0.552929
\(412\) 0 0
\(413\) 54.3692i 0.131645i
\(414\) 0 0
\(415\) 545.317i 1.31402i
\(416\) 0 0
\(417\) 124.607i 0.298817i
\(418\) 0 0
\(419\) −502.922 −1.20029 −0.600145 0.799891i \(-0.704891\pi\)
−0.600145 + 0.799891i \(0.704891\pi\)
\(420\) 0 0
\(421\) −121.182 −0.287843 −0.143922 0.989589i \(-0.545971\pi\)
−0.143922 + 0.989589i \(0.545971\pi\)
\(422\) 0 0
\(423\) −94.3923 −0.223150
\(424\) 0 0
\(425\) 94.3588i 0.222021i
\(426\) 0 0
\(427\) 43.4923 0.101855
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 435.199i − 1.00974i −0.863195 0.504871i \(-0.831540\pi\)
0.863195 0.504871i \(-0.168460\pi\)
\(432\) 0 0
\(433\) 256.142 0.591552 0.295776 0.955257i \(-0.404422\pi\)
0.295776 + 0.955257i \(0.404422\pi\)
\(434\) 0 0
\(435\) − 119.081i − 0.273750i
\(436\) 0 0
\(437\) − 44.5514i − 0.101948i
\(438\) 0 0
\(439\) 755.864i 1.72179i 0.508785 + 0.860893i \(0.330095\pi\)
−0.508785 + 0.860893i \(0.669905\pi\)
\(440\) 0 0
\(441\) 129.000 0.292517
\(442\) 0 0
\(443\) 678.771 1.53221 0.766107 0.642713i \(-0.222191\pi\)
0.766107 + 0.642713i \(0.222191\pi\)
\(444\) 0 0
\(445\) −327.956 −0.736981
\(446\) 0 0
\(447\) 25.2030i 0.0563825i
\(448\) 0 0
\(449\) 297.024 0.661524 0.330762 0.943714i \(-0.392694\pi\)
0.330762 + 0.943714i \(0.392694\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 218.953i 0.483340i
\(454\) 0 0
\(455\) −133.086 −0.292496
\(456\) 0 0
\(457\) − 541.146i − 1.18413i −0.805891 0.592064i \(-0.798313\pi\)
0.805891 0.592064i \(-0.201687\pi\)
\(458\) 0 0
\(459\) 44.2839i 0.0964791i
\(460\) 0 0
\(461\) 393.607i 0.853812i 0.904296 + 0.426906i \(0.140396\pi\)
−0.904296 + 0.426906i \(0.859604\pi\)
\(462\) 0 0
\(463\) 9.57576 0.0206820 0.0103410 0.999947i \(-0.496708\pi\)
0.0103410 + 0.999947i \(0.496708\pi\)
\(464\) 0 0
\(465\) 99.9615 0.214971
\(466\) 0 0
\(467\) −53.2013 −0.113921 −0.0569607 0.998376i \(-0.518141\pi\)
−0.0569607 + 0.998376i \(0.518141\pi\)
\(468\) 0 0
\(469\) − 154.528i − 0.329484i
\(470\) 0 0
\(471\) 216.449 0.459551
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 22.9247i 0.0482626i
\(476\) 0 0
\(477\) −51.0000 −0.106918
\(478\) 0 0
\(479\) − 594.200i − 1.24050i −0.784404 0.620250i \(-0.787031\pi\)
0.784404 0.620250i \(-0.212969\pi\)
\(480\) 0 0
\(481\) 764.550i 1.58950i
\(482\) 0 0
\(483\) 91.2875i 0.189001i
\(484\) 0 0
\(485\) −435.382 −0.897695
\(486\) 0 0
\(487\) 39.2398 0.0805745 0.0402873 0.999188i \(-0.487173\pi\)
0.0402873 + 0.999188i \(0.487173\pi\)
\(488\) 0 0
\(489\) −353.163 −0.722214
\(490\) 0 0
\(491\) 508.459i 1.03556i 0.855515 + 0.517779i \(0.173241\pi\)
−0.855515 + 0.517779i \(0.826759\pi\)
\(492\) 0 0
\(493\) 157.000 0.318458
