Properties

Label 1452.3.e.l.485.2
Level $1452$
Weight $3$
Character 1452.485
Analytic conductor $39.564$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1452,3,Mod(485,1452)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1452, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1452.485"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1452 = 2^{2} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1452.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-4,0,14,0,0,0,-2,0,-8,0,0,0,-2,0,1,0,0,0,-70,0, -54,0,0,0,-50] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.5641343851\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7 x^{14} - 18 x^{13} + 41 x^{12} + 216 x^{11} + 199 x^{10} - 1278 x^{9} - 468 x^{8} + \cdots + 43046721 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 485.2
Root \(2.93080 + 0.640644i\) of defining polynomial
Character \(\chi\) \(=\) 1452.485
Dual form 1452.3.e.l.485.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.93080 + 0.640644i) q^{3} -6.71318i q^{5} -3.02703 q^{7} +(8.17915 - 3.75519i) q^{9} +0.160975 q^{13} +(4.30075 + 19.6750i) q^{15} -24.4165i q^{17} -0.622290 q^{19} +(8.87160 - 1.93924i) q^{21} -6.09109i q^{23} -20.0667 q^{25} +(-21.5657 + 16.2456i) q^{27} -52.2104i q^{29} +44.6273 q^{31} +20.3210i q^{35} +30.7814 q^{37} +(-0.471786 + 0.103128i) q^{39} -1.89383i q^{41} +79.5435 q^{43} +(-25.2093 - 54.9081i) q^{45} -14.7756i q^{47} -39.8371 q^{49} +(15.6423 + 71.5598i) q^{51} +47.7201i q^{53} +(1.82381 - 0.398666i) q^{57} +21.9283i q^{59} -61.6667 q^{61} +(-24.7585 + 11.3671i) q^{63} -1.08065i q^{65} -56.3242 q^{67} +(3.90222 + 17.8518i) q^{69} -90.1606i q^{71} -70.4497 q^{73} +(58.8116 - 12.8556i) q^{75} -98.7362 q^{79} +(52.7970 - 61.4286i) q^{81} +103.496i q^{83} -163.912 q^{85} +(33.4483 + 153.018i) q^{87} +165.487i q^{89} -0.487276 q^{91} +(-130.793 + 28.5902i) q^{93} +4.17755i q^{95} +97.8555 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{7} + 14 q^{9} - 2 q^{13} - 8 q^{15} - 2 q^{19} + q^{21} - 70 q^{25} - 54 q^{27} - 50 q^{31} + 30 q^{37} + 68 q^{39} - 50 q^{43} + 17 q^{45} + 232 q^{49} + 218 q^{51} + 205 q^{57} - 80 q^{61}+ \cdots - 416 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1452\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(1333\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.93080 + 0.640644i −0.976933 + 0.213548i
\(4\) 0 0
\(5\) 6.71318i 1.34264i −0.741170 0.671318i \(-0.765729\pi\)
0.741170 0.671318i \(-0.234271\pi\)
\(6\) 0 0
\(7\) −3.02703 −0.432432 −0.216216 0.976346i \(-0.569372\pi\)
−0.216216 + 0.976346i \(0.569372\pi\)
\(8\) 0 0
\(9\) 8.17915 3.75519i 0.908795 0.417244i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 0.160975 0.0123827 0.00619135 0.999981i \(-0.498029\pi\)
0.00619135 + 0.999981i \(0.498029\pi\)
\(14\) 0 0
\(15\) 4.30075 + 19.6750i 0.286717 + 1.31166i
\(16\) 0 0
\(17\) 24.4165i 1.43626i −0.695906 0.718132i \(-0.744997\pi\)
0.695906 0.718132i \(-0.255003\pi\)
\(18\) 0 0
\(19\) −0.622290 −0.0327521 −0.0163761 0.999866i \(-0.505213\pi\)
−0.0163761 + 0.999866i \(0.505213\pi\)
\(20\) 0 0
\(21\) 8.87160 1.93924i 0.422457 0.0923450i
\(22\) 0 0
\(23\) 6.09109i 0.264830i −0.991194 0.132415i \(-0.957727\pi\)
0.991194 0.132415i \(-0.0422732\pi\)
\(24\) 0 0
\(25\) −20.0667 −0.802670
\(26\) 0 0
\(27\) −21.5657 + 16.2456i −0.798730 + 0.601690i
\(28\) 0 0
\(29\) 52.2104i 1.80036i −0.435518 0.900180i \(-0.643435\pi\)
0.435518 0.900180i \(-0.356565\pi\)
\(30\) 0 0
\(31\) 44.6273 1.43959 0.719795 0.694187i \(-0.244236\pi\)
0.719795 + 0.694187i \(0.244236\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 20.3210i 0.580599i
\(36\) 0 0
\(37\) 30.7814 0.831929 0.415964 0.909381i \(-0.363444\pi\)
0.415964 + 0.909381i \(0.363444\pi\)
\(38\) 0 0
\(39\) −0.471786 + 0.103128i −0.0120971 + 0.00264430i
\(40\) 0 0
\(41\) 1.89383i 0.0461909i −0.999733 0.0230955i \(-0.992648\pi\)
0.999733 0.0230955i \(-0.00735217\pi\)
\(42\) 0 0
\(43\) 79.5435 1.84985 0.924924 0.380152i \(-0.124128\pi\)
0.924924 + 0.380152i \(0.124128\pi\)
\(44\) 0 0
\(45\) −25.2093 54.9081i −0.560206 1.22018i
\(46\) 0 0
\(47\) 14.7756i 0.314375i −0.987569 0.157187i \(-0.949757\pi\)
0.987569 0.157187i \(-0.0502426\pi\)
\(48\) 0 0
\(49\) −39.8371 −0.813002
\(50\) 0 0
\(51\) 15.6423 + 71.5598i 0.306711 + 1.40313i
\(52\) 0 0
\(53\) 47.7201i 0.900379i 0.892933 + 0.450190i \(0.148644\pi\)
−0.892933 + 0.450190i \(0.851356\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.82381 0.398666i 0.0319966 0.00699415i
\(58\) 0 0
\(59\) 21.9283i 0.371666i 0.982581 + 0.185833i \(0.0594983\pi\)
−0.982581 + 0.185833i \(0.940502\pi\)
\(60\) 0 0
\(61\) −61.6667 −1.01093 −0.505465 0.862847i \(-0.668679\pi\)
