Properties

Label 132.3.m.a.125.4
Level $132$
Weight $3$
Character 132.125
Analytic conductor $3.597$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [132,3,Mod(5,132)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(132, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("132.5"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 132 = 2^{2} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 132.m (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59673948956\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 125.4
Character \(\chi\) \(=\) 132.125
Dual form 132.3.m.a.113.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.296378 + 2.98532i) q^{3} +(3.94591 + 5.43107i) q^{5} +(-0.935402 - 2.87887i) q^{7} +(-8.82432 - 1.76957i) q^{9} +(-6.22292 + 9.07057i) q^{11} +(-0.130232 - 0.0946188i) q^{13} +(-17.3830 + 10.1702i) q^{15} +(14.3517 + 19.7534i) q^{17} +(-0.192298 + 0.591833i) q^{19} +(8.87160 - 1.93924i) q^{21} -6.09109i q^{23} +(-6.20096 + 19.0846i) q^{25} +(7.89807 - 25.8190i) q^{27} +(49.6551 - 16.1339i) q^{29} +(-36.1042 - 26.2312i) q^{31} +(-25.2343 - 21.2657i) q^{33} +(11.9444 - 16.4400i) q^{35} +(9.51197 + 29.2748i) q^{37} +(0.321066 - 0.360741i) q^{39} +(-1.80114 - 0.585225i) q^{41} +79.5435 q^{43} +(-25.2093 - 54.9081i) q^{45} +(-14.0524 - 4.56591i) q^{47} +(32.2289 - 23.4157i) q^{49} +(-63.2237 + 36.9899i) q^{51} +(28.0492 - 38.6064i) q^{53} +(-73.8180 + 1.99452i) q^{55} +(-1.70982 - 0.749479i) q^{57} +(-20.8550 + 6.77621i) q^{59} +(49.8894 - 36.2468i) q^{61} +(3.15993 + 27.0594i) q^{63} -1.08065i q^{65} -56.3242 q^{67} +(18.1839 + 1.80527i) q^{69} +(52.9951 + 72.9415i) q^{71} +(-21.7702 - 67.0016i) q^{73} +(-55.1359 - 24.1681i) q^{75} +(31.9340 + 9.43034i) q^{77} +(79.8792 + 58.0357i) q^{79} +(74.7373 + 31.2305i) q^{81} +(-60.8336 - 83.7303i) q^{83} +(-50.6517 + 155.890i) q^{85} +(33.4483 + 153.018i) q^{87} +165.487i q^{89} +(-0.150577 + 0.463427i) q^{91} +(89.0093 - 100.008i) q^{93} +(-3.97308 + 1.29093i) q^{95} +(-79.1668 - 57.5180i) q^{97} +(70.9640 - 69.0298i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 5 q^{3} - 8 q^{7} - 7 q^{9} - 4 q^{13} + 29 q^{15} + 56 q^{19} + 2 q^{21} + 20 q^{25} + 47 q^{27} - 40 q^{31} + 36 q^{33} - 120 q^{37} - 109 q^{39} - 100 q^{43} + 34 q^{45} - 176 q^{49} - 124 q^{51}+ \cdots + 515 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/132\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(67\) \(89\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.296378 + 2.98532i −0.0987927 + 0.995108i
\(4\) 0 0
\(5\) 3.94591 + 5.43107i 0.789181 + 1.08621i 0.994210 + 0.107459i \(0.0342714\pi\)
−0.205028 + 0.978756i \(0.565729\pi\)
\(6\) 0 0
\(7\) −0.935402 2.87887i −0.133629 0.411268i 0.861745 0.507341i \(-0.169372\pi\)
−0.995374 + 0.0960736i \(0.969372\pi\)
\(8\) 0 0
\(9\) −8.82432 1.76957i −0.980480 0.196619i
\(10\) 0 0
\(11\) −6.22292 + 9.07057i −0.565720 + 0.824598i
\(12\) 0 0
\(13\) −0.130232 0.0946188i −0.0100178 0.00727837i 0.582765 0.812641i \(-0.301971\pi\)
−0.592783 + 0.805362i \(0.701971\pi\)
\(14\) 0 0
\(15\) −17.3830 + 10.1702i −1.15887 + 0.678011i
\(16\) 0 0