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 202.651i − 0.407749i
\(498\) 0 0
\(499\) −154.655 −0.309930 −0.154965 0.987920i \(-0.549526\pi\)
−0.154965 + 0.987920i \(0.549526\pi\)
\(500\) 0 0
\(501\) 272.597i 0.544105i
\(502\) 0 0
\(503\) − 987.208i − 1.96264i −0.192382 0.981320i \(-0.561621\pi\)
0.192382 0.981320i \(-0.438379\pi\)
\(504\) 0 0
\(505\) − 190.107i − 0.376449i
\(506\) 0 0
\(507\) 74.3782 0.146703
\(508\) 0 0
\(509\) −247.167 −0.485593 −0.242796 0.970077i \(-0.578065\pi\)
−0.242796 + 0.970077i \(0.578065\pi\)
\(510\) 0 0
\(511\) −211.856 −0.414592
\(512\) 0 0
\(513\) 10.7589i 0.0209725i
\(514\) 0 0
\(515\) −600.501 −1.16602
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 384.124i 0.740123i
\(520\) 0 0
\(521\) 925.395 1.77619 0.888095 0.459660i \(-0.152029\pi\)
0.888095 + 0.459660i \(0.152029\pi\)
\(522\) 0 0
\(523\) − 322.049i − 0.615773i −0.951423 0.307886i \(-0.900378\pi\)
0.951423 0.307886i \(-0.0996217\pi\)
\(524\) 0 0
\(525\) − 46.9737i − 0.0894736i
\(526\) 0 0
\(527\) 131.792i 0.250080i
\(528\) 0 0
\(529\) −66.0333 −0.124827
\(530\) 0 0
\(531\) −66.5885 −0.125402
\(532\) 0 0
\(533\) −980.314 −1.83924
\(534\) 0 0
\(535\) − 642.363i − 1.20068i
\(536\) 0 0
\(537\) 269.005 0.500941
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 334.891i 0.619023i 0.950896 + 0.309511i \(0.100165\pi\)
−0.950896 + 0.309511i \(0.899835\pi\)
\(542\) 0 0
\(543\) −3.49742 −0.00644093
\(544\) 0 0
\(545\) − 805.285i − 1.47759i
\(546\) 0 0
\(547\) 678.016i 1.23952i 0.784793 + 0.619758i \(0.212769\pi\)
−0.784793 + 0.619758i \(0.787231\pi\)
\(548\) 0 0
\(549\) 53.2669i 0.0970254i
\(550\) 0 0
\(551\) 38.1436 0.0692261
\(552\) 0 0
\(553\) 90.9282 0.164427
\(554\) 0 0
\(555\) 339.473 0.611663
\(556\) 0 0
\(557\) 73.3487i 0.131685i 0.997830 + 0.0658426i \(0.0209735\pi\)
−0.997830 + 0.0658426i \(0.979026\pi\)
\(558\) 0 0
\(559\) 61.7654 0.110493
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 271.001i − 0.481352i −0.970605 0.240676i \(-0.922631\pi\)
0.970605 0.240676i \(-0.0773692\pi\)
\(564\) 0 0
\(565\) −74.9090 −0.132582
\(566\) 0 0
\(567\) − 22.0454i − 0.0388808i
\(568\) 0 0
\(569\) 967.667i 1.70064i 0.526263 + 0.850322i \(0.323593\pi\)
−0.526263 + 0.850322i \(0.676407\pi\)
\(570\) 0 0
\(571\) 852.736i 1.49341i 0.665156 + 0.746704i \(0.268365\pi\)
−0.665156 + 0.746704i \(0.731635\pi\)
\(572\) 0 0
\(573\) −165.282 −0.288450
\(574\) 0 0
\(575\) −238.228 −0.414310
\(576\) 0 0
\(577\) −628.058 −1.08849 −0.544244 0.838927i \(-0.683183\pi\)
−0.544244 + 0.838927i \(0.683183\pi\)
\(578\) 0 0
\(579\) − 113.221i − 0.195546i
\(580\) 0 0
\(581\) 357.913 0.616029
