Properties

Label 2-1452-11.10-c2-0-28
Degree $2$
Conductor $1452$
Sign $-0.522 + 0.852i$
Analytic cond. $39.5641$
Root an. cond. $6.29000$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73·3-s + 3.73·5-s − 2.44i·7-s + 2.99·9-s − 14.5i·13-s − 6.46·15-s − 8.52i·17-s − 2.07i·19-s + 4.24i·21-s + 21.5·23-s − 11.0·25-s − 5.19·27-s + 18.4i·29-s − 15.4·31-s − 9.14i·35-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.746·5-s − 0.349i·7-s + 0.333·9-s − 1.11i·13-s − 0.430·15-s − 0.501i·17-s − 0.108i·19-s + 0.202i·21-s + 0.935·23-s − 0.442·25-s − 0.192·27-s + 0.635i·29-s − 0.498·31-s − 0.261i·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1452\)    =    \(2^{2} \cdot 3 \cdot 11^{2}\)
Sign: $-0.522 + 0.852i$
Analytic conductor: \(39.5641\)
Root analytic conductor: \(6.29000\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1452} (241, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1452,\ (\ :1),\ -0.522 + 0.852i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.176436764\)
\(L(\frac12)\) \(\approx\) \(1.176436764\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 1.73T \)
11 \( 1 \)
good5 \( 1 - 3.73T + 25T^{2} \)
7 \( 1 + 2.44iT - 49T^{2} \)
13 \( 1 + 14.5iT - 169T^{2} \)
17 \( 1 + 8.52iT - 289T^{2} \)
19 \( 1 + 2.07iT - 361T^{2} \)
23 \( 1 - 21.5T + 529T^{2} \)
29 \( 1 - 18.4iT - 841T^{2} \)
31 \( 1 + 15.4T + 961T^{2} \)
37 \( 1 + 52.5T + 1.36e3T^{2} \)
41 \( 1 + 67.3iT - 1.68e3T^{2} \)
43 \( 1 - 4.24iT - 1.84e3T^{2} \)
47 \( 1 + 31.4T + 2.20e3T^{2} \)
53 \( 1 + 17T + 2.80e3T^{2} \)
59 \( 1 + 22.1T + 3.48e3T^{2} \)
61 \( 1 - 17.7iT - 3.72e3T^{2} \)
67 \( 1 - 63.0T + 4.48e3T^{2} \)
71 \( 1 - 82.7T + 5.04e3T^{2} \)
73 \( 1 + 86.4iT - 5.32e3T^{2} \)
79 \( 1 - 37.1iT - 6.24e3T^{2} \)
83 \( 1 - 146. iT - 6.88e3T^{2} \)
89 \( 1 + 87.8T + 7.92e3T^{2} \)
97 \( 1 + 116.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.213102768166812890613398326490, −8.265292375831388586953654129490, −7.25009583286441719765613798713, −6.67374541773856960476642476795, −5.45530403663774233659841688801, −5.28630174543546313287049418666, −3.93283322369480774139257119939, −2.85936843219657742042262553243, −1.58428569915733268943107981425, −0.35417987608607435019794287294, 1.38611471180471224140654389124, 2.30162101008569273549081938323, 3.66861713521579888290464364385, 4.72689896711353028511861456087, 5.52636803478508061989757994384, 6.32615571290899030571525602440, 6.92654708643406183384920251777, 8.023575363333603365164842704085, 8.985935165219785889971174943893, 9.594286225156112457086858320355

Graph of the $Z$-function along the critical line