Properties

Label 132.3.m.a.113.3
Level $132$
Weight $3$
Character 132.113
Analytic conductor $3.597$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [132,3,Mod(5,132)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(132, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("132.5"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 132 = 2^{2} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 132.m (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59673948956\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 113.3
Character \(\chi\) \(=\) 132.113
Dual form 132.3.m.a.125.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.51495 - 2.58938i) q^{3} +(-3.94591 + 5.43107i) q^{5} +(-0.935402 + 2.87887i) q^{7} +(-4.40983 + 7.84560i) q^{9} +(6.22292 + 9.07057i) q^{11} +(-0.130232 + 0.0946188i) q^{13} +(20.0410 + 1.98964i) q^{15} +(-14.3517 + 19.7534i) q^{17} +(-0.192298 - 0.591833i) q^{19} +(8.87160 - 1.93924i) q^{21} -6.09109i q^{23} +(-6.20096 - 19.0846i) q^{25} +(26.9960 - 0.466995i) q^{27} +(-49.6551 - 16.1339i) q^{29} +(-36.1042 + 26.2312i) q^{31} +(14.0598 - 29.8550i) q^{33} +(-11.9444 - 16.4400i) q^{35} +(9.51197 - 29.2748i) q^{37} +(0.442300 + 0.193877i) q^{39} +(1.80114 - 0.585225i) q^{41} +79.5435 q^{43} +(-25.2093 - 54.9081i) q^{45} +(14.0524 - 4.56591i) q^{47} +(32.2289 + 23.4157i) q^{49} +(72.8912 + 7.23652i) q^{51} +(-28.0492 - 38.6064i) q^{53} +(-73.8180 - 1.99452i) q^{55} +(-1.24116 + 1.39453i) q^{57} +(20.8550 + 6.77621i) q^{59} +(49.8894 + 36.2468i) q^{61} +(-18.4615 - 20.0341i) q^{63} -1.08065i q^{65} -56.3242 q^{67} +(-15.7722 + 9.22772i) q^{69} +(-52.9951 + 72.9415i) q^{71} +(-21.7702 + 67.0016i) q^{73} +(-40.0232 + 44.9690i) q^{75} +(-31.9340 + 9.43034i) q^{77} +(79.8792 - 58.0357i) q^{79} +(-42.1069 - 69.1954i) q^{81} +(60.8336 - 83.7303i) q^{83} +(-50.6517 - 155.890i) q^{85} +(33.4483 + 153.018i) q^{87} +165.487i q^{89} +(-0.150577 - 0.463427i) q^{91} +(122.619 + 53.7485i) q^{93} +(3.97308 + 1.29093i) q^{95} +(-79.1668 + 57.5180i) q^{97} +(-98.6061 + 8.82286i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 5 q^{3} - 8 q^{7} - 7 q^{9} - 4 q^{13} + 29 q^{15} + 56 q^{19} + 2 q^{21} + 20 q^{25} + 47 q^{27} - 40 q^{31} + 36 q^{33} - 120 q^{37} - 109 q^{39} - 100 q^{43} + 34 q^{45} - 176 q^{49} - 124 q^{51}+ \cdots + 515 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/132\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(67\) \(89\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.51495 2.58938i −0.504985 0.863128i
\(4\) 0 0
\(5\) −3.94591 + 5.43107i −0.789181 + 1.08621i 0.205028 + 0.978756i \(0.434271\pi\)
−0.994210 + 0.107459i \(0.965729\pi\)
\(6\) 0 0
\(7\) −0.935402 + 2.87887i −0.133629 + 0.411268i −0.995374 0.0960736i \(-0.969372\pi\)
0.861745 + 0.507341i \(0.169372\pi\)
\(8\) 0 0
\(9\) −4.40983 + 7.84560i −0.489981 + 0.871733i
\(10\) 0 0
\(11\) 6.22292 + 9.07057i 0.565720 + 0.824598i
\(12\) 0 0
\(13\) −0.130232 + 0.0946188i −0.0100178 + 0.00727837i −0.592783 0.805362i \(-0.701971\pi\)
0.582765 + 0.812641i \(0.301971\pi\)
\(14\) 0 0
\(15\) 20.0410 + 1.98964i 1.33607 + 0.132643i
\(16\) 0 0
\(17\) −14.3517 + 19.7534i −0.844215 + 1.16196i 0.140892 + 0.990025i \(0.455003\pi\)
−0.985108 + 0.171938i \(0.944997\pi\)
\(18\) 0 0
\(19\) −0.192298 0.591833i −0.0101210 0.0311491i 0.945869 0.324550i \(-0.105213\pi\)
−0.955989 + 0.293401i \(0.905213\pi\)
\(20\) 0 0
\(21\) 8.87160 1.93924i 0.422457 0.0923450i
\(22\) 0 0
\(23\) 6.09109i 0.264830i −0.991194 0.132415i \(-0.957727\pi\)
0.991194 0.132415i \(-0.0422732\pi\)
\(24\) 0 0
\(25\) −6.20096 19.0846i −0.248039 0.763384i
\(26\) 0 0
\(27\) 26.9960 0.466995i 0.999850 0.0172961i
\(28\) 0 0
\(29\) −49.6551 16.1339i −1.71224 0.556342i −0.721539 0.692373i \(-0.756565\pi\)
−0.990704 + 0.136032i \(0.956565\pi\)
\(30\) 0 0
\(31\) −36.1042 + 26.2312i −1.16465 + 0.846169i −0.990359 0.138525i \(-0.955764\pi\)
−0.174293 + 0.984694i \(0.555764\pi\)
\(32\) 0 0
\(33\) 14.0598 29.8550i 0.426054 0.904698i
\(34\) 0 0
\(35\) −11.9444 16.4400i −0.341267 0.469714i
\(36\) 0 0
\(37\) 9.51197 29.2748i 0.257080 0.791211i −0.736333 0.676620i \(-0.763444\pi\)
0.993413 0.114592i \(-0.0365559\pi\)
\(38\) 0 0
\(39\) 0.442300 + 0.193877i 0.0113410 + 0.00497120i
\(40\) 0 0
\(41\) 1.80114 0.585225i 0.0439302 0.0142738i −0.286969 0.957940i \(-0.592648\pi\)
0.330900 + 0.943666i \(0.392648\pi\)
\(42\) 0 0
\(43\) 79.5435 1.84985 0.924924 0.380152i \(-0.124128\pi\)
0.924924 + 0.380152i \(0.124128\pi\)
\(44\) 0 0
\(45\) −25.2093 54.9081i −0.560206 1.22018i
\(46\) 0 0
\(47\) 14.0524 4.56591i 0.298988 0.0971471i −0.155682 0.987807i \(-0.549757\pi\)
0.454670 + 0.890660i \(0.349757\pi\)
\(48\) 0 0
\(49\) 32.2289 + 23.4157i 0.657733 + 0.477871i
\(50\) 0 0
\(51\) 72.8912 + 7.23652i 1.42924 + 0.141892i
\(52\) 0 0
\(53\) −28.0492 38.6064i −0.529230 0.728422i 0.457783 0.889064i \(-0.348644\pi\)
−0.987013 + 0.160642i \(0.948644\pi\)
\(54\) 0 0
\(55\) −73.8180 1.99452i −1.34215 0.0362641i
\(56\) 0 0
\(57\) −1.24116 + 1.39453i −0.0217748 + 0.0244655i
\(58\) 0 0
\(59\) 20.8550 + 6.77621i 0.353475 + 0.114851i 0.480372 0.877065i \(-0.340502\pi\)
−0.126897 + 0.991916i \(0.540502\pi\)
\(60\) 0 0
\(61\) 49.8894 + 36.2468i 0.817859 + 0.594209i 0.916098 0.400954i \(-0.131321\pi\)
−0.0982396 + 0.995163i \(0.531321\pi\)
\(62\) 0 0
\(63\) −18.4615 20.0341i −0.293040 0.318002i
\(64\) 0 0
\(65\) 1.08065i 0.0166255i
\(66\) 0 0
\(67\) −56.3242 −0.840659 −0.420330 0.907371i \(-0.638086\pi\)
−0.420330 + 0.907371i \(0.638086\pi\)