−0.505465 + 0.862847i \(0.668679\pi\)
\(62\) 0 0
\(63\) −24.7585 + 11.3671i −0.392992 + 0.180430i
\(64\) 0 0
\(65\) 1.08065i 0.0166255i
\(66\) 0 0
\(67\) −56.3242 −0.840659 −0.420330 0.907371i \(-0.638086\pi\)
−0.420330 + 0.907371i \(0.638086\pi\)
\(68\) 0 0
\(69\) 3.90222 + 17.8518i 0.0565539 + 0.258721i
\(70\) 0 0
\(71\) 90.1606i 1.26987i −0.772566 0.634934i \(-0.781027\pi\)
0.772566 0.634934i \(-0.218973\pi\)
\(72\) 0 0
\(73\) −70.4497 −0.965064 −0.482532 0.875878i \(-0.660283\pi\)
−0.482532 + 0.875878i \(0.660283\pi\)
\(74\) 0 0
\(75\) 58.8116 12.8556i 0.784154 0.171408i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −98.7362 −1.24983 −0.624913 0.780695i \(-0.714865\pi\)
−0.624913 + 0.780695i \(0.714865\pi\)
\(80\) 0 0
\(81\) 52.7970 61.4286i 0.651815 0.758378i
\(82\) 0 0
\(83\) 103.496i 1.24694i 0.781846 + 0.623472i \(0.214278\pi\)
−0.781846 + 0.623472i \(0.785722\pi\)
\(84\) 0 0
\(85\) −163.912 −1.92838
\(86\) 0 0
\(87\) 33.4483 + 153.018i 0.384463 + 1.75883i
\(88\) 0 0
\(89\) 165.487i 1.85940i 0.368312 + 0.929702i \(0.379936\pi\)
−0.368312 + 0.929702i \(0.620064\pi\)
\(90\) 0 0
\(91\) −0.487276 −0.00535468
\(92\) 0 0
\(93\) −130.793 + 28.5902i −1.40638 + 0.307421i
\(94\) 0 0
\(95\) 4.17755i 0.0439742i
\(96\) 0 0
\(97\) 97.8555 1.00882 0.504410 0.863464i \(-0.331710\pi\)
0.504410 + 0.863464i \(0.331710\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 150.869i 1.49375i −0.664965 0.746874i \(-0.731554\pi\)
0.664965 0.746874i \(-0.268446\pi\)
\(102\) 0 0
\(103\) 21.3127 0.206919 0.103460 0.994634i \(-0.467009\pi\)
0.103460 + 0.994634i \(0.467009\pi\)
\(104\) 0 0
\(105\) −13.0185 59.5566i −0.123986 0.567206i
\(106\) 0 0
\(107\) 117.968i 1.10251i −0.834338 0.551253i \(-0.814150\pi\)
0.834338 0.551253i \(-0.185850\pi\)
\(108\) 0 0
\(109\) −101.381 −0.930102 −0.465051 0.885284i \(-0.653964\pi\)
−0.465051 + 0.885284i \(0.653964\pi\)
\(110\) 0 0
\(111\) −90.2140 + 19.7199i −0.812738 + 0.177657i
\(112\) 0 0
\(113\) 149.367i 1.32183i −0.750459 0.660917i \(-0.770168\pi\)
0.750459 0.660917i \(-0.229832\pi\)
\(114\) 0 0
\(115\) −40.8906 −0.355570
\(116\) 0 0
\(117\) 1.31664 0.604493i 0.0112533 0.00516661i
\(118\) 0 0
\(119\) 73.9094i 0.621087i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 1.21327 + 5.55042i 0.00986397 + 0.0451254i
\(124\) 0 0
\(125\) 33.1179i 0.264943i
\(126\) 0 0
\(127\) −195.108 −1.53628 −0.768141 0.640280i \(-0.778818\pi\)
−0.768141 + 0.640280i \(0.778818\pi\)
\(128\) 0 0
\(129\) −233.126 + 50.9590i −1.80718 + 0.395031i
\(130\) 0 0
\(131\) 132.420i 1.01084i −0.862873 0.505420i \(-0.831337\pi\)
0.862873 0.505420i \(-0.168663\pi\)
\(132\) 0 0
\(133\) 1.88369 0.0141631
\(134\) 0 0
\(135\) 109.060 + 144.774i 0.807850 + 1.07240i
\(136\) 0 0
\(137\) 77.1905i 0.563434i 0.959498 + 0.281717i \(0.0909040\pi\)
−0.959498 + 0.281717i \(0.909096\pi\)
\(138\) 0 0
\(139\) 14.9947 0.107875 0.0539377 0.998544i \(-0.482823\pi\)
0.0539377 + 0.998544i \(0.482823\pi\)
\(140\) 0 0
\(141\) 9.46590 + 43.3043i 0.0671340 + 0.307123i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −350.498 −2.41723
\(146\) 0 0
\(147\) 116.755 25.5214i 0.794248 0.173615i
\(148\) 0 0
\(149\) 5.13835i 0.0344855i 0.999851 + 0.0172428i \(0.00548882\pi\)
−0.999851 + 0.0172428i \(0.994511\pi\)
\(150\) 0 0
\(151\) −169.710 −1.12391 −0.561954 0.827168i \(-0.689950\pi\)
−0.561954 + 0.827168i \(0.689950\pi\)
\(152\) 0 0
\(153\) −91.6887 199.706i −0.599273 1.30527i
\(154\) 0 0
\(155\) 299.591i 1.93284i
\(156\) 0 0
\(157\) 51.9190 0.330694 0.165347 0.986235i \(-0.447126\pi\)
0.165347 + 0.986235i \(0.447126\pi\)
\(158\) 0 0
\(159\) −30.5716 139.858i −0.192274 0.879610i
\(160\) 0 0
\(161\) 18.4379i 0.114521i
\(162\) 0 0
\(163\) 97.3027 0.596949 0.298475 0.954418i \(-0.403522\pi\)
0.298475 + 0.954418i \(0.403522\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 162.320i 0.971974i 0.873966 + 0.485987i \(0.161540\pi\)
−0.873966 + 0.485987i \(0.838460\pi\)
\(168\) 0 0
\(169\) −168.974 −0.999847
\(170\) 0 0
\(171\) −5.08981 + 2.33682i −0.0297650 + 0.0136656i
\(172\) 0 0
\(173\) 198.267i 1.14605i −0.819537 0.573026i \(-0.805770\pi\)
0.819537 0.573026i \(-0.194230\pi\)
\(174\) 0 0
\(175\) 60.7425 0.347100
\(176\) 0 0
\(177\) −14.0482 64.2673i −0.0793684 0.363092i
\(178\) 0 0
\(179\) 195.002i 1.08940i 0.838631 + 0.544699i \(0.183356\pi\)
−0.838631 + 0.544699i \(0.816644\pi\)
\(180\) 0 0
\(181\) 23.7912 0.131443 0.0657215 0.997838i \(-0.479065\pi\)
0.0657215 + 0.997838i \(0.479065\pi\)
\(182\) 0 0
\(183\) 180.733 39.5064i 0.987610 0.215882i
\(184\) 0 0
\(185\) 206.641i 1.11698i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 65.2799 49.1760i 0.345396 0.260190i
\(190\) 0 0
