Properties

Label 1452.3
Level 1452
Weight 3
Dimension 49703
Nonzero newspaces 16
Sturm bound 348480
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(348480\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(1452))\).

Total New Old
Modular forms 117760 50263 67497
Cusp forms 114560 49703 64857
Eisenstein series 3200 560 2640

Trace form

\( 49703 q - 2 q^{2} - 3 q^{3} - 94 q^{4} - 4 q^{5} - 39 q^{6} + 62 q^{7} + 16 q^{8} - 67 q^{9} - 106 q^{10} - 10 q^{11} - 97 q^{12} - 258 q^{13} - 164 q^{14} - 220 q^{15} - 506 q^{16} - 280 q^{17} - 99 q^{18}+ \cdots - 460 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(1452))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1452.3.d \(\chi_{1452}(1451, \cdot)\) n/a 416 1
1452.3.e \(\chi_{1452}(485, \cdot)\) 1452.3.e.a 1 1
1452.3.e.b 1
1452.3.e.c 1
1452.3.e.d 2
1452.3.e.e 2
1452.3.e.f 2
1452.3.e.g 4
1452.3.e.h 4
1452.3.e.i 6
1452.3.e.j 6
1452.3.e.k 12
1452.3.e.l 16
1452.3.e.m 16
1452.3.f \(\chi_{1452}(241, \cdot)\) 1452.3.f.a 4 1
1452.3.f.b 8
1452.3.f.c 8
1452.3.f.d 16
1452.3.g \(\chi_{1452}(727, \cdot)\) n/a 218 1
1452.3.k \(\chi_{1452}(487, \cdot)\) n/a 864 4
1452.3.l \(\chi_{1452}(457, \cdot)\) n/a 144 4
1452.3.m \(\chi_{1452}(245, \cdot)\) n/a 288 4
1452.3.n \(\chi_{1452}(215, \cdot)\) n/a 1664 4
1452.3.s \(\chi_{1452}(67, \cdot)\) n/a 2640 10
1452.3.t \(\chi_{1452}(109, \cdot)\) n/a 440 10
1452.3.u \(\chi_{1452}(89, \cdot)\) n/a 880 10
1452.3.v \(\chi_{1452}(131, \cdot)\) n/a 5240 10
1452.3.bb \(\chi_{1452}(35, \cdot)\) n/a 20960 40
1452.3.bc \(\chi_{1452}(5, \cdot)\) n/a 3520 40
1452.3.bd \(\chi_{1452}(13, \cdot)\) n/a 1760 40
1452.3.be \(\chi_{1452}(31, \cdot)\) n/a 10560 40

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(1452))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(1452)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(132))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(242))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(363))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(484))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(726))\)\(^{\oplus 2}\)