\(68\) 0 0
\(69\) −15.7722 + 9.22772i −0.228582 + 0.133735i
\(70\) 0 0
\(71\) −52.9951 + 72.9415i −0.746410 + 1.02734i 0.251814 + 0.967776i \(0.418973\pi\)
−0.998224 + 0.0595694i \(0.981027\pi\)
\(72\) 0 0
\(73\) −21.7702 + 67.0016i −0.298221 + 0.917831i 0.683899 + 0.729577i \(0.260283\pi\)
−0.982120 + 0.188254i \(0.939717\pi\)
\(74\) 0 0
\(75\) −40.0232 + 44.9690i −0.533643 + 0.599586i
\(76\) 0 0
\(77\) −31.9340 + 9.43034i −0.414727 + 0.122472i
\(78\) 0 0
\(79\) 79.8792 58.0357i 1.01113 0.734629i 0.0466840 0.998910i \(-0.485135\pi\)
0.964446 + 0.264281i \(0.0851346\pi\)
\(80\) 0 0
\(81\) −42.1069 69.1954i −0.519838 0.854265i
\(82\) 0 0
\(83\) 60.8336 83.7303i 0.732935 1.00880i −0.266059 0.963957i \(-0.585722\pi\)
0.998994 0.0448419i \(-0.0142784\pi\)
\(84\) 0 0
\(85\) −50.6517 155.890i −0.595902 1.83400i
\(86\) 0 0
\(87\) 33.4483 + 153.018i 0.384463 + 1.75883i
\(88\) 0 0
\(89\) 165.487i 1.85940i 0.368312 + 0.929702i \(0.379936\pi\)
−0.368312 + 0.929702i \(0.620064\pi\)
\(90\) 0 0
\(91\) −0.150577 0.463427i −0.00165469 0.00509261i
\(92\) 0 0
\(93\) 122.619 + 53.7485i 1.31848 + 0.577941i
\(94\) 0 0
\(95\) 3.97308 + 1.29093i 0.0418219 + 0.0135888i
\(96\) 0 0
\(97\) −79.1668 + 57.5180i −0.816152 + 0.592969i −0.915608 0.402073i \(-0.868290\pi\)
0.0994555 + 0.995042i \(0.468290\pi\)
\(98\) 0 0
\(99\) −98.6061 + 8.82286i −0.996021 + 0.0891198i
\(100\) 0 0
\(101\) 88.6783 + 122.055i 0.878003 + 1.20847i 0.976970 + 0.213377i \(0.0684463\pi\)
−0.0989666 + 0.995091i \(0.531554\pi\)
\(102\) 0 0
\(103\) 6.58597 20.2695i 0.0639415 0.196792i −0.913982 0.405755i \(-0.867009\pi\)
0.977924 + 0.208963i \(0.0670088\pi\)
\(104\) 0 0
\(105\) −24.4743 + 55.8344i −0.233089 + 0.531756i
\(106\) 0 0
\(107\) 112.194 36.4542i 1.04855 0.340693i 0.266449 0.963849i \(-0.414150\pi\)
0.782098 + 0.623156i \(0.214150\pi\)
\(108\) 0 0
\(109\) −101.381 −0.930102 −0.465051 0.885284i \(-0.653964\pi\)
−0.465051 + 0.885284i \(0.653964\pi\)
\(110\) 0 0
\(111\) −90.2140 + 19.7199i −0.812738 + 0.177657i
\(112\) 0 0
\(113\) 142.057 46.1570i 1.25714 0.408469i 0.396665 0.917964i \(-0.370168\pi\)
0.860474 + 0.509495i \(0.170168\pi\)
\(114\) 0 0
\(115\) 33.0812 + 24.0349i 0.287662 + 0.208999i
\(116\) 0 0
\(117\) −0.168043 1.43900i −0.00143626 0.0122991i
\(118\) 0 0
\(119\) −43.4428 59.7940i −0.365066 0.502470i
\(120\) 0 0
\(121\) −43.5507 + 112.891i −0.359923 + 0.932982i
\(122\) 0 0
\(123\) −4.24401 3.77725i −0.0345042 0.0307093i
\(124\) 0 0
\(125\) −31.4970 10.2340i −0.251976 0.0818718i
\(126\) 0 0
\(127\) 157.846 + 114.682i 1.24288 + 0.903004i 0.997787 0.0664953i \(-0.0211817\pi\)
0.245092 + 0.969500i \(0.421182\pi\)
\(128\) 0 0
\(129\) −120.505 205.969i −0.934145 1.59666i
\(130\) 0 0
\(131\) 132.420i 1.01084i −0.862873 0.505420i \(-0.831337\pi\)
0.862873 0.505420i \(-0.168663\pi\)
\(132\) 0 0
\(133\) 1.88369 0.0141631
\(134\) 0 0
\(135\) −103.987 + 148.460i −0.770276 + 1.09970i
\(136\) 0 0
\(137\) 45.3714 62.4484i 0.331178 0.455828i −0.610661 0.791892i \(-0.709096\pi\)
0.941839 + 0.336065i \(0.109096\pi\)
\(138\) 0 0
\(139\) 4.63361 14.2608i 0.0333353 0.102596i −0.933004 0.359865i \(-0.882823\pi\)
0.966340 + 0.257269i \(0.0828228\pi\)
\(140\) 0 0
\(141\) −33.1117 29.4700i −0.234835 0.209007i
\(142\) 0 0
\(143\) −1.66867 0.592471i −0.0116690 0.00414315i
\(144\) 0 0
\(145\) 283.559 206.017i 1.95558 1.42081i
\(146\) 0 0
\(147\) 11.8068 118.927i 0.0803187 0.809025i
\(148\) 0 0
\(149\) 3.02024 4.15701i 0.0202701 0.0278994i −0.798762 0.601648i \(-0.794511\pi\)
0.819032 + 0.573748i \(0.194511\pi\)
\(150\) 0 0
\(151\) −52.4433 161.404i −0.347307 1.06890i −0.960337 0.278841i \(-0.910050\pi\)
0.613031 0.790059i \(-0.289950\pi\)
\(152\) 0 0
\(153\) −91.6887 199.706i −0.599273 1.30527i
\(154\) 0 0
\(155\) 299.591i 1.93284i
\(156\) 0 0
\(157\) 16.0439 + 49.3779i 0.102190 + 0.314509i 0.989061 0.147509i \(-0.0471255\pi\)
−0.886871 + 0.462018i \(0.847126\pi\)
\(158\) 0 0
\(159\) −57.4735 + 131.117i −0.361469 + 0.824635i
\(160\) 0 0
\(161\) 17.5355 + 5.69762i 0.108916 + 0.0353889i
\(162\) 0 0
\(163\) −78.7195 + 57.1931i −0.482942 + 0.350878i −0.802464 0.596701i \(-0.796478\pi\)
0.319522 + 0.947579i \(0.396478\pi\)
\(164\) 0 0
\(165\) 106.666 + 194.165i 0.646463 + 1.17676i
\(166\) 0 0
\(167\) −95.4091 131.319i −0.571312 0.786344i 0.421397 0.906876i \(-0.361540\pi\)
−0.992709 + 0.120532i \(0.961540\pi\)
\(168\) 0 0
\(169\) −52.2159 + 160.704i −0.308970 + 0.950911i
\(170\) 0 0
\(171\) 5.49129 + 1.10119i 0.0321128 + 0.00643968i
\(172\) 0 0
\(173\) 188.563 61.2678i 1.08996 0.354149i 0.291729 0.956501i \(-0.405770\pi\)
0.798231 + 0.602352i \(0.205770\pi\)
\(174\) 0 0
\(175\) 60.7425 0.347100
\(176\) 0 0
\(177\) −14.0482 64.2673i −0.0793684 0.363092i
\(178\) 0 0
\(179\) −185.458 + 60.2590i −1.03608 + 0.336643i −0.777191 0.629265i \(-0.783356\pi\)
−0.258888 + 0.965907i \(0.583356\pi\)
\(180\) 0 0
\(181\) −19.2475 13.9841i −0.106340 0.0772603i 0.533345 0.845898i \(-0.320935\pi\)
−0.639684 + 0.768638i \(0.720935\pi\)
\(182\) 0 0
\(183\) 18.2766 184.095i 0.0998724 1.00598i
\(184\) 0 0
\(185\) 121.460 + 167.176i 0.656543 + 0.903653i
\(186\) 0 0
\(187\) −268.484 7.25429i −1.43574 0.0387930i
\(188\) 0 0
\(189\) −23.9077 + 78.1548i −0.126496 + 0.413517i
\(190\) 0 0
\(191\) 144.795 + 47.0467i 0.758088 + 0.246318i 0.662458 0.749099i \(-0.269513\pi\)
0.0956300 + 0.995417i \(0.469513\pi\)
\(192\) 0 0
\(193\) 104.155 + 75.6733i 0.539665 + 0.392090i 0.823961 0.566647i \(-0.191760\pi\)
−0.284296 + 0.958737i \(0.591760\pi\)
\(194\) 0 0