\(191\) 152.246i 0.797101i 0.917146 + 0.398550i \(0.130487\pi\)
−0.917146 + 0.398550i \(0.869513\pi\)
\(192\) 0 0
\(193\) −128.743 −0.667063 −0.333531 0.942739i \(-0.608240\pi\)
−0.333531 + 0.942739i \(0.608240\pi\)
\(194\) 0 0
\(195\) 0.692315 + 3.16718i 0.00355033 + 0.0162420i
\(196\) 0 0
\(197\) 141.406i 0.717798i 0.933376 + 0.358899i \(0.116848\pi\)
−0.933376 + 0.358899i \(0.883152\pi\)
\(198\) 0 0
\(199\) −162.261 −0.815381 −0.407690 0.913120i \(-0.633666\pi\)
−0.407690 + 0.913120i \(0.633666\pi\)
\(200\) 0 0
\(201\) 165.075 36.0837i 0.821267 0.179521i
\(202\) 0 0
\(203\) 158.042i 0.778534i
\(204\) 0 0
\(205\) −12.7136 −0.0620175
\(206\) 0 0
\(207\) −22.8732 49.8199i −0.110499 0.240676i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −250.547 −1.18742 −0.593712 0.804677i \(-0.702338\pi\)
−0.593712 + 0.804677i \(0.702338\pi\)
\(212\) 0 0
\(213\) 57.7608 + 264.243i 0.271178 + 1.24058i
\(214\) 0 0
\(215\) 533.989i 2.48367i
\(216\) 0 0
\(217\) −135.088 −0.622525
\(218\) 0 0
\(219\) 206.474 45.1332i 0.942803 0.206087i
\(220\) 0 0
\(221\) 3.93045i 0.0177848i
\(222\) 0 0
\(223\) −73.8810 −0.331305 −0.165652 0.986184i \(-0.552973\pi\)
−0.165652 + 0.986184i \(0.552973\pi\)
\(224\) 0 0
\(225\) −164.129 + 75.3545i −0.729462 + 0.334909i
\(226\) 0 0
\(227\) 27.4064i 0.120733i −0.998176 0.0603666i \(-0.980773\pi\)
0.998176 0.0603666i \(-0.0192270\pi\)
\(228\) 0 0
\(229\) 9.00423 0.0393198 0.0196599 0.999807i \(-0.493742\pi\)
0.0196599 + 0.999807i \(0.493742\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 119.019i 0.510813i −0.966834 0.255407i \(-0.917791\pi\)
0.966834 0.255407i \(-0.0822093\pi\)
\(234\) 0 0
\(235\) −99.1913 −0.422090
\(236\) 0 0
\(237\) 289.376 63.2547i 1.22099 0.266897i
\(238\) 0 0
\(239\) 367.492i 1.53762i 0.639475 + 0.768812i \(0.279152\pi\)
−0.639475 + 0.768812i \(0.720848\pi\)
\(240\) 0 0
\(241\) −237.557 −0.985713 −0.492856 0.870111i \(-0.664047\pi\)
−0.492856 + 0.870111i \(0.664047\pi\)
\(242\) 0 0
\(243\) −115.384 + 213.859i −0.474830 + 0.880078i
\(244\) 0 0
\(245\) 267.434i 1.09157i
\(246\) 0 0
\(247\) −0.100173 −0.000405560
\(248\) 0 0
\(249\) −66.3043 303.327i −0.266282 1.21818i
\(250\) 0 0
\(251\) 62.6930i 0.249773i −0.992171 0.124886i \(-0.960143\pi\)
0.992171 0.124886i \(-0.0398567\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 480.394 105.009i 1.88390 0.411801i
\(256\) 0 0
\(257\) 210.876i 0.820530i −0.911966 0.410265i \(-0.865436\pi\)
0.911966 0.410265i \(-0.134564\pi\)
\(258\) 0 0
\(259\) −93.1760 −0.359753
\(260\) 0 0
\(261\) −196.060 427.037i −0.751189 1.63616i
\(262\) 0 0
\(263\) 113.017i 0.429723i 0.976645 + 0.214861i \(0.0689300\pi\)
−0.976645 + 0.214861i \(0.931070\pi\)
\(264\) 0 0
\(265\) 320.353 1.20888
\(266\) 0 0
\(267\) −106.018 485.009i −0.397072 1.81651i
\(268\) 0 0
\(269\) 475.033i 1.76592i −0.469446 0.882961i \(-0.655546\pi\)
0.469446 0.882961i \(-0.344454\pi\)
\(270\) 0 0
\(271\) −265.303 −0.978980 −0.489490 0.872009i \(-0.662817\pi\)
−0.489490 + 0.872009i \(0.662817\pi\)
\(272\) 0 0
\(273\) 1.42811 0.312170i 0.00523116 0.00114348i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −151.472 −0.546832 −0.273416 0.961896i \(-0.588153\pi\)
−0.273416 + 0.961896i \(0.588153\pi\)
\(278\) 0 0
\(279\) 365.013 167.584i 1.30829 0.600660i
\(280\) 0 0
\(281\) 383.206i 1.36372i 0.731482 + 0.681861i \(0.238829\pi\)
−0.731482 + 0.681861i \(0.761171\pi\)
\(282\) 0 0
\(283\) 414.272 1.46386 0.731929 0.681381i \(-0.238620\pi\)
0.731929 + 0.681381i \(0.238620\pi\)
\(284\) 0 0
\(285\) −2.67632 12.2435i −0.00939059 0.0429598i
\(286\) 0 0
\(287\) 5.73266i 0.0199744i
\(288\) 0 0
\(289\) −307.166 −1.06286
\(290\) 0 0
\(291\) −286.795 + 62.6905i −0.985549 + 0.215431i
\(292\) 0 0
\(293\) 347.883i 1.18732i 0.804718 + 0.593658i \(0.202317\pi\)
−0.804718 + 0.593658i \(0.797683\pi\)
\(294\) 0 0
\(295\) 147.208 0.499012
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.980514i 0.00327931i
\(300\) 0 0
\(301\) −240.780 −0.799934
\(302\) 0 0
\(303\) 96.6530 + 442.165i 0.318987 + 1.45929i
\(304\) 0 0
\(305\) 413.979i 1.35731i
\(306\) 0 0
\(307\) 507.760 1.65394 0.826971 0.562245i \(-0.190062\pi\)
0.826971 + 0.562245i \(0.190062\pi\)
\(308\) 0 0
\(309\) −62.4631 + 13.6538i −0.202146 + 0.0441871i
\(310\) 0 0
\(311\) 91.3825i 0.293834i −0.989149 0.146917i \(-0.953065\pi\)
0.989149 0.146917i \(-0.0469351\pi\)
\(312\) 0 0
\(313\) 478.683 1.52934 0.764669 0.644423i \(-0.222903\pi\)
0.764669 + 0.644423i \(0.222903\pi\)
\(314\) 0 0
\(315\) 76.3091 + 166.208i 0.242251 + 0.527645i
\(316\) 0 0
\(317\) 503.112i 1.58710i 0.608503 + 0.793552i \(0.291770\pi\)
−0.608503 + 0.793552i \(0.708230\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 75.5756 + 345.741i 0.235438 + 1.07707i