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) − 162.996i − 0.278626i
\(586\) 0 0
\(587\) 633.874 1.07985 0.539927 0.841712i \(-0.318452\pi\)
0.539927 + 0.841712i \(0.318452\pi\)
\(588\) 0 0
\(589\) 32.0192i 0.0543620i
\(590\) 0 0
\(591\) 594.797i 1.00643i
\(592\) 0 0
\(593\) − 615.166i − 1.03738i −0.854963 0.518689i \(-0.826420\pi\)
0.854963 0.518689i \(-0.173580\pi\)
\(594\) 0 0
\(595\) −77.9090 −0.130939
\(596\) 0 0
\(597\) −447.009 −0.748759
\(598\) 0 0
\(599\) 347.503 0.580138 0.290069 0.957006i \(-0.406322\pi\)
0.290069 + 0.957006i \(0.406322\pi\)
\(600\) 0 0
\(601\) − 521.149i − 0.867137i −0.901121 0.433569i \(-0.857254\pi\)
0.901121 0.433569i \(-0.142746\pi\)
\(602\) 0 0
\(603\) 189.258 0.313860
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 568.291i − 0.936229i −0.883668 0.468114i \(-0.844934\pi\)
0.883668 0.468114i \(-0.155066\pi\)
\(608\) 0 0
\(609\) −78.1577 −0.128338
\(610\) 0 0
\(611\) 458.062i 0.749692i
\(612\) 0 0
\(613\) − 622.784i − 1.01596i −0.861369 0.507981i \(-0.830392\pi\)
0.861369 0.507981i \(-0.169608\pi\)
\(614\) 0 0
\(615\) 435.276i 0.707766i
\(616\) 0 0
\(617\) −533.249 −0.864260 −0.432130 0.901811i \(-0.642238\pi\)
−0.432130 + 0.901811i \(0.642238\pi\)
\(618\) 0 0
\(619\) 696.291 1.12486 0.562432 0.826843i \(-0.309866\pi\)
0.562432 + 0.826843i \(0.309866\pi\)
\(620\) 0 0
\(621\) −111.804 −0.180038
\(622\) 0 0
\(623\) 215.250i 0.345506i
\(624\) 0 0
\(625\) −225.620 −0.360993
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 447.570i 0.711559i
\(630\) 0 0
\(631\) 193.106 0.306032 0.153016 0.988224i \(-0.451101\pi\)
0.153016 + 0.988224i \(0.451101\pi\)
\(632\) 0 0
\(633\) 19.3856i 0.0306249i
\(634\) 0 0
\(635\) 41.9459i 0.0660566i
\(636\) 0 0
\(637\) − 626.004i − 0.982738i
\(638\) 0 0
\(639\) 248.196 0.388413
\(640\) 0 0
\(641\) 695.788 1.08547 0.542737 0.839903i \(-0.317388\pi\)
0.542737 + 0.839903i \(0.317388\pi\)
\(642\) 0 0
\(643\) 678.908 1.05584 0.527922 0.849293i \(-0.322971\pi\)
0.527922 + 0.849293i \(0.322971\pi\)
\(644\) 0 0
\(645\) − 27.4249i − 0.0425192i
\(646\) 0 0
\(647\) −78.8897 −0.121932 −0.0609658 0.998140i \(-0.519418\pi\)
−0.0609658 + 0.998140i \(0.519418\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) − 65.6086i − 0.100781i
\(652\) 0 0
\(653\) 909.549 1.39288 0.696438 0.717617i \(-0.254767\pi\)
0.696438 + 0.717617i \(0.254767\pi\)
\(654\) 0 0
\(655\) − 591.506i − 0.903062i
\(656\) 0 0
\(657\) − 259.470i − 0.394932i
\(658\) 0 0
\(659\) − 289.109i − 0.438708i −0.975645 0.219354i \(-0.929605\pi\)
0.975645 0.219354i \(-0.0703950\pi\)
\(660\) 0 0
\(661\) −678.682 −1.02675 −0.513375 0.858164i \(-0.671605\pi\)