\(195\) −2.79823 + 1.63714i −0.0143499 + 0.00839561i
\(196\) 0 0
\(197\) 141.406i 0.717798i 0.933376 + 0.358899i \(0.116848\pi\)
−0.933376 + 0.358899i \(0.883152\pi\)
\(198\) 0 0
\(199\) −162.261 −0.815381 −0.407690 0.913120i \(-0.633666\pi\)
−0.407690 + 0.913120i \(0.633666\pi\)
\(200\) 0 0
\(201\) 85.3286 + 145.845i 0.424520 + 0.725597i
\(202\) 0 0
\(203\) 92.8950 127.859i 0.457611 0.629847i
\(204\) 0 0
\(205\) −3.92872 + 12.0913i −0.0191645 + 0.0589822i
\(206\) 0 0
\(207\) 47.7883 + 26.8606i 0.230861 + 0.129762i
\(208\) 0 0
\(209\) 4.17161 5.42718i 0.0199599 0.0259674i
\(210\) 0 0
\(211\) 202.696 147.268i 0.960647 0.697951i 0.00734596 0.999973i \(-0.497662\pi\)
0.953301 + 0.302022i \(0.0976617\pi\)
\(212\) 0 0
\(213\) 269.159 + 26.7216i 1.26366 + 0.125454i
\(214\) 0 0
\(215\) −313.871 + 432.006i −1.45987 + 2.00933i
\(216\) 0 0
\(217\) −41.7444 128.476i −0.192371 0.592056i
\(218\) 0 0
\(219\) 206.474 45.1332i 0.942803 0.206087i
\(220\) 0 0
\(221\) 3.93045i 0.0177848i
\(222\) 0 0
\(223\) −22.8305 70.2650i −0.102379 0.315090i 0.886728 0.462292i \(-0.152973\pi\)
−0.989106 + 0.147203i \(0.952973\pi\)
\(224\) 0 0
\(225\) 177.075 + 35.5095i 0.787001 + 0.157820i
\(226\) 0 0
\(227\) −26.0651 8.46905i −0.114824 0.0373086i 0.251041 0.967976i \(-0.419227\pi\)
−0.365865 + 0.930668i \(0.619227\pi\)
\(228\) 0 0
\(229\) −7.28457 + 5.29255i −0.0318104 + 0.0231116i −0.603577 0.797305i \(-0.706258\pi\)
0.571766 + 0.820416i \(0.306258\pi\)
\(230\) 0 0
\(231\) 72.7973 + 68.4028i 0.315140 + 0.296116i
\(232\) 0 0
\(233\) 69.9579 + 96.2887i 0.300248 + 0.413256i 0.932309 0.361662i \(-0.117791\pi\)
−0.632061 + 0.774919i \(0.717791\pi\)
\(234\) 0 0
\(235\) −30.6518 + 94.3365i −0.130433 + 0.401432i
\(236\) 0 0
\(237\) −271.290 118.917i −1.14468 0.501758i
\(238\) 0 0
\(239\) −349.506 + 113.561i −1.46237 + 0.475152i −0.928792 0.370601i \(-0.879152\pi\)
−0.533575 + 0.845753i \(0.679152\pi\)
\(240\) 0 0
\(241\) −237.557 −0.985713 −0.492856 0.870111i \(-0.664047\pi\)
−0.492856 + 0.870111i \(0.664047\pi\)
\(242\) 0 0
\(243\) −115.384 + 213.859i −0.474830 + 0.880078i
\(244\) 0 0
\(245\) −254.344 + 82.6415i −1.03814 + 0.337312i
\(246\) 0 0
\(247\) 0.0810419 + 0.0588804i 0.000328105 + 0.000238382i
\(248\) 0 0
\(249\) −308.970 30.6740i −1.24084 0.123189i
\(250\) 0 0
\(251\) 36.8500 + 50.7197i 0.146813 + 0.202071i 0.876090 0.482148i \(-0.160143\pi\)
−0.729277 + 0.684219i \(0.760143\pi\)
\(252\) 0 0
\(253\) 55.2497 37.9043i 0.218378 0.149819i
\(254\) 0 0
\(255\) −326.924 + 367.323i −1.28205 + 1.44048i
\(256\) 0 0
\(257\) −200.555 65.1643i −0.780370 0.253558i −0.108372 0.994110i \(-0.534564\pi\)
−0.671998 + 0.740553i \(0.734564\pi\)
\(258\) 0 0
\(259\) 75.3810 + 54.7675i 0.291046 + 0.211457i
\(260\) 0 0
\(261\) 345.550 318.426i 1.32395 1.22002i
\(262\) 0 0
\(263\) 113.017i 0.429723i 0.976645 + 0.214861i \(0.0689300\pi\)
−0.976645 + 0.214861i \(0.931070\pi\)
\(264\) 0 0
\(265\) 320.353 1.20888
\(266\) 0 0
\(267\) 428.509 250.705i 1.60490 0.938971i
\(268\) 0 0
\(269\) −279.218 + 384.310i −1.03798 + 1.42866i −0.139202 + 0.990264i \(0.544454\pi\)
−0.898781 + 0.438397i \(0.855546\pi\)
\(270\) 0 0
\(271\) −81.9833 + 252.319i −0.302521 + 0.931065i 0.678069 + 0.734998i \(0.262817\pi\)
−0.980591 + 0.196067i \(0.937183\pi\)
\(272\) 0 0
\(273\) −0.971874 + 1.09197i −0.00355998 + 0.00399990i
\(274\) 0 0
\(275\) 134.520 175.008i 0.489165 0.636393i
\(276\) 0 0
\(277\) 122.544 89.0332i 0.442396 0.321420i −0.344190 0.938900i \(-0.611847\pi\)
0.786586 + 0.617480i \(0.211847\pi\)
\(278\) 0 0
\(279\) −46.5866 398.934i −0.166977 1.42987i
\(280\) 0 0
\(281\) 225.243 310.020i 0.801576 1.10327i −0.190993 0.981591i \(-0.561171\pi\)
0.992569 0.121683i \(-0.0388291\pi\)
\(282\) 0 0
\(283\) 128.017 + 393.996i 0.452357 + 1.39221i 0.874210 + 0.485547i \(0.161380\pi\)
−0.421854 + 0.906664i \(0.638620\pi\)
\(284\) 0 0
\(285\) −2.67632 12.2435i −0.00939059 0.0429598i
\(286\) 0 0
\(287\) 5.73266i 0.0199744i
\(288\) 0 0
\(289\) −94.9194 292.132i −0.328441 1.01084i
\(290\) 0 0
\(291\) 268.870 + 117.856i 0.923953 + 0.405003i
\(292\) 0 0
\(293\) 330.857 + 107.502i 1.12920 + 0.366901i 0.813273 0.581882i \(-0.197683\pi\)
0.315930 + 0.948782i \(0.397683\pi\)
\(294\) 0 0
\(295\) −119.094 + 86.5269i −0.403709 + 0.293312i
\(296\) 0 0
\(297\) 172.229 + 241.963i 0.579897 + 0.814690i
\(298\) 0 0
\(299\) 0.576332 + 0.793253i 0.00192753 + 0.00265302i
\(300\) 0 0
\(301\) −74.4051 + 228.995i −0.247193 + 0.760782i
\(302\) 0 0
\(303\) 181.704 414.530i 0.599684 1.36809i
\(304\) 0 0
\(305\) −393.718 + 127.927i −1.29088 + 0.419432i
\(306\) 0 0
\(307\) 507.760 1.65394 0.826971 0.562245i \(-0.190062\pi\)
0.826971 + 0.562245i \(0.190062\pi\)
\(308\) 0 0
\(309\) −62.4631 + 13.6538i −0.202146 + 0.0441871i
\(310\) 0 0
\(311\) 86.9099 28.2388i 0.279453 0.0907998i −0.165937 0.986136i \(-0.553065\pi\)
0.445390 + 0.895336i \(0.353065\pi\)
\(312\) 0 0
\(313\) −387.262 281.363i −1.23726 0.898922i −0.239848 0.970811i \(-0.577097\pi\)
−0.997413 + 0.0718884i \(0.977097\pi\)
\(314\) 0 0
\(315\) 181.654 21.2131i 0.576680 0.0673433i
\(316\) 0 0
\(317\) −295.722 407.026i −0.932876 1.28399i −0.958727 0.284328i \(-0.908230\pi\)
0.0258512 0.999666i \(-0.491770\pi\)
\(318\) 0 0
\(319\) −162.655 550.800i −0.509892 1.72665i
\(320\) 0 0
\(321\) −264.363 235.288i −0.823562 0.732985i
\(322\) 0 0
\(323\) 14.4505 + 4.69525i 0.0447384 + 0.0145364i
\(324\) 0 0
\(325\) 2.61332 + 1.89869i 0.00804100 + 0.00584213i
\(326\) 0 0
\(327\) 153.588 + 262.515i 0.469688 + 0.802798i
