Properties

Label 1452.3.f.a
Level $1452$
Weight $3$
Character orbit 1452.f
Analytic conductor $39.564$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,3,Mod(241,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.241"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5641343851\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + ( - \beta_{2} + 2) q^{5} + (\beta_{3} + \beta_1) q^{7} + 3 q^{9} + (2 \beta_{3} + 7 \beta_1) q^{13} + (2 \beta_{2} - 3) q^{15} + (9 \beta_{3} + 2 \beta_1) q^{17} + 4 \beta_{3} q^{19}+ \cdots + (5 \beta_{2} - 108) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{5} + 12 q^{9} - 12 q^{15} - 4 q^{23} - 72 q^{25} - 48 q^{31} - 120 q^{37} + 24 q^{45} - 112 q^{47} + 172 q^{49} - 68 q^{53} - 68 q^{59} - 4 q^{67} - 156 q^{69} + 324 q^{71} - 48 q^{75} + 36 q^{81}+ \cdots - 432 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 4x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 4\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
241.1
1.93185i
1.93185i
0.517638i
0.517638i
0 −1.73205 0 3.73205 0 2.44949i 0 3.00000 0
241.2 0 −1.73205 0 3.73205 0 2.44949i 0 3.00000 0
241.3 0 1.73205 0 0.267949 0 2.44949i 0 3.00000 0
241.4 0 1.73205 0 0.267949 0 2.44949i 0 3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1452.3.f.a 4
3.b odd 2 1 4356.3.f.d 4
11.b odd 2 1 inner 1452.3.f.a 4
33.d even 2 1 4356.3.f.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1452.3.f.a 4 1.a even 1 1 trivial
1452.3.f.a 4 11.b odd 2 1 inner
4356.3.f.d 4 3.b odd 2 1
4356.3.f.d 4 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 4T_{5} + 1 \) acting on \(S_{3}^{\mathrm{new}}(1452, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - 4 T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 268 T^{2} + 11881 \) Copy content Toggle raw display
$17$ \( T^{4} + 412 T^{2} + 24649 \) Copy content Toggle raw display
$19$ \( T^{4} + 64T^{2} + 256 \) Copy content Toggle raw display
$23$ \( (T^{2} + 2 T - 506)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 412 T^{2} + 24649 \) Copy content Toggle raw display
$31$ \( (T^{2} + 24 T + 132)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 60 T + 393)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 4548 T^{2} + 62001 \) Copy content Toggle raw display
$43$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 56 T + 772)^{2} \) Copy content Toggle raw display
$53$ \( (T + 17)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} + 34 T + 262)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 10524 T^{2} + 3218436 \) Copy content Toggle raw display
$67$ \( (T^{2} + 2 T - 4106)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 162 T + 6558)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 13132 T^{2} + 42276004 \) Copy content Toggle raw display
$79$ \( T^{4} + 2368 T^{2} + 1364224 \) Copy content Toggle raw display
$83$ \( T^{4} + 30784 T^{2} + 201412864 \) Copy content Toggle raw display
$89$ \( (T^{2} + 200 T + 9853)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 216 T + 11589)^{2} \) Copy content Toggle raw display
show more
show less