−0.513375 + 0.858164i \(0.671605\pi\)
\(662\) 0 0
\(663\) 214.899 0.324131
\(664\) 0 0
\(665\) −18.9282 −0.0284635
\(666\) 0 0
\(667\) 396.379i 0.594271i
\(668\) 0 0
\(669\) 542.056 0.810249
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 98.1409i − 0.145826i −0.997338 0.0729130i \(-0.976770\pi\)
0.997338 0.0729130i \(-0.0232295\pi\)
\(674\) 0 0
\(675\) 57.5307 0.0852307
\(676\) 0 0
\(677\) 228.146i 0.336996i 0.985702 + 0.168498i \(0.0538917\pi\)
−0.985702 + 0.168498i \(0.946108\pi\)
\(678\) 0 0
\(679\) 285.758i 0.420851i
\(680\) 0 0
\(681\) − 417.396i − 0.612916i
\(682\) 0 0
\(683\) 623.604 0.913036 0.456518 0.889714i \(-0.349096\pi\)
0.456518 + 0.889714i \(0.349096\pi\)
\(684\) 0 0
\(685\) −489.664 −0.714838
\(686\) 0 0
\(687\) −418.128 −0.608629
\(688\) 0 0
\(689\) 247.490i 0.359202i
\(690\) 0 0
\(691\) −63.4603 −0.0918384 −0.0459192 0.998945i \(-0.514622\pi\)
−0.0459192 + 0.998945i \(0.514622\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 268.490i − 0.386317i
\(696\) 0 0
\(697\) −573.879 −0.823356
\(698\) 0 0
\(699\) 463.134i 0.662567i
\(700\) 0 0
\(701\) − 807.140i − 1.15141i −0.817657 0.575706i \(-0.804727\pi\)
0.817657 0.575706i \(-0.195273\pi\)
\(702\) 0 0
\(703\) 108.738i 0.154678i
\(704\) 0 0
\(705\) 203.387 0.288492
\(706\) 0 0
\(707\) −124.774 −0.176484
\(708\) 0 0
\(709\) 167.149 0.235753 0.117876 0.993028i \(-0.462391\pi\)
0.117876 + 0.993028i \(0.462391\pi\)
\(710\) 0 0
\(711\) 111.364i 0.156630i
\(712\) 0 0
\(713\) −332.736 −0.466670
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 522.818i 0.729175i
\(718\) 0 0
\(719\) −1320.60 −1.83671 −0.918356 0.395755i \(-0.870483\pi\)
−0.918356 + 0.395755i \(0.870483\pi\)
\(720\) 0 0
\(721\) 394.132i 0.546647i
\(722\) 0 0
\(723\) − 117.974i − 0.163173i
\(724\) 0 0
\(725\) − 203.964i − 0.281330i
\(726\) 0 0
\(727\) 333.850 0.459216 0.229608 0.973283i \(-0.426256\pi\)
0.229608 + 0.973283i \(0.426256\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 36.1577 0.0494633
\(732\) 0 0
\(733\) 156.175i 0.213063i 0.994309 + 0.106532i \(0.0339745\pi\)
−0.994309 + 0.106532i \(0.966025\pi\)
\(734\) 0 0
\(735\) −277.956 −0.378172
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1292.40i 1.74885i 0.485162 + 0.874424i \(0.338760\pi\)
−0.485162 + 0.874424i \(0.661240\pi\)
\(740\) 0 0
\(741\) 52.2102 0.0704592
\(742\) 0 0
\(743\) 760.201i 1.02315i 0.859238 + 0.511576i \(0.170938\pi\)
−0.859238 + 0.511576i \(0.829062\pi\)
\(744\) 0 0
\(745\) − 54.3049i − 0.0728925i
\(746\) 0 0
\(747\) 438.352i 0.586816i
\(748\) 0 0
\(749\) −421.608 −0.562894
\(750\) 0 0
\(751\) 481.055 0.640553 0.320276 0.947324i \(-0.396224\pi\)