\(328\) 0 0
\(329\) 44.7261i 0.135946i
\(330\) 0 0
\(331\) 154.468 0.466670 0.233335 0.972396i \(-0.425036\pi\)
0.233335 + 0.972396i \(0.425036\pi\)
\(332\) 0 0
\(333\) 187.732 + 203.724i 0.563761 + 0.611784i
\(334\) 0 0
\(335\) 222.250 305.901i 0.663432 0.913136i
\(336\) 0 0
\(337\) −93.7345 + 288.485i −0.278144 + 0.856039i 0.710226 + 0.703973i \(0.248593\pi\)
−0.988370 + 0.152066i \(0.951407\pi\)
\(338\) 0 0
\(339\) −334.728 297.914i −0.987397 0.878801i
\(340\) 0 0
\(341\) −462.606 164.251i −1.35662 0.481675i
\(342\) 0 0
\(343\) −217.555 + 158.063i −0.634270 + 0.460824i
\(344\) 0 0
\(345\) 12.1191 122.072i 0.0351277 0.353831i
\(346\) 0 0
\(347\) 190.035 261.561i 0.547651 0.753777i −0.442040 0.896995i \(-0.645745\pi\)
0.989691 + 0.143218i \(0.0457450\pi\)
\(348\) 0 0
\(349\) 172.352 + 530.445i 0.493845 + 1.51990i 0.818748 + 0.574152i \(0.194668\pi\)
−0.324903 + 0.945747i \(0.605332\pi\)
\(350\) 0 0
\(351\) −3.47154 + 2.61514i −0.00989043 + 0.00745055i
\(352\) 0 0
\(353\) 31.0942i 0.0880857i 0.999030 + 0.0440428i \(0.0140238\pi\)
−0.999030 + 0.0440428i \(0.985976\pi\)
\(354\) 0 0
\(355\) −187.037 575.641i −0.526865 1.62152i
\(356\) 0 0
\(357\) −89.0156 + 203.075i −0.249343 + 0.568839i
\(358\) 0 0
\(359\) −99.5764 32.3543i −0.277371 0.0901234i 0.167028 0.985952i \(-0.446583\pi\)
−0.444400 + 0.895829i \(0.646583\pi\)
\(360\) 0 0
\(361\) 291.742 211.963i 0.808149 0.587155i
\(362\) 0 0
\(363\) 358.295 58.2551i 0.987039 0.160482i
\(364\) 0 0
\(365\) −277.988 382.618i −0.761611 1.04827i
\(366\) 0 0
\(367\) 41.8989 128.951i 0.114166 0.351366i −0.877606 0.479382i \(-0.840861\pi\)
0.991772 + 0.128016i \(0.0408608\pi\)
\(368\) 0 0
\(369\) −3.35126 + 16.7117i −0.00908200 + 0.0452893i
\(370\) 0 0
\(371\) 137.380 44.6375i 0.370297 0.120317i
\(372\) 0 0
\(373\) −275.618 −0.738921 −0.369461 0.929246i \(-0.620457\pi\)
−0.369461 + 0.929246i \(0.620457\pi\)
\(374\) 0 0
\(375\) 21.2167 + 97.0617i 0.0565780 + 0.258831i
\(376\) 0 0
\(377\) 7.99324 2.59716i 0.0212022 0.00688902i
\(378\) 0 0
\(379\) −227.546 165.322i −0.600385 0.436205i 0.245631 0.969363i \(-0.421005\pi\)
−0.846015 + 0.533158i \(0.821005\pi\)
\(380\) 0 0
\(381\) 57.8257 582.460i 0.151774 1.52877i
\(382\) 0 0
\(383\) 233.294 + 321.102i 0.609123 + 0.838386i 0.996505 0.0835335i \(-0.0266206\pi\)
−0.387382 + 0.921919i \(0.626621\pi\)
\(384\) 0 0
\(385\) 74.7915 210.647i 0.194264 0.547135i
\(386\) 0 0
\(387\) −350.773 + 624.066i −0.906389 + 1.61257i
\(388\) 0 0
\(389\) −79.1447 25.7157i −0.203457 0.0661072i 0.205516 0.978654i \(-0.434113\pi\)
−0.408973 + 0.912547i \(0.634113\pi\)
\(390\) 0 0
\(391\) 120.320 + 87.4172i 0.307723 + 0.223574i
\(392\) 0 0
\(393\) −342.887 + 200.610i −0.872485 + 0.510459i
\(394\) 0 0
\(395\) 662.833i 1.67806i
\(396\) 0 0
\(397\) 173.738 0.437627 0.218813 0.975767i \(-0.429781\pi\)
0.218813 + 0.975767i \(0.429781\pi\)
\(398\) 0 0
\(399\) −2.85370 4.87760i −0.00715214 0.0122246i
\(400\) 0 0
\(401\) 325.191 447.587i 0.810950 1.11618i −0.180226 0.983625i \(-0.557683\pi\)
0.991176 0.132552i \(-0.0423171\pi\)
\(402\) 0 0
\(403\) 2.21994 6.83228i 0.00550854 0.0169535i
\(404\) 0 0
\(405\) 541.955 + 44.3531i 1.33816 + 0.109514i
\(406\) 0 0
\(407\) 324.732 95.8957i 0.797866 0.235616i
\(408\) 0 0
\(409\) 120.270 87.3813i 0.294059 0.213646i −0.430968 0.902367i \(-0.641828\pi\)
0.725026 + 0.688721i \(0.241828\pi\)
\(410\) 0 0
\(411\) −230.439 22.8776i −0.560678 0.0556632i
\(412\) 0 0
\(413\) −39.0157 + 53.7005i −0.0944690 + 0.130025i
\(414\) 0 0
\(415\) 214.702 + 660.784i 0.517353 + 1.59225i
\(416\) 0 0
\(417\) −43.9464 + 9.60625i −0.105387 + 0.0230366i
\(418\) 0 0
\(419\) 326.983i 0.780389i 0.920732 + 0.390195i \(0.127592\pi\)
−0.920732 + 0.390195i \(0.872408\pi\)
\(420\) 0 0
\(421\) 145.745 + 448.557i 0.346188 + 1.06546i 0.960945 + 0.276740i \(0.0892539\pi\)
−0.614757 + 0.788716i \(0.710746\pi\)
\(422\) 0 0
\(423\) −26.1465 + 130.385i −0.0618120 + 0.308238i
\(424\) 0 0
\(425\) 465.979 + 151.406i 1.09642 + 0.356249i
\(426\) 0 0
\(427\) −151.016 + 109.720i −0.353669 + 0.256955i
\(428\) 0 0
\(429\) 0.993821 + 5.21839i 0.00231660 + 0.0121641i
\(430\) 0 0
\(431\) 332.586 + 457.765i 0.771661 + 1.06210i 0.996154 + 0.0876247i \(0.0279276\pi\)
−0.224492 + 0.974476i \(0.572072\pi\)
\(432\) 0 0
\(433\) −177.300 + 545.673i −0.409468 + 1.26021i 0.507638 + 0.861571i \(0.330519\pi\)
−0.917106 + 0.398643i \(0.869481\pi\)
\(434\) 0 0
\(435\) −963.037 422.135i −2.21388 0.970426i
\(436\) 0 0
\(437\) −3.60491 + 1.17131i −0.00824922 + 0.00268033i
\(438\) 0 0
\(439\) 262.112 0.597066 0.298533 0.954399i \(-0.403503\pi\)
0.298533 + 0.954399i \(0.403503\pi\)
\(440\) 0 0
\(441\) −325.834 + 149.596i −0.738852 + 0.339220i
\(442\) 0 0
\(443\) 389.672 126.612i 0.879622 0.285806i 0.165821 0.986156i \(-0.446972\pi\)
0.713800 + 0.700349i \(0.246972\pi\)
\(444\) 0 0
\(445\) −898.772 652.996i −2.01971 1.46741i
\(446\) 0 0
\(447\) −15.3396 1.52289i −0.0343168 0.00340692i
\(448\) 0 0
\(449\) 123.881 + 170.508i 0.275905 + 0.379751i 0.924372 0.381492i \(-0.124590\pi\)
−0.648467 + 0.761243i \(0.724590\pi\)
\(450\) 0 0
\(451\) 16.5166 + 12.6955i 0.0366223 + 0.0281498i
\(452\) 0 0
\(453\) −338.488 + 380.316i −0.747213 + 0.839549i
\(454\) 0 0
\(455\) 3.11107 + 1.01085i 0.00683751 + 0.00222164i
\(456\) 0 0
\(457\) 78.0919 + 56.7371i 0.170879 + 0.124151i 0.669938 0.742417i \(-0.266321\pi\)
−0.499058 + 0.866568i \(0.666321\pi\)
\(458\) 0 0
\(459\) −378.212 + 539.963i −0.823992 + 1.17639i
\(460\) 0 0
\(461\) 542.354i 1.17647i −0.808689 0.588237i \(-0.799822\pi\)