\(322\) 0 0
\(323\) 15.1942i 0.0470407i
\(324\) 0 0
\(325\) −3.23025 −0.00993922
\(326\) 0 0
\(327\) 297.128 64.9492i 0.908647 0.198621i
\(328\) 0 0
\(329\) 44.7261i 0.135946i
\(330\) 0 0
\(331\) 154.468 0.466670 0.233335 0.972396i \(-0.425036\pi\)
0.233335 + 0.972396i \(0.425036\pi\)
\(332\) 0 0
\(333\) 251.765 115.590i 0.756053 0.347117i
\(334\) 0 0
\(335\) 378.114i 1.12870i
\(336\) 0 0
\(337\) −303.331 −0.900093 −0.450046 0.893005i \(-0.648593\pi\)
−0.450046 + 0.893005i \(0.648593\pi\)
\(338\) 0 0
\(339\) 95.6911 + 437.765i 0.282275 + 1.29134i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 268.912 0.784001
\(344\) 0 0
\(345\) 119.842 26.1963i 0.347368 0.0759312i
\(346\) 0 0
\(347\) 323.307i 0.931720i 0.884858 + 0.465860i \(0.154255\pi\)
−0.884858 + 0.465860i \(0.845745\pi\)
\(348\) 0 0
\(349\) 557.743 1.59812 0.799059 0.601253i \(-0.205332\pi\)
0.799059 + 0.601253i \(0.205332\pi\)
\(350\) 0 0
\(351\) −3.47154 + 2.61514i −0.00989043 + 0.00745055i
\(352\) 0 0
\(353\) 31.0942i 0.0880857i 0.999030 + 0.0440428i \(0.0140238\pi\)
−0.999030 + 0.0440428i \(0.985976\pi\)
\(354\) 0 0
\(355\) −605.264 −1.70497
\(356\) 0 0
\(357\) −47.3496 216.613i −0.132632 0.606760i
\(358\) 0 0
\(359\) 104.701i 0.291646i −0.989311 0.145823i \(-0.953417\pi\)
0.989311 0.145823i \(-0.0465829\pi\)
\(360\) 0 0
\(361\) −360.613 −0.998927
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 472.941i 1.29573i
\(366\) 0 0
\(367\) 135.588 0.369448 0.184724 0.982790i \(-0.440861\pi\)
0.184724 + 0.982790i \(0.440861\pi\)
\(368\) 0 0
\(369\) −7.11169 15.4899i −0.0192729 0.0419780i
\(370\) 0 0
\(371\) 144.450i 0.389353i
\(372\) 0 0
\(373\) −275.618 −0.738921 −0.369461 0.929246i \(-0.620457\pi\)
−0.369461 + 0.929246i \(0.620457\pi\)
\(374\) 0 0
\(375\) 21.2167 + 97.0617i 0.0565780 + 0.258831i
\(376\) 0 0
\(377\) 8.40458i 0.0222933i
\(378\) 0 0
\(379\) 281.262 0.742116 0.371058 0.928610i \(-0.378995\pi\)
0.371058 + 0.928610i \(0.378995\pi\)
\(380\) 0 0
\(381\) 571.822 124.995i 1.50084 0.328070i
\(382\) 0 0
\(383\) 396.904i 1.03630i −0.855289 0.518151i \(-0.826621\pi\)
0.855289 0.518151i \(-0.173379\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 650.598 298.701i 1.68113 0.771837i
\(388\) 0 0
\(389\) 83.2177i 0.213927i −0.994263 0.106964i \(-0.965887\pi\)
0.994263 0.106964i \(-0.0341128\pi\)
\(390\) 0 0
\(391\) −148.723 −0.380366
\(392\) 0 0
\(393\) 84.8341 + 388.097i 0.215863 + 0.987523i
\(394\) 0 0
\(395\) 662.833i 1.67806i
\(396\) 0 0
\(397\) 173.738 0.437627 0.218813 0.975767i \(-0.429781\pi\)
0.218813 + 0.975767i \(0.429781\pi\)
\(398\) 0 0
\(399\) −5.52071 + 1.20677i −0.0138364 + 0.00302449i
\(400\) 0 0
\(401\) 553.248i 1.37967i 0.723966 + 0.689835i \(0.242317\pi\)
−0.723966 + 0.689835i \(0.757683\pi\)
\(402\) 0 0
\(403\) 7.18388 0.0178260
\(404\) 0 0
\(405\) −412.381 354.436i −1.01822 0.875150i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −148.662 −0.363476 −0.181738 0.983347i \(-0.558172\pi\)
−0.181738 + 0.983347i \(0.558172\pi\)
\(410\) 0 0
\(411\) −49.4516 226.230i −0.120320 0.550437i
\(412\) 0 0
\(413\) 66.3775i 0.160720i
\(414\) 0 0
\(415\) 694.789 1.67419
\(416\) 0 0
\(417\) −43.9464 + 9.60625i −0.105387 + 0.0230366i
\(418\) 0 0
\(419\) 326.983i 0.780389i 0.920732 + 0.390195i \(0.127592\pi\)
−0.920732 + 0.390195i \(0.872408\pi\)
\(420\) 0 0
\(421\) 471.641 1.12029 0.560143 0.828396i \(-0.310746\pi\)
0.560143 + 0.828396i \(0.310746\pi\)
\(422\) 0 0
\(423\) −55.4853 120.852i −0.131171 0.285702i
\(424\) 0 0
\(425\) 489.960i 1.15285i
\(426\) 0 0
\(427\) 186.667 0.437158
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 565.829i 1.31283i −0.754401 0.656414i \(-0.772072\pi\)
0.754401 0.656414i \(-0.227928\pi\)
\(432\) 0 0
\(433\) −573.754 −1.32507 −0.662534 0.749032i \(-0.730519\pi\)
−0.662534 + 0.749032i \(0.730519\pi\)
\(434\) 0 0
\(435\) 1027.24 224.544i 2.36147 0.516194i
\(436\) 0 0
\(437\) 3.79043i 0.00867374i
\(438\) 0 0
\(439\) 262.112 0.597066 0.298533 0.954399i \(-0.403503\pi\)
0.298533 + 0.954399i \(0.403503\pi\)
\(440\) 0 0
\(441\) −325.834 + 149.596i −0.738852 + 0.339220i
\(442\) 0 0
\(443\) 409.726i 0.924889i −0.886648 0.462444i \(-0.846972\pi\)
0.886648 0.462444i \(-0.153028\pi\)
\(444\) 0 0
\(445\) 1110.94 2.49650
\(446\) 0 0
\(447\) −3.29185 15.0595i −0.00736432 0.0336901i
\(448\) 0 0
\(449\) 210.760i 0.469398i −0.972068 0.234699i \(-0.924590\pi\)
0.972068 0.234699i \(-0.0754104\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 497.386 108.724i 1.09798 0.240008i
\(454\) 0 0
\(455\) 3.27117i 0.00718939i
\(456\) 0 0
\(457\) −96.5269 −0.211219 −0.105609 0.994408i \(-0.533679\pi\)
−0.105609 + 0.994408i \(0.533679\pi\)