0.320276 + 0.947324i \(0.396224\pi\)
\(752\) 0 0
\(753\) 831.640 1.10444
\(754\) 0 0
\(755\) − 471.778i − 0.624871i
\(756\) 0 0
\(757\) 509.344 0.672845 0.336422 0.941711i \(-0.390783\pi\)
0.336422 + 0.941711i \(0.390783\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 98.2417i 0.129096i 0.997915 + 0.0645478i \(0.0205605\pi\)
−0.997915 + 0.0645478i \(0.979440\pi\)
\(762\) 0 0
\(763\) −528.540 −0.692713
\(764\) 0 0
\(765\) − 95.4186i − 0.124730i
\(766\) 0 0
\(767\) 323.137i 0.421300i
\(768\) 0 0
\(769\) − 286.771i − 0.372914i −0.982463 0.186457i \(-0.940300\pi\)
0.982463 0.186457i \(-0.0597005\pi\)
\(770\) 0 0
\(771\) −355.508 −0.461100
\(772\) 0 0
\(773\) 31.6434 0.0409358 0.0204679 0.999791i \(-0.493484\pi\)
0.0204679 + 0.999791i \(0.493484\pi\)
\(774\) 0 0
\(775\) 171.215 0.220923
\(776\) 0 0
\(777\) − 222.809i − 0.286756i
\(778\) 0 0
\(779\) −139.426 −0.178980
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) − 95.7232i − 0.122252i
\(784\) 0 0
\(785\) −466.382 −0.594117
\(786\) 0 0
\(787\) 303.394i 0.385507i 0.981247 + 0.192754i \(0.0617418\pi\)
−0.981247 + 0.192754i \(0.938258\pi\)
\(788\) 0 0
\(789\) − 239.639i − 0.303724i
\(790\) 0 0
\(791\) 49.1657i 0.0621563i
\(792\) 0 0
\(793\) 258.491 0.325966
\(794\) 0 0
\(795\) 109.890 0.138226
\(796\) 0 0
\(797\) −107.836 −0.135302 −0.0676511 0.997709i \(-0.521550\pi\)
−0.0676511 + 0.997709i \(0.521550\pi\)
\(798\) 0 0
\(799\) 268.151i 0.335608i
\(800\) 0 0
\(801\) −263.627 −0.329122
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) − 196.697i − 0.244344i
\(806\) 0 0
\(807\) 160.499 0.198883
\(808\) 0 0
\(809\) 276.782i 0.342128i 0.985260 + 0.171064i \(0.0547205\pi\)
−0.985260 + 0.171064i \(0.945279\pi\)
\(810\) 0 0
\(811\) − 63.0683i − 0.0777661i −0.999244 0.0388830i \(-0.987620\pi\)
0.999244 0.0388830i \(-0.0123800\pi\)
\(812\) 0 0
\(813\) − 790.962i − 0.972893i
\(814\) 0 0
\(815\) 760.960 0.933693
\(816\) 0 0
\(817\) 8.78461 0.0107523
\(818\) 0 0
\(819\) −106.981 −0.130624
\(820\) 0 0
\(821\) 596.231i 0.726225i 0.931745 + 0.363112i \(0.118286\pi\)
−0.931745 + 0.363112i \(0.881714\pi\)
\(822\) 0 0
\(823\) −1036.79 −1.25977 −0.629884 0.776690i \(-0.716897\pi\)
−0.629884 + 0.776690i \(0.716897\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 460.026i − 0.556258i −0.960544 0.278129i \(-0.910286\pi\)
0.960544 0.278129i \(-0.0897143\pi\)
\(828\) 0 0
\(829\) 782.069 0.943388 0.471694 0.881762i \(-0.343643\pi\)
0.471694 + 0.881762i \(0.343643\pi\)
\(830\) 0 0
\(831\) − 896.355i − 1.07865i
\(832\) 0 0
\(833\) − 366.465i − 0.439934i
\(834\) 0 0
\(835\) − 587.365i − 0.703431i
\(836\) 0 0
\(837\) 80.3538 0.0960022