0.808689 0.588237i \(-0.200178\pi\)
\(462\) 0 0
\(463\) 488.061 1.05413 0.527064 0.849826i \(-0.323293\pi\)
0.527064 + 0.849826i \(0.323293\pi\)
\(464\) 0 0
\(465\) −775.755 + 453.866i −1.66829 + 0.976056i
\(466\) 0 0
\(467\) −314.910 + 433.437i −0.674326 + 0.928130i −0.999849 0.0174039i \(-0.994460\pi\)
0.325522 + 0.945534i \(0.394460\pi\)
\(468\) 0 0
\(469\) 52.6858 162.150i 0.112336 0.345736i
\(470\) 0 0
\(471\) 103.553 116.349i 0.219857 0.247026i
\(472\) 0 0
\(473\) 494.992 + 721.505i 1.04650 + 1.52538i
\(474\) 0 0
\(475\) −10.1025 + 7.33987i −0.0212684 + 0.0154524i
\(476\) 0 0
\(477\) 426.582 49.8152i 0.894302 0.104434i
\(478\) 0 0
\(479\) −326.911 + 449.955i −0.682487 + 0.939363i −0.999960 0.00890429i \(-0.997166\pi\)
0.317473 + 0.948267i \(0.397166\pi\)
\(480\) 0 0
\(481\) 1.53119 + 4.71252i 0.00318335 + 0.00979734i
\(482\) 0 0
\(483\) −11.8121 54.0377i −0.0244557 0.111879i
\(484\) 0 0
\(485\) 656.921i 1.35448i
\(486\) 0 0
\(487\) −151.085 464.991i −0.310235 0.954807i −0.977671 0.210139i \(-0.932608\pi\)
0.667436 0.744667i \(-0.267392\pi\)
\(488\) 0 0
\(489\) 267.351 + 117.190i 0.546731 + 0.239653i
\(490\) 0 0
\(491\) −400.794 130.226i −0.816282 0.265226i −0.129026 0.991641i \(-0.541185\pi\)
−0.687256 + 0.726415i \(0.741185\pi\)
\(492\) 0 0
\(493\) 1031.33 749.306i 2.09195 1.51989i
\(494\) 0 0
\(495\) 341.173 570.351i 0.689238 1.15222i
\(496\) 0 0
\(497\) −160.418 220.796i −0.322772 0.444257i
\(498\) 0 0
\(499\) −167.289 + 514.863i −0.335249 + 1.03179i 0.631351 + 0.775497i \(0.282501\pi\)
−0.966599 + 0.256292i \(0.917499\pi\)
\(500\) 0 0
\(501\) −195.496 + 445.994i −0.390211 + 0.890207i
\(502\) 0 0
\(503\) 453.350 147.302i 0.901293 0.292848i 0.178522 0.983936i \(-0.442868\pi\)
0.722771 + 0.691088i \(0.242868\pi\)
\(504\) 0 0
\(505\) −1012.81 −2.00556
\(506\) 0 0
\(507\) 495.229 108.252i 0.976783 0.213515i
\(508\) 0 0
\(509\) 56.2723 18.2840i 0.110555 0.0359214i −0.253217 0.967409i \(-0.581489\pi\)
0.363772 + 0.931488i \(0.381489\pi\)
\(510\) 0 0
\(511\) −172.525 125.347i −0.337623 0.245297i
\(512\) 0 0
\(513\) −5.46766 15.8873i −0.0106582 0.0309694i
\(514\) 0 0
\(515\) 84.0977 + 115.751i 0.163297 + 0.224758i
\(516\) 0 0
\(517\) 128.863 + 99.0504i 0.249251 + 0.191587i
\(518\) 0 0
\(519\) −444.310 395.444i −0.856089 0.761935i
\(520\) 0 0
\(521\) 330.109 + 107.259i 0.633607 + 0.205871i 0.608172 0.793805i \(-0.291903\pi\)
0.0254349 + 0.999676i \(0.491903\pi\)
\(522\) 0 0
\(523\) −621.557 451.587i −1.18844 0.863456i −0.195346 0.980734i \(-0.562583\pi\)
−0.993099 + 0.117279i \(0.962583\pi\)
\(524\) 0 0
\(525\) −92.0222 157.286i −0.175280 0.299592i
\(526\) 0 0
\(527\) 1089.64i 2.06763i
\(528\) 0 0
\(529\) 491.899 0.929865
\(530\) 0 0
\(531\) −145.130 + 133.738i −0.273315 + 0.251861i
\(532\) 0 0
\(533\) −0.179192 + 0.246636i −0.000336195 + 0.000462732i
\(534\) 0 0
\(535\) −244.723 + 753.181i −0.457427 + 1.40782i
\(536\) 0 0
\(537\) 436.995 + 388.933i 0.813770 + 0.724270i
\(538\) 0 0
\(539\) −11.8358 + 438.048i −0.0219589 + 0.812706i
\(540\) 0 0
\(541\) 385.903 280.375i 0.713315 0.518253i −0.170927 0.985284i \(-0.554676\pi\)
0.884241 + 0.467030i \(0.154676\pi\)
\(542\) 0 0
\(543\) −7.05119 + 71.0244i −0.0129856 + 0.130800i
\(544\) 0 0
\(545\) 400.040 550.609i 0.734019 1.01029i
\(546\) 0 0
\(547\) 10.0893 + 31.0516i 0.0184447 + 0.0567670i 0.959855 0.280496i \(-0.0904989\pi\)
−0.941411 + 0.337263i \(0.890499\pi\)
\(548\) 0 0
\(549\) −504.381 + 231.570i −0.918727 + 0.421804i
\(550\) 0 0
\(551\) 32.4901i 0.0589656i
\(552\) 0 0
\(553\) 92.3581 + 284.249i 0.167013 + 0.514012i
\(554\) 0 0
\(555\) 248.876 567.772i 0.448425 1.02301i
\(556\) 0 0
\(557\) −753.009 244.667i −1.35190 0.439259i −0.458570 0.888658i \(-0.651638\pi\)
−0.893331 + 0.449399i \(0.851638\pi\)
\(558\) 0 0
\(559\) −10.3591 + 7.52631i −0.0185314 + 0.0134639i
\(560\) 0 0
\(561\) 387.956 + 706.197i 0.691544 + 1.25882i
\(562\) 0 0
\(563\) −309.395 425.846i −0.549547 0.756387i 0.440403 0.897800i \(-0.354835\pi\)
−0.989951 + 0.141413i \(0.954835\pi\)
\(564\) 0 0
\(565\) −309.860 + 953.651i −0.548425 + 1.68788i
\(566\) 0 0
\(567\) 238.592 56.4948i 0.420797 0.0996380i
\(568\) 0 0
\(569\) 690.404 224.326i 1.21336 0.394246i 0.368703 0.929547i \(-0.379802\pi\)
0.844661 + 0.535302i \(0.179802\pi\)
\(570\) 0 0
\(571\) −227.235 −0.397959 −0.198980 0.980004i \(-0.563763\pi\)
−0.198980 + 0.980004i \(0.563763\pi\)
\(572\) 0 0
\(573\) −97.5356 446.203i −0.170219 0.778714i
\(574\) 0 0
\(575\) −116.246 + 37.7706i −0.202167 + 0.0656880i
\(576\) 0 0
\(577\) −402.346 292.322i −0.697307 0.506623i 0.181747 0.983345i \(-0.441825\pi\)
−0.879054 + 0.476722i \(0.841825\pi\)
\(578\) 0 0
\(579\) 38.1566 384.340i 0.0659009 0.663799i
\(580\) 0 0
\(581\) 184.145 + 253.454i 0.316945 + 0.436237i
\(582\) 0 0
\(583\) 175.634 494.666i 0.301260 0.848484i
\(584\) 0 0
\(585\) 8.47839 + 4.76550i 0.0144930 + 0.00814615i
\(586\) 0 0
\(587\) 214.156 + 69.5836i 0.364832 + 0.118541i 0.485695 0.874128i \(-0.338566\pi\)
−0.120864 + 0.992669i \(0.538566\pi\)
\(588\) 0 0
\(589\) 22.4673 + 16.3235i 0.0381448 + 0.0277138i
\(590\) 0 0
\(591\) 366.155 214.224i 0.619552 0.362477i
\(592\) 0 0
\(593\) 418.371i 0.705516i −0.935715 0.352758i \(-0.885244\pi\)
0.935715 0.352758i \(-0.114756\pi\)
\(594\) 0 0
\(595\) 496.167 0.833894
\(596\) 0 0
\(597\) 245.818 + 420.156i 0.411755 + 0.703778i
\(598\) 0 0
\(599\) 250.864 345.285i 0.418805 0.576436i −0.546533 0.837437i \(-0.684053\pi\)
0.965338 + 0.261002i \(0.0840528\pi\)
\(600\) 0 0