\(458\) 0 0
\(459\) 396.662 + 526.559i 0.864186 + 1.14719i
\(460\) 0 0
\(461\) 542.354i 1.17647i −0.808689 0.588237i \(-0.799822\pi\)
0.808689 0.588237i \(-0.200178\pi\)
\(462\) 0 0
\(463\) 488.061 1.05413 0.527064 0.849826i \(-0.323293\pi\)
0.527064 + 0.849826i \(0.323293\pi\)
\(464\) 0 0
\(465\) 191.931 + 878.040i 0.412755 + 1.88826i
\(466\) 0 0
\(467\) 535.757i 1.14723i −0.819124 0.573616i \(-0.805540\pi\)
0.819124 0.573616i \(-0.194460\pi\)
\(468\) 0 0
\(469\) 170.495 0.363528
\(470\) 0 0
\(471\) −152.164 + 33.2616i −0.323066 + 0.0706191i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 12.4873 0.0262891
\(476\) 0 0
\(477\) 179.198 + 390.310i 0.375678 + 0.818260i
\(478\) 0 0
\(479\) 556.175i 1.16112i −0.814219 0.580558i \(-0.802834\pi\)
0.814219 0.580558i \(-0.197166\pi\)
\(480\) 0 0
\(481\) 4.95504 0.0103015
\(482\) 0 0
\(483\) −11.8121 54.0377i −0.0244557 0.111879i
\(484\) 0 0
\(485\) 656.921i 1.35448i
\(486\) 0 0
\(487\) −488.920 −1.00394 −0.501971 0.864884i \(-0.667392\pi\)
−0.501971 + 0.864884i \(0.667392\pi\)
\(488\) 0 0
\(489\) −285.175 + 62.3363i −0.583179 + 0.127477i
\(490\) 0 0
\(491\) 421.420i 0.858289i −0.903236 0.429145i \(-0.858815\pi\)
0.903236 0.429145i \(-0.141185\pi\)
\(492\) 0 0
\(493\) −1274.80 −2.58579
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 272.919i 0.549132i
\(498\) 0 0
\(499\) −541.359 −1.08489 −0.542444 0.840092i \(-0.682501\pi\)
−0.542444 + 0.840092i \(0.682501\pi\)
\(500\) 0 0
\(501\) −103.989 475.726i −0.207563 0.949553i
\(502\) 0 0
\(503\) 476.681i 0.947675i −0.880612 0.473838i \(-0.842868\pi\)
0.880612 0.473838i \(-0.157132\pi\)
\(504\) 0 0
\(505\) −1012.81 −2.00556
\(506\) 0 0
\(507\) 495.229 108.252i 0.976783 0.213515i
\(508\) 0 0
\(509\) 59.1682i 0.116244i −0.998309 0.0581220i \(-0.981489\pi\)
0.998309 0.0581220i \(-0.0185112\pi\)
\(510\) 0 0
\(511\) 213.253 0.417325
\(512\) 0 0
\(513\) 13.4201 10.1095i 0.0261601 0.0197066i
\(514\) 0 0
\(515\) 143.076i 0.277817i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 127.018 + 581.080i 0.244737 + 1.11961i
\(520\) 0 0
\(521\) 347.098i 0.666214i 0.942889 + 0.333107i \(0.108097\pi\)
−0.942889 + 0.333107i \(0.891903\pi\)
\(522\) 0 0
\(523\) 768.286 1.46900 0.734499 0.678609i \(-0.237417\pi\)
0.734499 + 0.678609i \(0.237417\pi\)
\(524\) 0 0
\(525\) −178.024 + 38.9143i −0.339094 + 0.0741225i
\(526\) 0 0
\(527\) 1089.64i 2.06763i
\(528\) 0 0
\(529\) 491.899 0.929865
\(530\) 0 0
\(531\) 82.3449 + 179.355i 0.155075 + 0.337768i
\(532\) 0 0
\(533\) 0.304859i 0.000571968i
\(534\) 0 0
\(535\) −791.942 −1.48026
\(536\) 0 0
\(537\) −124.927 571.512i −0.232639 1.06427i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −477.003 −0.881705 −0.440853 0.897579i \(-0.645324\pi\)
−0.440853 + 0.897579i \(0.645324\pi\)
\(542\) 0 0
\(543\) −69.7272 + 15.2417i −0.128411 + 0.0280694i
\(544\) 0 0
\(545\) 680.590i 1.24879i
\(546\) 0 0
\(547\) 32.6495 0.0596884 0.0298442 0.999555i \(-0.490499\pi\)
0.0298442 + 0.999555i \(0.490499\pi\)
\(548\) 0 0
\(549\) −504.381 + 231.570i −0.918727 + 0.421804i
\(550\) 0 0
\(551\) 32.4901i 0.0589656i
\(552\) 0 0
\(553\) 298.877 0.540465
\(554\) 0 0
\(555\) 132.383 + 605.622i 0.238528 + 1.09121i
\(556\) 0 0
\(557\) 791.760i 1.42147i −0.703459 0.710736i \(-0.748362\pi\)
0.703459 0.710736i \(-0.251638\pi\)
\(558\) 0 0
\(559\) 12.8045 0.0229061
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 526.375i 0.934946i 0.884007 + 0.467473i \(0.154835\pi\)
−0.884007 + 0.467473i \(0.845165\pi\)
\(564\) 0 0
\(565\) −1002.73 −1.77474
\(566\) 0 0
\(567\) −159.818 + 185.946i −0.281866 + 0.327947i
\(568\) 0 0
\(569\) 725.934i 1.27581i −0.770117 0.637903i \(-0.779802\pi\)
0.770117 0.637903i \(-0.220198\pi\)
\(570\) 0 0
\(571\) −227.235 −0.397959 −0.198980 0.980004i \(-0.563763\pi\)
−0.198980 + 0.980004i \(0.563763\pi\)
\(572\) 0 0
\(573\) −97.5356 446.203i −0.170219 0.778714i
\(574\) 0 0
\(575\) 122.228i 0.212571i
\(576\) 0 0
\(577\) 497.327 0.861919 0.430960 0.902371i \(-0.358175\pi\)
0.430960 + 0.902371i \(0.358175\pi\)
\(578\) 0 0
\(579\) 377.320 82.4784i 0.651675 0.142450i
\(580\) 0 0
\(581\) 313.286i 0.539219i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −4.05807 8.83884i −0.00693687 0.0151091i
\(586\) 0 0
\(587\) 225.177i 0.383607i 0.981433 + 0.191803i \(0.0614336\pi\)
−0.981433 + 0.191803i \(0.938566\pi\)
\(588\) 0 0
\(589\) −27.7711 −0.0471496
\(590\) 0 0
\(591\) −90.5910 414.433i −0.153284 0.701240i
\(592\) 0 0
\(593\) 418.371i 0.705516i −0.935715 0.352758i \(-0.885244\pi\)
0.935715 0.352758i \(-0.114756\pi\)
\(594\) 0 0
\(595\) 496.167 0.833894
\(596\) 0 0
\(597\) 475.554 103.951i 0.796572 0.174123i
\(598\) 0 0
\(599\) 426.796i 0.712514i 0.934388 + 0.356257i \(0.115947\pi\)