\(838\) 0 0
\(839\) −1043.69 −1.24397 −0.621986 0.783029i \(-0.713674\pi\)
−0.621986 + 0.783029i \(0.713674\pi\)
\(840\) 0 0
\(841\) 501.632 0.596471
\(842\) 0 0
\(843\) 599.268i 0.710875i
\(844\) 0 0
\(845\) −160.263 −0.189660
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) − 266.197i − 0.313541i
\(850\) 0 0
\(851\) −1129.98 −1.32783
\(852\) 0 0
\(853\) 598.911i 0.702123i 0.936352 + 0.351062i \(0.114179\pi\)
−0.936352 + 0.351062i \(0.885821\pi\)
\(854\) 0 0
\(855\) − 23.1822i − 0.0271137i
\(856\) 0 0
\(857\) 1011.20i 1.17993i 0.807428 + 0.589966i \(0.200859\pi\)
−0.807428 + 0.589966i \(0.799141\pi\)
\(858\) 0 0
\(859\) 1066.19 1.24120 0.620602 0.784126i \(-0.286888\pi\)
0.620602 + 0.784126i \(0.286888\pi\)
\(860\) 0 0
\(861\) 285.688 0.331810
\(862\) 0 0
\(863\) 1013.93 1.17489 0.587447 0.809262i \(-0.300133\pi\)
0.587447 + 0.809262i \(0.300133\pi\)
\(864\) 0 0
\(865\) − 827.672i − 0.956846i
\(866\) 0 0
\(867\) −374.760 −0.432249
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) − 918.419i − 1.05444i
\(872\) 0 0
\(873\) −349.981 −0.400894
\(874\) 0 0
\(875\) 329.755i 0.376862i
\(876\) 0 0
\(877\) − 886.167i − 1.01045i −0.862987 0.505226i \(-0.831409\pi\)
0.862987 0.505226i \(-0.168591\pi\)
\(878\) 0 0
\(879\) − 15.0062i − 0.0170719i
\(880\) 0 0
\(881\) −267.175 −0.303263 −0.151631 0.988437i \(-0.548453\pi\)
−0.151631 + 0.988437i \(0.548453\pi\)
\(882\) 0 0
\(883\) −1265.37 −1.43303 −0.716516 0.697571i \(-0.754264\pi\)
−0.716516 + 0.697571i \(0.754264\pi\)
\(884\) 0 0
\(885\) 143.478 0.162122
\(886\) 0 0
\(887\) − 747.020i − 0.842187i −0.907017 0.421094i \(-0.861646\pi\)
0.907017 0.421094i \(-0.138354\pi\)
\(888\) 0 0
\(889\) 27.5307 0.0309682
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 65.1481i 0.0729542i
\(894\) 0 0
\(895\) −579.626 −0.647626
\(896\) 0 0
\(897\) 542.556i 0.604856i
\(898\) 0 0
\(899\) − 284.879i − 0.316884i
\(900\) 0 0
\(901\) 144.882i 0.160801i
\(902\) 0 0
\(903\) −18.0000 −0.0199336
\(904\) 0 0
\(905\) 7.53590 0.00832696
\(906\) 0 0
\(907\) 851.976 0.939334 0.469667 0.882844i \(-0.344374\pi\)
0.469667 + 0.882844i \(0.344374\pi\)
\(908\) 0 0
\(909\) − 152.817i − 0.168115i
\(910\) 0 0
\(911\) 681.419 0.747990 0.373995 0.927431i \(-0.377988\pi\)
0.373995 + 0.927431i \(0.377988\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) − 114.774i − 0.125436i
\(916\) 0 0
\(917\) −388.228 −0.423368
\(918\) 0 0
\(919\) 1041.02i 1.13277i 0.824140 + 0.566386i \(0.191659\pi\)
−0.824140 + 0.566386i \(0.808341\pi\)
\(920\) 0 0
\(921\) − 580.692i − 0.630502i
\(922\) 0 0
\(923\) − 1204.43i − 1.30491i
\(924\) 0 0
\(925\) 581.454 0.628599
\(926\) 0 0
