L(s) = 1 | − 1.73·3-s + 3.73·5-s − 2.44i·7-s + 2.99·9-s − 14.5i·13-s − 6.46·15-s − 8.52i·17-s − 2.07i·19-s + 4.24i·21-s + 21.5·23-s − 11.0·25-s − 5.19·27-s + 18.4i·29-s − 15.4·31-s − 9.14i·35-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.746·5-s − 0.349i·7-s + 0.333·9-s − 1.11i·13-s − 0.430·15-s − 0.501i·17-s − 0.108i·19-s + 0.202i·21-s + 0.935·23-s − 0.442·25-s − 0.192·27-s + 0.635i·29-s − 0.498·31-s − 0.261i·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1452 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.176436764\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.176436764\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 1.73T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 - 3.73T + 25T^{2} \) |
| 7 | \( 1 + 2.44iT - 49T^{2} \) |
| 13 | \( 1 + 14.5iT - 169T^{2} \) |
| 17 | \( 1 + 8.52iT - 289T^{2} \) |
| 19 | \( 1 + 2.07iT - 361T^{2} \) |
| 23 | \( 1 - 21.5T + 529T^{2} \) |
| 29 | \( 1 - 18.4iT - 841T^{2} \) |
| 31 | \( 1 + 15.4T + 961T^{2} \) |
| 37 | \( 1 + 52.5T + 1.36e3T^{2} \) |
| 41 | \( 1 + 67.3iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 4.24iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 31.4T + 2.20e3T^{2} \) |
| 53 | \( 1 + 17T + 2.80e3T^{2} \) |
| 59 | \( 1 + 22.1T + 3.48e3T^{2} \) |
| 61 | \( 1 - 17.7iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 63.0T + 4.48e3T^{2} \) |
| 71 | \( 1 - 82.7T + 5.04e3T^{2} \) |
| 73 | \( 1 + 86.4iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 37.1iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 146. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 87.8T + 7.92e3T^{2} \) |
| 97 | \( 1 + 116.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.213102768166812890613398326490, −8.265292375831388586953654129490, −7.25009583286441719765613798713, −6.67374541773856960476642476795, −5.45530403663774233659841688801, −5.28630174543546313287049418666, −3.93283322369480774139257119939, −2.85936843219657742042262553243, −1.58428569915733268943107981425, −0.35417987608607435019794287294,
1.38611471180471224140654389124, 2.30162101008569273549081938323, 3.66861713521579888290464364385, 4.72689896711353028511861456087, 5.52636803478508061989757994384, 6.32615571290899030571525602440, 6.92654708643406183384920251777, 8.023575363333603365164842704085, 8.985935165219785889971174943893, 9.594286225156112457086858320355