−0.934388 + 0.356257i \(0.884053\pi\)
\(600\) 0 0
\(601\) 624.158 1.03853 0.519267 0.854612i \(-0.326205\pi\)
0.519267 + 0.854612i \(0.326205\pi\)
\(602\) 0 0
\(603\) −460.684 + 211.508i −0.763987 + 0.350760i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −88.8697 −0.146408 −0.0732041 0.997317i \(-0.523322\pi\)
−0.0732041 + 0.997317i \(0.523322\pi\)
\(608\) 0 0
\(609\) −101.249 463.190i −0.166254 0.760575i
\(610\) 0 0
\(611\) 2.37851i 0.00389281i
\(612\) 0 0
\(613\) 750.203 1.22382 0.611911 0.790927i \(-0.290401\pi\)
0.611911 + 0.790927i \(0.290401\pi\)
\(614\) 0 0
\(615\) 37.2610 8.14488i 0.0605870 0.0132437i
\(616\) 0 0
\(617\) 996.446i 1.61499i 0.589878 + 0.807493i \(0.299176\pi\)
−0.589878 + 0.807493i \(0.700824\pi\)
\(618\) 0 0
\(619\) −276.055 −0.445970 −0.222985 0.974822i \(-0.571580\pi\)
−0.222985 + 0.974822i \(0.571580\pi\)
\(620\) 0 0
\(621\) 98.9536 + 131.359i 0.159346 + 0.211528i
\(622\) 0 0
\(623\) 500.933i 0.804066i
\(624\) 0 0
\(625\) −723.994 −1.15839
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 751.573i 1.19487i
\(630\) 0 0
\(631\) 569.065 0.901846 0.450923 0.892563i \(-0.351095\pi\)
0.450923 + 0.892563i \(0.351095\pi\)
\(632\) 0 0
\(633\) 734.302 160.511i 1.16003 0.253572i
\(634\) 0 0
\(635\) 1309.79i 2.06267i
\(636\) 0 0
\(637\) −6.41279 −0.0100672
\(638\) 0 0
\(639\) −338.571 737.438i −0.529845 1.15405i
\(640\) 0 0
\(641\) 244.812i 0.381921i −0.981598 0.190961i \(-0.938840\pi\)
0.981598 0.190961i \(-0.0611603\pi\)
\(642\) 0 0
\(643\) −305.759 −0.475519 −0.237759 0.971324i \(-0.576413\pi\)
−0.237759 + 0.971324i \(0.576413\pi\)
\(644\) 0 0
\(645\) 342.097 + 1565.01i 0.530383 + 2.42638i
\(646\) 0 0
\(647\) 1017.96i 1.57335i 0.617365 + 0.786677i \(0.288200\pi\)
−0.617365 + 0.786677i \(0.711800\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 395.915 86.5432i 0.608165 0.132939i
\(652\) 0 0
\(653\) 637.028i 0.975540i −0.872972 0.487770i \(-0.837811\pi\)
0.872972 0.487770i \(-0.162189\pi\)
\(654\) 0 0
\(655\) −888.960 −1.35719
\(656\) 0 0
\(657\) −576.219 + 264.552i −0.877045 + 0.402667i
\(658\) 0 0
\(659\) 163.018i 0.247373i 0.992321 + 0.123686i \(0.0394716\pi\)
−0.992321 + 0.123686i \(0.960528\pi\)
\(660\) 0 0
\(661\) −361.095 −0.546285 −0.273143 0.961974i \(-0.588063\pi\)
−0.273143 + 0.961974i \(0.588063\pi\)
\(662\) 0 0
\(663\) 2.51802 + 11.5194i 0.00379792 + 0.0173746i
\(664\) 0 0
\(665\) 12.6455i 0.0190158i
\(666\) 0 0
\(667\) −318.018 −0.476789
\(668\) 0 0
\(669\) 216.530 47.3314i 0.323662 0.0707494i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 415.802 0.617833 0.308917 0.951089i \(-0.400034\pi\)
0.308917 + 0.951089i \(0.400034\pi\)
\(674\) 0 0
\(675\) 432.753 325.997i 0.641116 0.482958i
\(676\) 0 0
\(677\) 448.680i 0.662747i −0.943500 0.331373i \(-0.892488\pi\)
0.943500 0.331373i \(-0.107512\pi\)
\(678\) 0 0
\(679\) −296.211 −0.436246
\(680\) 0 0
\(681\) 17.5578 + 80.3227i 0.0257823 + 0.117948i
\(682\) 0 0
\(683\) 759.557i 1.11209i 0.831152 + 0.556045i \(0.187682\pi\)
−0.831152 + 0.556045i \(0.812318\pi\)
\(684\) 0 0
\(685\) 518.193 0.756487
\(686\) 0 0
\(687\) −26.3896 + 5.76850i −0.0384128 + 0.00839665i
\(688\) 0 0
\(689\) 7.68175i 0.0111491i
\(690\) 0 0
\(691\) 1127.86 1.63221 0.816104 0.577905i \(-0.196129\pi\)
0.816104 + 0.577905i \(0.196129\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 100.662i 0.144837i
\(696\) 0 0
\(697\) −46.2406 −0.0663424
\(698\) 0 0
\(699\) 76.2490 + 348.822i 0.109083 + 0.499030i
\(700\) 0 0
\(701\) 274.523i 0.391616i −0.980642 0.195808i \(-0.937267\pi\)
0.980642 0.195808i \(-0.0627329\pi\)
\(702\) 0 0
\(703\) −19.1550 −0.0272474
\(704\) 0 0
\(705\) 290.710 63.5462i 0.412354 0.0901365i
\(706\) 0 0
\(707\) 456.683i 0.645945i
\(708\) 0 0
\(709\) 820.824 1.15772 0.578860 0.815427i \(-0.303498\pi\)
0.578860 + 0.815427i \(0.303498\pi\)
\(710\) 0 0
\(711\) −807.578 + 370.773i −1.13583 + 0.521482i
\(712\) 0 0
\(713\) 271.829i 0.381246i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −235.431 1077.04i −0.328356 1.50215i
\(718\) 0 0
\(719\) 88.6310i 0.123270i −0.998099 0.0616349i \(-0.980369\pi\)
0.998099 0.0616349i \(-0.0196314\pi\)
\(720\) 0 0
\(721\) −64.5140 −0.0894785
\(722\) 0 0
\(723\) 696.231 152.189i 0.962975 0.210497i
\(724\) 0 0
\(725\) 1047.69i 1.44509i
\(726\) 0 0
\(727\) −1060.77 −1.45910 −0.729552 0.683925i \(-0.760272\pi\)
−0.729552 + 0.683925i \(0.760272\pi\)
\(728\) 0 0
\(729\) 201.159 700.697i 0.275938 0.961175i
\(730\) 0 0
\(731\) 1942.17i 2.65687i
\(732\) 0 0
\(733\) 899.505 1.22716 0.613578 0.789634i \(-0.289730\pi\)
0.613578 + 0.789634i \(0.289730\pi\)
\(734\) 0 0