\(927\) −482.711 −0.520724
\(928\) 0 0
\(929\) 80.7437 0.0869147 0.0434573 0.999055i \(-0.486163\pi\)
0.0434573 + 0.999055i \(0.486163\pi\)
\(930\) 0 0
\(931\) − 89.0338i − 0.0956324i
\(932\) 0 0
\(933\) −651.433 −0.698213
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 627.884i − 0.670101i −0.942200 0.335050i \(-0.891247\pi\)
0.942200 0.335050i \(-0.108753\pi\)
\(938\) 0 0
\(939\) −10.4988 −0.0111808
\(940\) 0 0
\(941\) 86.1721i 0.0915750i 0.998951 + 0.0457875i \(0.0145797\pi\)
−0.998951 + 0.0457875i \(0.985420\pi\)
\(942\) 0 0
\(943\) − 1448.88i − 1.53645i
\(944\) 0 0
\(945\) 47.5013i 0.0502659i
\(946\) 0 0
\(947\) 202.876 0.214230 0.107115 0.994247i \(-0.465839\pi\)
0.107115 + 0.994247i \(0.465839\pi\)
\(948\) 0 0
\(949\) −1259.14 −1.32681
\(950\) 0 0
\(951\) 6.91035 0.00726640
\(952\) 0 0
\(953\) − 1175.60i − 1.23358i −0.787128 0.616790i \(-0.788433\pi\)
0.787128 0.616790i \(-0.211567\pi\)
\(954\) 0 0
\(955\) 356.133 0.372914
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 321.385i 0.335126i
\(960\) 0 0
\(961\) −721.862 −0.751157
\(962\) 0 0
\(963\) − 516.362i − 0.536201i
\(964\) 0 0
\(965\) 243.958i 0.252806i
\(966\) 0 0
\(967\) − 89.7392i − 0.0928016i −0.998923 0.0464008i \(-0.985225\pi\)
0.998923 0.0464008i \(-0.0147751\pi\)
\(968\) 0 0
\(969\) 30.5641 0.0315419
\(970\) 0 0
\(971\) −906.683 −0.933762 −0.466881 0.884320i \(-0.654622\pi\)
−0.466881 + 0.884320i \(0.654622\pi\)
\(972\) 0 0
\(973\) −176.221 −0.181111
\(974\) 0 0
\(975\) − 279.182i − 0.286341i
\(976\) 0 0
\(977\) −674.380 −0.690255 −0.345128 0.938556i \(-0.612164\pi\)
−0.345128 + 0.938556i \(0.612164\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) − 647.326i − 0.659864i
\(982\) 0 0
\(983\) −697.577 −0.709641 −0.354820 0.934935i \(-0.615458\pi\)
−0.354820 + 0.934935i \(0.615458\pi\)
\(984\) 0 0
\(985\) − 1281.61i − 1.30113i
\(986\) 0 0
\(987\) − 133.491i − 0.135249i
\(988\) 0 0
\(989\) 91.2875i 0.0923028i
\(990\) 0 0
\(991\) −995.751 −1.00479 −0.502397 0.864637i \(-0.667548\pi\)
−0.502397 + 0.864637i \(0.667548\pi\)
\(992\) 0 0
\(993\) −537.118 −0.540904
\(994\) 0 0
\(995\) 963.170 0.968010
\(996\) 0 0
\(997\) 1453.35i 1.45772i 0.684660 + 0.728862i \(0.259951\pi\)
−0.684660 + 0.728862i \(0.740049\pi\)
\(998\) 0 0
\(999\) 272.885 0.273158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.3.f.a.241.1 4
3.2 odd 2 4356.3.f.d.1693.1 4
11.10 odd 2 inner 1452.3.f.a.241.2 yes 4
33.32 even 2 4356.3.f.d.1693.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1452.3.f.a.241.1 4 1.1 even 1 trivial
1452.3.f.a.241.2 yes 4 11.10 odd 2 inner
4356.3.f.d.1693.1 4 3.2 odd 2
4356.3.f.d.1693.2 4 33.32 even 2