\(601\) 192.876 593.610i 0.320924 0.987704i −0.652322 0.757942i \(-0.726205\pi\)
0.973247 0.229762i \(-0.0737948\pi\)
\(602\) 0 0
\(603\) 248.380 441.897i 0.411907 0.732831i
\(604\) 0 0
\(605\) −441.272 681.983i −0.729375 1.12725i
\(606\) 0 0
\(607\) 71.8971 52.2363i 0.118447 0.0860565i −0.526985 0.849875i \(-0.676678\pi\)
0.645432 + 0.763818i \(0.276678\pi\)
\(608\) 0 0
\(609\) −471.808 46.8403i −0.774725 0.0769134i
\(610\) 0 0
\(611\) −1.39805 + 1.92425i −0.00228814 + 0.00314935i
\(612\) 0 0
\(613\) 231.825 + 713.485i 0.378182 + 1.16392i 0.941307 + 0.337552i \(0.109599\pi\)
−0.563125 + 0.826372i \(0.690401\pi\)
\(614\) 0 0
\(615\) 37.2610 8.14488i 0.0605870 0.0132437i
\(616\) 0 0
\(617\) 996.446i 1.61499i 0.589878 + 0.807493i \(0.299176\pi\)
−0.589878 + 0.807493i \(0.700824\pi\)
\(618\) 0 0
\(619\) −85.3058 262.544i −0.137812 0.424143i 0.858205 0.513308i \(-0.171580\pi\)
−0.996017 + 0.0891652i \(0.971580\pi\)
\(620\) 0 0
\(621\) −2.84451 164.435i −0.00458053 0.264790i
\(622\) 0 0
\(623\) −476.416 154.797i −0.764713 0.248470i
\(624\) 0 0
\(625\) 585.724 425.553i 0.937158 0.680885i
\(626\) 0 0
\(627\) −20.3729 2.57997i −0.0324926 0.00411479i
\(628\) 0 0
\(629\) 441.764 + 608.036i 0.702327 + 0.966670i
\(630\) 0 0
\(631\) 175.851 541.213i 0.278686 0.857706i −0.709535 0.704670i \(-0.751095\pi\)
0.988221 0.153036i \(-0.0489050\pi\)
\(632\) 0 0
\(633\) −688.408 301.755i −1.08753 0.476707i
\(634\) 0 0
\(635\) −1245.69 + 404.749i −1.96171 + 0.637399i
\(636\) 0 0
\(637\) −6.41279 −0.0100672
\(638\) 0 0
\(639\) −338.571 737.438i −0.529845 1.15405i
\(640\) 0 0
\(641\) 232.830 75.6509i 0.363229 0.118020i −0.121716 0.992565i \(-0.538840\pi\)
0.484945 + 0.874545i \(0.338840\pi\)
\(642\) 0 0
\(643\) 247.364 + 179.720i 0.384703 + 0.279503i 0.763281 0.646066i \(-0.223587\pi\)
−0.378579 + 0.925569i \(0.623587\pi\)
\(644\) 0 0
\(645\) 1594.13 + 158.263i 2.47152 + 0.245369i
\(646\) 0 0
\(647\) −598.342 823.547i −0.924794 1.27287i −0.961856 0.273557i \(-0.911800\pi\)
0.0370619 0.999313i \(-0.488200\pi\)
\(648\) 0 0
\(649\) 68.3150 + 231.335i 0.105262 + 0.356448i
\(650\) 0 0
\(651\) −269.433 + 302.728i −0.413876 + 0.465020i
\(652\) 0 0
\(653\) −605.849 196.852i −0.927794 0.301458i −0.194134 0.980975i \(-0.562189\pi\)
−0.733660 + 0.679517i \(0.762189\pi\)
\(654\) 0 0
\(655\) 719.183 + 522.517i 1.09799 + 0.797736i
\(656\) 0 0
\(657\) −429.666 466.265i −0.653981 0.709689i
\(658\) 0 0
\(659\) 163.018i 0.247373i 0.992321 + 0.123686i \(0.0394716\pi\)
−0.992321 + 0.123686i \(0.960528\pi\)
\(660\) 0 0
\(661\) −361.095 −0.546285 −0.273143 0.961974i \(-0.588063\pi\)
−0.273143 + 0.961974i \(0.588063\pi\)
\(662\) 0 0
\(663\) −10.1775 + 5.95446i −0.0153506 + 0.00898108i
\(664\) 0 0
\(665\) −7.43286 + 10.2305i −0.0111772 + 0.0153841i
\(666\) 0 0
\(667\) −98.2731 + 302.453i −0.147336 + 0.453454i
\(668\) 0 0
\(669\) −147.356 + 165.565i −0.220263 + 0.247481i
\(670\) 0 0
\(671\) −18.3215 + 678.086i −0.0273048 + 1.01056i
\(672\) 0 0
\(673\) −336.391 + 244.402i −0.499837 + 0.363153i −0.808955 0.587871i \(-0.799966\pi\)
0.309117 + 0.951024i \(0.399966\pi\)
\(674\) 0 0
\(675\) −176.313 512.311i −0.261205 0.758980i
\(676\) 0 0
\(677\) −263.727 + 362.989i −0.389553 + 0.536173i −0.958084 0.286489i \(-0.907512\pi\)
0.568531 + 0.822662i \(0.307512\pi\)
\(678\) 0 0
\(679\) −91.5343 281.714i −0.134807 0.414895i
\(680\) 0 0
\(681\) 17.5578 + 80.3227i 0.0257823 + 0.117948i
\(682\) 0 0
\(683\) 759.557i 1.11209i 0.831152 + 0.556045i \(0.187682\pi\)
−0.831152 + 0.556045i \(0.812318\pi\)
\(684\) 0 0
\(685\) 160.131 + 492.831i 0.233767 + 0.719462i
\(686\) 0 0
\(687\) 24.7402 + 10.8446i 0.0360120 + 0.0157854i
\(688\) 0 0
\(689\) 7.30578 + 2.37379i 0.0106035 + 0.00344527i
\(690\) 0 0
\(691\) −912.455 + 662.937i −1.32048 + 0.959388i −0.320558 + 0.947229i \(0.603871\pi\)
−0.999926 + 0.0121593i \(0.996129\pi\)
\(692\) 0 0
\(693\) 66.8365 292.127i 0.0964451 0.421540i
\(694\) 0 0
\(695\) 59.1676 + 81.4372i 0.0851332 + 0.117176i
\(696\) 0 0
\(697\) −14.2891 + 43.9775i −0.0205009 + 0.0630954i
\(698\) 0 0
\(699\) 143.346 327.021i 0.205072 0.467841i
\(700\) 0 0
\(701\) 261.087 84.8322i 0.372449 0.121016i −0.116811 0.993154i \(-0.537267\pi\)
0.489260 + 0.872138i \(0.337267\pi\)
\(702\) 0 0
\(703\) −19.1550 −0.0272474
\(704\) 0 0
\(705\) 290.710 63.5462i 0.412354 0.0901365i
\(706\) 0 0
\(707\) −434.331 + 141.123i −0.614330 + 0.199608i
\(708\) 0 0
\(709\) −664.060 482.468i −0.936615 0.680491i 0.0109882 0.999940i \(-0.496502\pi\)
−0.947604 + 0.319449i \(0.896502\pi\)
\(710\) 0 0
\(711\) 103.071 + 882.628i 0.144966 + 1.24139i
\(712\) 0 0
\(713\) 159.777 + 219.914i 0.224091 + 0.308435i
\(714\) 0 0
\(715\) 9.80216 6.72482i 0.0137093 0.00940535i
\(716\) 0 0
\(717\) 823.539 + 732.964i 1.14859 + 1.02227i
\(718\) 0 0
\(719\) −84.2931 27.3885i −0.117237 0.0380925i 0.249811 0.968295i \(-0.419631\pi\)
−0.367048 + 0.930202i \(0.619631\pi\)
\(720\) 0 0
\(721\) 52.1929 + 37.9204i 0.0723896 + 0.0525941i
\(722\) 0 0
\(723\) 359.888 + 615.126i 0.497770 + 0.850797i
\(724\) 0 0
\(725\) 1047.69i 1.44509i
\(726\) 0 0
\(727\) −1060.77 −1.45910 −0.729552 0.683925i \(-0.760272\pi\)
−0.729552 + 0.683925i \(0.760272\pi\)
\(728\) 0 0
\(729\) 728.564 25.2140i 0.999402 0.0345870i
\(730\) 0 0
\(731\) −1141.58 + 1571.25i −1.56167 + 2.14945i
\(732\) 0 0
\(733\) 277.962 855.480i 0.379212 1.16709i −0.561381 0.827558i \(-0.689730\pi\)
0.940593 0.339537i \(-0.110270\pi\)
\(734\) 0 0
\(735\) 599.311 + 533.397i 0.815389 + 0.725711i
\(736\) 0 0
\(737\) −350.501 510.893i −0.475577 0.693206i