\(735\) −171.330 783.794i −0.233102 1.06639i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −960.819 −1.30016 −0.650080 0.759865i \(-0.725265\pi\)
−0.650080 + 0.759865i \(0.725265\pi\)
\(740\) 0 0
\(741\) 0.293588 0.0641754i 0.000396205 8.66065e-5i
\(742\) 0 0
\(743\) 953.907i 1.28386i 0.766764 + 0.641930i \(0.221866\pi\)
−0.766764 + 0.641930i \(0.778134\pi\)
\(744\) 0 0
\(745\) 34.4946 0.0463015
\(746\) 0 0
\(747\) 388.649 + 846.512i 0.520279 + 1.13322i
\(748\) 0 0
\(749\) 357.093i 0.476760i
\(750\) 0 0
\(751\) −372.940 −0.496592 −0.248296 0.968684i \(-0.579871\pi\)
−0.248296 + 0.968684i \(0.579871\pi\)
\(752\) 0 0
\(753\) 40.1639 + 183.740i 0.0533385 + 0.244011i
\(754\) 0 0
\(755\) 1139.29i 1.50900i
\(756\) 0 0
\(757\) −23.1928 −0.0306377 −0.0153189 0.999883i \(-0.504876\pi\)
−0.0153189 + 0.999883i \(0.504876\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 207.287i 0.272387i −0.990682 0.136194i \(-0.956513\pi\)
0.990682 0.136194i \(-0.0434869\pi\)
\(762\) 0 0
\(763\) 306.883 0.402206
\(764\) 0 0
\(765\) −1340.66 + 615.522i −1.75250 + 0.804604i
\(766\) 0 0
\(767\) 3.52991i 0.00460223i
\(768\) 0 0
\(769\) −140.439 −0.182626 −0.0913130 0.995822i \(-0.529106\pi\)
−0.0913130 + 0.995822i \(0.529106\pi\)
\(770\) 0 0
\(771\) 135.096 + 618.035i 0.175222 + 0.801602i
\(772\) 0 0
\(773\) 251.302i 0.325099i 0.986700 + 0.162550i \(0.0519717\pi\)
−0.986700 + 0.162550i \(0.948028\pi\)
\(774\) 0 0
\(775\) −895.524 −1.15551
\(776\) 0 0
\(777\) 273.080 59.6926i 0.351454 0.0768245i
\(778\) 0 0
\(779\) 1.17851i 0.00151285i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 848.192 + 1125.95i 1.08326 + 1.43800i
\(784\) 0 0
\(785\) 348.542i 0.444002i
\(786\) 0 0
\(787\) −186.027 −0.236374 −0.118187 0.992991i \(-0.537708\pi\)
−0.118187 + 0.992991i \(0.537708\pi\)
\(788\) 0 0
\(789\) −72.4037 331.230i −0.0917664 0.419810i
\(790\) 0 0
\(791\) 452.138i 0.571604i
\(792\) 0 0
\(793\) −9.92680 −0.0125180
\(794\) 0 0
\(795\) −938.891 + 205.232i −1.18100 + 0.258154i
\(796\) 0 0
\(797\) 787.425i 0.987986i 0.869466 + 0.493993i \(0.164463\pi\)
−0.869466 + 0.493993i \(0.835537\pi\)
\(798\) 0 0
\(799\) −360.769 −0.451525
\(800\) 0 0
\(801\) 621.436 + 1353.54i 0.775825 + 1.68982i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 123.777 0.153760
\(806\) 0 0
\(807\) 304.327 + 1392.23i 0.377109 + 1.72519i
\(808\) 0 0
\(809\) 348.517i 0.430800i −0.976526 0.215400i \(-0.930894\pi\)
0.976526 0.215400i \(-0.0691055\pi\)
\(810\) 0 0
\(811\) −1047.61 −1.29176 −0.645878 0.763441i \(-0.723508\pi\)
−0.645878 + 0.763441i \(0.723508\pi\)
\(812\) 0 0
\(813\) 777.551 169.965i 0.956397 0.209059i
\(814\) 0 0
\(815\) 653.210i 0.801485i
\(816\) 0 0
\(817\) −49.4991 −0.0605864
\(818\) 0 0
\(819\) −3.98551 + 1.82982i −0.00486631 + 0.00223421i
\(820\) 0 0
\(821\) 352.171i 0.428954i −0.976729 0.214477i \(-0.931195\pi\)
0.976729 0.214477i \(-0.0688047\pi\)
\(822\) 0 0
\(823\) 949.556 1.15377 0.576887 0.816824i \(-0.304267\pi\)
0.576887 + 0.816824i \(0.304267\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 830.269i 1.00395i 0.864881 + 0.501976i \(0.167394\pi\)
−0.864881 + 0.501976i \(0.832606\pi\)
\(828\) 0 0
\(829\) −50.2704 −0.0606398 −0.0303199 0.999540i \(-0.509653\pi\)
−0.0303199 + 0.999540i \(0.509653\pi\)
\(830\) 0 0
\(831\) 443.935 97.0398i 0.534218 0.116775i
\(832\) 0 0
\(833\) 972.683i 1.16769i
\(834\) 0 0
\(835\) 1089.68 1.30501
\(836\) 0 0
\(837\) −962.418 + 724.998i −1.14984 + 0.866187i
\(838\) 0 0
\(839\) 1052.41i 1.25436i −0.778876 0.627178i \(-0.784210\pi\)
0.778876 0.627178i \(-0.215790\pi\)
\(840\) 0 0
\(841\) −1884.93 −2.24130
\(842\) 0 0
\(843\) −245.498 1123.10i −0.291220 1.33226i
\(844\) 0 0
\(845\) 1134.35i 1.34243i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1214.15 + 265.401i −1.43009 + 0.312604i
\(850\) 0 0
\(851\) 187.492i 0.220320i
\(852\) 0 0
\(853\) 610.830 0.716096 0.358048 0.933703i \(-0.383442\pi\)
0.358048 + 0.933703i \(0.383442\pi\)
\(854\) 0 0
\(855\) 15.6875 + 34.1688i 0.0183479 + 0.0399635i
\(856\) 0 0
\(857\) 125.921i 0.146932i −0.997298 0.0734661i \(-0.976594\pi\)
0.997298 0.0734661i \(-0.0234061\pi\)
\(858\) 0 0
\(859\) 382.660 0.445472 0.222736 0.974879i \(-0.428501\pi\)
0.222736 + 0.974879i \(0.428501\pi\)
\(860\) 0 0
\(861\) −3.67259 16.8013i −0.00426550 0.0195137i
\(862\) 0 0
\(863\) 350.666i 0.406334i 0.979144 + 0.203167i \(0.0651234\pi\)
−0.979144 + 0.203167i \(0.934877\pi\)
\(864\) 0 0
\(865\) −1331.00 −1.53873
\(866\) 0 0
\(867\) 900.240 196.784i 1.03834 0.226971i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −9.06679 −0.0104096
\(872\) 0 0
\(873\) 800.375 367.466i 0.916810 0.420924i
\(874\) 0 0
\(875\) 100.249i 0.114570i
\(876\) 0 0
\(877\) −530.525 −0.604931 −0.302466 0.953160i \(-0.597810\pi\)