\(738\) 0 0
\(739\) 777.319 564.755i 1.05185 0.764215i 0.0792884 0.996852i \(-0.474735\pi\)
0.972564 + 0.232636i \(0.0747352\pi\)
\(740\) 0 0
\(741\) 0.0296892 0.299050i 4.00664e−5 0.000403576i
\(742\) 0 0
\(743\) 560.693 771.727i 0.754634 1.03866i −0.243008 0.970024i \(-0.578134\pi\)
0.997642 0.0686397i \(-0.0218659\pi\)
\(744\) 0 0
\(745\) 10.6594 + 32.8063i 0.0143080 + 0.0440354i
\(746\) 0 0
\(747\) 388.649 + 846.512i 0.520279 + 1.13322i
\(748\) 0 0
\(749\) 357.093i 0.476760i
\(750\) 0 0
\(751\) −115.245 354.687i −0.153455 0.472287i 0.844546 0.535483i \(-0.179871\pi\)
−0.998001 + 0.0631965i \(0.979871\pi\)
\(752\) 0 0
\(753\) 75.5067 172.257i 0.100275 0.228761i
\(754\) 0 0
\(755\) 1083.53 + 352.061i 1.43514 + 0.466306i
\(756\) 0 0
\(757\) 18.7633 13.6324i 0.0247864 0.0180084i −0.575323 0.817926i \(-0.695124\pi\)
0.600110 + 0.799918i \(0.295124\pi\)
\(758\) 0 0
\(759\) −181.850 85.6393i −0.239591 0.112832i
\(760\) 0 0
\(761\) 121.840 + 167.698i 0.160105 + 0.220366i 0.881531 0.472126i \(-0.156513\pi\)
−0.721426 + 0.692491i \(0.756513\pi\)
\(762\) 0 0
\(763\) 94.8322 291.863i 0.124289 0.382521i
\(764\) 0 0
\(765\) 1446.41 + 290.054i 1.89074 + 0.379156i
\(766\) 0 0
\(767\) −3.35714 + 1.09080i −0.00437698 + 0.00142217i
\(768\) 0 0
\(769\) −140.439 −0.182626 −0.0913130 0.995822i \(-0.529106\pi\)
−0.0913130 + 0.995822i \(0.529106\pi\)
\(770\) 0 0
\(771\) 135.096 + 618.035i 0.175222 + 0.801602i
\(772\) 0 0
\(773\) −239.002 + 77.6565i −0.309188 + 0.100461i −0.459501 0.888177i \(-0.651972\pi\)
0.150313 + 0.988638i \(0.451972\pi\)
\(774\) 0 0
\(775\) 724.494 + 526.376i 0.934831 + 0.679194i
\(776\) 0 0
\(777\) 27.6153 278.161i 0.0355410 0.357993i
\(778\) 0 0
\(779\) −0.692711 0.953435i −0.000889231 0.00122392i
\(780\) 0 0
\(781\) −991.405 26.7873i −1.26940 0.0342987i
\(782\) 0 0
\(783\) −1348.02 412.362i −1.72161 0.526643i
\(784\) 0 0
\(785\) −331.483 107.705i −0.422271 0.137204i
\(786\) 0 0
\(787\) 150.499 + 109.344i 0.191231 + 0.138937i 0.679281 0.733878i \(-0.262292\pi\)
−0.488050 + 0.872816i \(0.662292\pi\)
\(788\) 0 0
\(789\) 292.645 171.216i 0.370906 0.217004i
\(790\) 0 0
\(791\) 452.138i 0.571604i
\(792\) 0 0
\(793\) −9.92680 −0.0125180
\(794\) 0 0
\(795\) −485.321 829.518i −0.610467 1.04342i
\(796\) 0 0
\(797\) 462.837 637.040i 0.580724 0.799298i −0.413051 0.910708i \(-0.635537\pi\)
0.993774 + 0.111410i \(0.0355368\pi\)
\(798\) 0 0
\(799\) −111.484 + 343.111i −0.139529 + 0.429426i
\(800\) 0 0
\(801\) −1298.34 729.769i −1.62090 0.911072i
\(802\) 0 0
\(803\) −743.217 + 219.478i −0.925551 + 0.273322i
\(804\) 0 0
\(805\) −100.138 + 72.7542i −0.124394 + 0.0903778i
\(806\) 0 0
\(807\) 1418.13 + 140.789i 1.75728 + 0.174460i
\(808\) 0 0
\(809\) −204.853 + 281.956i −0.253218 + 0.348524i −0.916635 0.399725i \(-0.869106\pi\)
0.663417 + 0.748250i \(0.269106\pi\)
\(810\) 0 0
\(811\) −323.730 996.340i −0.399174 1.22853i −0.925663 0.378350i \(-0.876492\pi\)
0.526488 0.850183i \(-0.323508\pi\)
\(812\) 0 0
\(813\) 777.551 169.965i 0.956397 0.209059i
\(814\) 0 0
\(815\) 653.210i 0.801485i
\(816\) 0 0
\(817\) −15.2961 47.0765i −0.0187222 0.0576211i
\(818\) 0 0
\(819\) 4.29988 + 0.862269i 0.00525016 + 0.00105283i
\(820\) 0 0
\(821\) −334.935 108.827i −0.407960 0.132554i 0.0978461 0.995202i \(-0.468805\pi\)
−0.505806 + 0.862647i \(0.668805\pi\)
\(822\) 0 0
\(823\) −768.207 + 558.135i −0.933422 + 0.678171i −0.946828 0.321739i \(-0.895733\pi\)
0.0134060 + 0.999910i \(0.495733\pi\)
\(824\) 0 0
\(825\) −656.956 83.1952i −0.796310 0.100843i
\(826\) 0 0
\(827\) −488.020 671.702i −0.590109 0.812215i 0.404649 0.914472i \(-0.367394\pi\)
−0.994758 + 0.102257i \(0.967394\pi\)
\(828\) 0 0
\(829\) −15.5344 + 47.8100i −0.0187387 + 0.0576718i −0.959989 0.280039i \(-0.909653\pi\)
0.941250 + 0.337711i \(0.109653\pi\)
\(830\) 0 0
\(831\) −416.189 182.432i −0.500830 0.219532i
\(832\) 0 0
\(833\) −925.077 + 300.576i −1.11054 + 0.360835i
\(834\) 0 0
\(835\) 1089.68 1.30501
\(836\) 0 0
\(837\) −962.418 + 724.998i −1.14984 + 0.866187i
\(838\) 0 0
\(839\) 1000.90 325.211i 1.19296 0.387617i 0.355796 0.934564i \(-0.384210\pi\)
0.837168 + 0.546946i \(0.184210\pi\)
\(840\) 0 0
\(841\) 1524.94 + 1107.93i 1.81325 + 1.31740i
\(842\) 0 0
\(843\) −1143.99 113.574i −1.35705 0.134726i
\(844\) 0 0
\(845\) −666.756 917.711i −0.789060 1.08605i
\(846\) 0 0
\(847\) −284.261 230.975i −0.335609 0.272698i
\(848\) 0 0
\(849\) 826.267 928.371i 0.973223 1.09349i
\(850\) 0 0
\(851\) −178.316 57.9382i −0.209537 0.0680825i
\(852\) 0 0
\(853\) −494.172 359.037i −0.579334 0.420911i 0.259150 0.965837i \(-0.416558\pi\)
−0.838484 + 0.544926i \(0.816558\pi\)
\(854\) 0 0
\(855\) −27.6487 + 25.4784i −0.0323377 + 0.0297993i
\(856\) 0 0
\(857\) 125.921i 0.146932i −0.997298 0.0734661i \(-0.976594\pi\)
0.997298 0.0734661i \(-0.0234061\pi\)
\(858\) 0 0
\(859\) 382.660 0.445472 0.222736 0.974879i \(-0.428501\pi\)
0.222736 + 0.974879i \(0.428501\pi\)
\(860\) 0 0
\(861\) 14.8441 8.68473i 0.0172405 0.0100868i
\(862\) 0 0
\(863\) 206.116 283.695i 0.238837 0.328731i −0.672726 0.739892i \(-0.734877\pi\)
0.911563 + 0.411161i \(0.134877\pi\)
\(864\) 0 0
\(865\) −411.302 + 1265.86i −0.475493 + 1.46342i
\(866\) 0 0
\(867\) −612.643 + 688.349i −0.706624 + 0.793944i
\(868\) 0 0
\(869\) 1023.50 + 363.400i 1.17779 + 0.418181i
\(870\) 0 0
\(871\) 7.33519 5.32933i 0.00842157 0.00611863i
\(872\) 0 0
\(873\) −102.152 874.755i −0.117012 1.00201i
\(874\) 0 0
\(875\) 58.9247 81.1028i 0.0673425 0.0926889i
\(876\) 0 0