−0.302466 + 0.953160i \(0.597810\pi\)
\(878\) 0 0
\(879\) −222.869 1019.58i −0.253549 1.15993i
\(880\) 0 0
\(881\) 1455.22i 1.65179i −0.563826 0.825893i \(-0.690671\pi\)
0.563826 0.825893i \(-0.309329\pi\)
\(882\) 0 0
\(883\) −735.414 −0.832859 −0.416429 0.909168i \(-0.636719\pi\)
−0.416429 + 0.909168i \(0.636719\pi\)
\(884\) 0 0
\(885\) −431.438 + 94.3081i −0.487501 + 0.106563i
\(886\) 0 0
\(887\) 248.096i 0.279703i −0.990173 0.139851i \(-0.955338\pi\)
0.990173 0.139851i \(-0.0446625\pi\)
\(888\) 0 0
\(889\) 590.597 0.664338
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.19472i 0.0102964i
\(894\) 0 0
\(895\) 1309.08 1.46266
\(896\) 0 0
\(897\) 0.628160 + 2.87369i 0.000700290 + 0.00320367i
\(898\) 0 0
\(899\) 2330.01i 2.59178i
\(900\) 0 0
\(901\) 1165.16 1.29318
\(902\) 0 0
\(903\) 705.678 154.254i 0.781481 0.170824i
\(904\) 0 0
\(905\) 159.714i 0.176480i
\(906\) 0 0
\(907\) −969.523 −1.06893 −0.534467 0.845190i \(-0.679488\pi\)
−0.534467 + 0.845190i \(0.679488\pi\)
\(908\) 0 0
\(909\) −566.541 1233.98i −0.623257 1.35751i
\(910\) 0 0
\(911\) 253.147i 0.277879i −0.990301 0.138939i \(-0.955631\pi\)
0.990301 0.138939i \(-0.0443693\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −265.213 1213.29i −0.289850 1.32600i
\(916\) 0 0
\(917\) 400.839i 0.437120i
\(918\) 0 0
\(919\) −1207.57 −1.31401 −0.657005 0.753887i \(-0.728177\pi\)
−0.657005 + 0.753887i \(0.728177\pi\)
\(920\) 0 0
\(921\) −1488.14 + 325.293i −1.61579 + 0.353196i
\(922\) 0 0
\(923\) 14.5136i 0.0157244i
\(924\) 0 0
\(925\) −617.682 −0.667764
\(926\) 0 0
\(927\) 174.319 80.0332i 0.188047 0.0863357i
\(928\) 0 0
\(929\) 53.6487i 0.0577488i −0.999583 0.0288744i \(-0.990808\pi\)
0.999583 0.0288744i \(-0.00919229\pi\)
\(930\) 0 0
\(931\) 24.7903 0.0266276
\(932\) 0 0
\(933\) 58.5436 + 267.824i 0.0627477 + 0.287056i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 383.183 0.408947 0.204473 0.978872i \(-0.434452\pi\)
0.204473 + 0.978872i \(0.434452\pi\)
\(938\) 0 0
\(939\) −1402.92 + 306.665i −1.49406 + 0.326587i
\(940\) 0 0
\(941\) 1223.65i 1.30037i −0.759774 0.650187i \(-0.774691\pi\)
0.759774 0.650187i \(-0.225309\pi\)
\(942\) 0 0
\(943\) −11.5355 −0.0122327
\(944\) 0 0
\(945\) −330.127 438.236i −0.349341 0.463741i
\(946\) 0 0
\(947\) 1190.44i 1.25707i −0.777782 0.628534i \(-0.783655\pi\)
0.777782 0.628534i \(-0.216345\pi\)
\(948\) 0 0
\(949\) −11.3407 −0.0119501
\(950\) 0 0
\(951\) −322.315 1474.52i −0.338923 1.55049i
\(952\) 0 0
\(953\) 117.498i 0.123293i −0.998098 0.0616465i \(-0.980365\pi\)
0.998098 0.0616465i \(-0.0196351\pi\)
\(954\) 0 0
\(955\) 1022.06 1.07022
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 233.658i 0.243647i
\(960\) 0 0
\(961\) 1030.59 1.07242
\(962\) 0 0
\(963\) −442.994 964.880i −0.460014 1.00195i
\(964\) 0 0
\(965\) 864.275i 0.895622i
\(966\) 0 0
\(967\) 488.396 0.505063 0.252531 0.967589i \(-0.418737\pi\)
0.252531 + 0.967589i \(0.418737\pi\)
\(968\) 0 0
\(969\) −9.73404 44.5310i −0.0100454 0.0459556i
\(970\) 0 0
\(971\) 131.573i 0.135503i 0.997702 + 0.0677514i \(0.0215825\pi\)
−0.997702 + 0.0677514i \(0.978418\pi\)
\(972\) 0 0
\(973\) −45.3893 −0.0466488
\(974\) 0 0
\(975\) 9.46720 2.06944i 0.00970995 0.00212250i
\(976\) 0 0
\(977\) 1248.05i 1.27743i −0.769442 0.638716i \(-0.779466\pi\)
0.769442 0.638716i \(-0.220534\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −829.212 + 380.706i −0.845272 + 0.388079i
\(982\) 0 0
\(983\) 831.804i 0.846189i 0.906085 + 0.423095i \(0.139056\pi\)
−0.906085 + 0.423095i \(0.860944\pi\)
\(984\) 0 0
\(985\) 949.285 0.963741
\(986\) 0 0
\(987\) −28.6535 131.083i −0.0290309 0.132810i
\(988\) 0 0
\(989\) 484.506i 0.489895i
\(990\) 0 0
\(991\) −1450.80 −1.46397 −0.731986 0.681319i \(-0.761407\pi\)
−0.731986 + 0.681319i \(0.761407\pi\)
\(992\) 0 0
\(993\) −452.714 + 98.9587i −0.455905 + 0.0996563i
\(994\) 0 0
\(995\) 1089.29i 1.09476i
\(996\) 0 0
\(997\) 1328.69 1.33269 0.666346 0.745643i \(-0.267857\pi\)
0.666346 + 0.745643i \(0.267857\pi\)
\(998\) 0 0
\(999\) −663.822 + 500.063i −0.664486 + 0.500563i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1452.3.e.l.485.2 16
3.2 odd 2 inner 1452.3.e.l.485.1 16
11.5 even 5 132.3.m.a.113.3 32
11.9 even 5 132.3.m.a.125.4 yes 32
11.10 odd 2 1452.3.e.m.485.2 16
33.5 odd 10 132.3.m.a.113.4 yes 32
33.20 odd 10 132.3.m.a.125.3 yes 32
33.32 even 2 1452.3.e.m.485.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.3.m.a.113.3 32 11.5 even 5
132.3.m.a.113.4 yes 32 33.5 odd 10
132.3.m.a.125.3 yes 32 33.20 odd 10
132.3.m.a.125.4 yes 32 11.9 even 5
1452.3.e.l.485.1 16 3.2 odd 2 inner
1452.3.e.l.485.2 16 1.1 even 1 trivial
1452.3.e.m.485.1 16 33.32 even 2
1452.3.e.m.485.2 16 11.10 odd 2