\(877\) −163.941 504.559i −0.186934 0.575324i 0.813042 0.582205i \(-0.197810\pi\)
−0.999976 + 0.00688082i \(0.997810\pi\)
\(878\) 0 0
\(879\) −222.869 1019.58i −0.253549 1.15993i
\(880\) 0 0
\(881\) 1455.22i 1.65179i −0.563826 0.825893i \(-0.690671\pi\)
0.563826 0.825893i \(-0.309329\pi\)
\(882\) 0 0
\(883\) −227.256 699.421i −0.257368 0.792096i −0.993354 0.115100i \(-0.963281\pi\)
0.735986 0.676996i \(-0.236719\pi\)
\(884\) 0 0
\(885\) 404.474 + 177.296i 0.457032 + 0.200335i
\(886\) 0 0
\(887\) −235.954 76.6659i −0.266013 0.0864329i 0.172974 0.984926i \(-0.444662\pi\)
−0.438987 + 0.898494i \(0.644662\pi\)
\(888\) 0 0
\(889\) −477.803 + 347.144i −0.537461 + 0.390488i
\(890\) 0 0
\(891\) 365.615 812.531i 0.410342 0.911932i
\(892\) 0 0
\(893\) −5.40452 7.43868i −0.00605209 0.00832999i
\(894\) 0 0
\(895\) 404.529 1245.01i 0.451988 1.39108i
\(896\) 0 0
\(897\) 1.18092 2.69409i 0.00131652 0.00300344i
\(898\) 0 0
\(899\) 2215.97 720.012i 2.46493 0.800903i
\(900\) 0 0
\(901\) 1165.16 1.29318
\(902\) 0 0
\(903\) 705.678 154.254i 0.781481 0.170824i
\(904\) 0 0
\(905\) 151.897 49.3545i 0.167843 0.0545353i
\(906\) 0 0
\(907\) 784.360 + 569.871i 0.864785 + 0.628303i 0.929183 0.369621i \(-0.120512\pi\)
−0.0643973 + 0.997924i \(0.520512\pi\)
\(908\) 0 0
\(909\) −1348.65 + 157.492i −1.48367 + 0.173259i
\(910\) 0 0
\(911\) 148.796 + 204.801i 0.163333 + 0.224808i 0.882837 0.469680i \(-0.155631\pi\)
−0.719504 + 0.694489i \(0.755631\pi\)
\(912\) 0 0
\(913\) 1138.04 + 30.7494i 1.24649 + 0.0336795i
\(914\) 0 0
\(915\) 927.716 + 825.683i 1.01390 + 0.902386i
\(916\) 0 0
\(917\) 381.221 + 123.866i 0.415726 + 0.135078i
\(918\) 0 0
\(919\) 976.948 + 709.795i 1.06306 + 0.772355i 0.974651 0.223729i \(-0.0718232\pi\)
0.0884046 + 0.996085i \(0.471823\pi\)
\(920\) 0 0
\(921\) −769.234 1314.79i −0.835216 1.42756i
\(922\) 0 0
\(923\) 14.5136i 0.0157244i
\(924\) 0 0
\(925\) −617.682 −0.667764
\(926\) 0 0
\(927\) 129.984 + 141.056i 0.140220 + 0.152164i
\(928\) 0 0
\(929\) −31.5339 + 43.4027i −0.0339439 + 0.0467198i −0.825652 0.564180i \(-0.809192\pi\)
0.791708 + 0.610900i \(0.209192\pi\)
\(930\) 0 0
\(931\) 7.66061 23.5769i 0.00822837 0.0253243i
\(932\) 0 0
\(933\) −204.786 182.263i −0.219492 0.195351i
\(934\) 0 0
\(935\) 1098.81 1429.53i 1.17520 1.52891i
\(936\) 0 0
\(937\) −310.002 + 225.229i −0.330845 + 0.240373i −0.740789 0.671738i \(-0.765548\pi\)
0.409944 + 0.912111i \(0.365548\pi\)
\(938\) 0 0
\(939\) −141.871 + 1429.02i −0.151087 + 1.52186i
\(940\) 0 0
\(941\) −719.245 + 989.955i −0.764341 + 1.05202i 0.232500 + 0.972596i \(0.425309\pi\)
−0.996841 + 0.0794283i \(0.974691\pi\)
\(942\) 0 0
\(943\) −3.56466 10.9709i −0.00378012 0.0116340i
\(944\) 0 0
\(945\) −330.127 438.236i −0.349341 0.463741i
\(946\) 0 0
\(947\) 1190.44i 1.25707i −0.777782 0.628534i \(-0.783655\pi\)
0.777782 0.628534i \(-0.216345\pi\)
\(948\) 0 0
\(949\) −3.50445 10.7856i −0.00369279 0.0113652i
\(950\) 0 0
\(951\) −605.942 + 1382.36i −0.637163 + 1.45359i
\(952\) 0 0
\(953\) −111.747 36.3089i −0.117259 0.0380996i 0.249800 0.968297i \(-0.419635\pi\)
−0.367059 + 0.930198i \(0.619635\pi\)
\(954\) 0 0
\(955\) −826.860 + 600.749i −0.865822 + 0.629057i
\(956\) 0 0
\(957\) −1179.82 + 1255.61i −1.23283 + 1.31203i
\(958\) 0 0
\(959\) 137.340 + 189.033i 0.143212 + 0.197115i
\(960\) 0 0
\(961\) 318.471 980.152i 0.331395 1.01993i
\(962\) 0 0
\(963\) −208.753 + 1040.99i −0.216774 + 1.08099i
\(964\) 0 0
\(965\) −821.974 + 267.076i −0.851787 + 0.276762i
\(966\) 0 0
\(967\) 488.396 0.505063 0.252531 0.967589i \(-0.418737\pi\)
0.252531 + 0.967589i \(0.418737\pi\)
\(968\) 0 0
\(969\) −9.73404 44.5310i −0.0100454 0.0459556i
\(970\) 0 0
\(971\) −125.133 + 40.6583i −0.128871 + 0.0418726i −0.372742 0.927935i \(-0.621582\pi\)
0.243872 + 0.969808i \(0.421582\pi\)
\(972\) 0 0
\(973\) 36.7207 + 26.6792i 0.0377397 + 0.0274195i
\(974\) 0 0
\(975\) 0.957374 9.64333i 0.000981922 0.00989060i
\(976\) 0 0
\(977\) 733.587 + 1009.70i 0.750856 + 1.03346i 0.997920 + 0.0644657i \(0.0205343\pi\)
−0.247064 + 0.968999i \(0.579466\pi\)
\(978\) 0 0
\(979\) −1501.06 + 1029.81i −1.53326 + 1.05190i
\(980\) 0 0
\(981\) 447.073 795.396i 0.455732 0.810801i
\(982\) 0 0
\(983\) 791.093 + 257.042i 0.804774 + 0.261487i 0.682383 0.730995i \(-0.260944\pi\)
0.122391 + 0.992482i \(0.460944\pi\)
\(984\) 0 0
\(985\) −767.987 557.976i −0.779683 0.566473i
\(986\) 0 0
\(987\) 115.813 67.7581i 0.117339 0.0686505i
\(988\) 0 0
\(989\) 484.506i 0.489895i
\(990\) 0 0
\(991\) −1450.80 −1.46397 −0.731986 0.681319i \(-0.761407\pi\)
−0.731986 + 0.681319i \(0.761407\pi\)
\(992\) 0 0
\(993\) −234.012 399.976i −0.235661 0.402796i
\(994\) 0 0
\(995\) 640.266 881.250i 0.643483 0.885679i
\(996\) 0 0
\(997\) 410.589 1263.66i 0.411824 1.26746i −0.503236 0.864149i \(-0.667857\pi\)
0.915061 0.403316i \(-0.132143\pi\)
\(998\) 0 0
\(999\) 243.113 794.744i 0.243357 0.795540i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 132.3.m.a.113.3 32
3.2 odd 2 inner 132.3.m.a.113.4 yes 32
11.2 odd 10 1452.3.e.m.485.2 16
11.4 even 5 inner 132.3.m.a.125.4 yes 32
11.9 even 5 1452.3.e.l.485.2 16
33.2 even 10 1452.3.e.m.485.1 16
33.20 odd 10 1452.3.e.l.485.1 16
33.26 odd 10 inner 132.3.m.a.125.3 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.3.m.a.113.3 32 1.1 even 1 trivial
132.3.m.a.113.4 yes 32 3.2 odd 2 inner
132.3.m.a.125.3 yes 32 33.26 odd 10 inner
132.3.m.a.125.4 yes 32 11.4 even 5 inner
1452.3.e.l.485.1 16 33.20 odd 10
1452.3.e.l.485.2 16 11.9 even 5
1452.3.e.m.485.1 16 33.2 even 10
1452.3.e.m.485.2 16 11.2 odd 10