\(17\) 14.3517 + 19.7534i 0.844215 + 1.16196i 0.985108 + 0.171938i \(0.0550028\pi\)
−0.140892 + 0.990025i \(0.544997\pi\)
\(18\) 0 0
\(19\) −0.192298 + 0.591833i −0.0101210 + 0.0311491i −0.955989 0.293401i \(-0.905213\pi\)
0.945869 + 0.324550i \(0.105213\pi\)
\(20\) 0 0
\(21\) 8.87160 1.93924i 0.422457 0.0923450i
\(22\) 0 0
\(23\) 6.09109i 0.264830i −0.991194 0.132415i \(-0.957727\pi\)
0.991194 0.132415i \(-0.0422732\pi\)
\(24\) 0 0
\(25\) −6.20096 + 19.0846i −0.248039 + 0.763384i
\(26\) 0 0
\(27\) 7.89807 25.8190i 0.292521 0.956259i
\(28\) 0 0
\(29\) 49.6551 16.1339i 1.71224 0.556342i 0.721539 0.692373i \(-0.243435\pi\)
0.990704 + 0.136032i \(0.0434349\pi\)
\(30\) 0 0
\(31\) −36.1042 26.2312i −1.16465 0.846169i −0.174293 0.984694i \(-0.555764\pi\)
−0.990359 + 0.138525i \(0.955764\pi\)
\(32\) 0 0
\(33\) −25.2343 21.2657i −0.764675 0.644416i
\(34\) 0 0
\(35\) 11.9444 16.4400i 0.341267 0.469714i
\(36\) 0 0
\(37\) 9.51197 + 29.2748i 0.257080 + 0.791211i 0.993413 + 0.114592i \(0.0365559\pi\)
−0.736333 + 0.676620i \(0.763444\pi\)
\(38\) 0 0
\(39\) 0.321066 0.360741i 0.00823245 0.00924976i
\(40\) 0 0
\(41\) −1.80114 0.585225i −0.0439302 0.0142738i 0.286969 0.957940i \(-0.407352\pi\)
−0.330900 + 0.943666i \(0.607352\pi\)
\(42\) 0 0
\(43\) 79.5435 1.84985 0.924924 0.380152i \(-0.124128\pi\)
0.924924 + 0.380152i \(0.124128\pi\)
\(44\) 0 0
\(45\) −25.2093 54.9081i −0.560206 1.22018i
\(46\) 0 0
\(47\) −14.0524 4.56591i −0.298988 0.0971471i 0.155682 0.987807i \(-0.450243\pi\)
−0.454670 + 0.890660i \(0.650243\pi\)
\(48\) 0 0
\(49\) 32.2289 23.4157i 0.657733 0.477871i
\(50\) 0 0
\(51\) −63.2237 + 36.9899i −1.23968 + 0.725292i
\(52\) 0 0
\(53\) 28.0492 38.6064i 0.529230 0.728422i −0.457783 0.889064i \(-0.651356\pi\)
0.987013 + 0.160642i \(0.0513564\pi\)
\(54\) 0 0
\(55\) −73.8180 + 1.99452i −1.34215 + 0.0362641i
\(56\) 0 0
\(57\) −1.70982 0.749479i −0.0299969 0.0131488i
\(58\) 0 0
\(59\) −20.8550 + 6.77621i −0.353475 + 0.114851i −0.480372 0.877065i \(-0.659498\pi\)
0.126897 + 0.991916i \(0.459498\pi\)
\(60\) 0 0
\(61\) 49.8894 36.2468i 0.817859 0.594209i −0.0982396 0.995163i \(-0.531321\pi\)
0.916098 + 0.400954i \(0.131321\pi\)
\(62\) 0 0
\(63\) 3.15993 + 27.0594i 0.0501576 + 0.429514i
\(64\) 0 0
\(65\) 1.08065i 0.0166255i
\(66\) 0 0
\(67\) −56.3242 −0.840659 −0.420330 0.907371i \(-0.638086\pi\)
−0.420330 + 0.907371i \(0.638086\pi\)
\(68\) 0 0
\(69\) 18.1839 + 1.80527i 0.263534 + 0.0261633i
\(70\) 0 0
\(71\) 52.9951 + 72.9415i 0.746410 + 1.02734i 0.998224 + 0.0595694i \(0.0189728\pi\)
−0.251814 + 0.967776i \(0.581027\pi\)
\(72\) 0 0
\(73\) −21.7702 67.0016i −0.298221 0.917831i −0.982120 0.188254i \(-0.939717\pi\)
0.683899 0.729577i \(-0.260283\pi\)
\(74\) 0 0
\(75\) −55.1359 24.1681i −0.735145 0.322242i
\(76\) 0 0
\(77\) 31.9340 + 9.43034i 0.414727 + 0.122472i
\(78\) 0 0
\(79\) 79.8792 + 58.0357i 1.01113 + 0.734629i 0.964446 0.264281i \(-0.0851346\pi\)
0.0466840 + 0.998910i \(0.485135\pi\)
\(80\) 0 0
\(81\) 74.7373 + 31.2305i 0.922682 + 0.385562i
\(82\) 0 0
\(83\) −60.8336 83.7303i −0.732935 1.00880i −0.998994 0.0448419i \(-0.985722\pi\)
0.266059 0.963957i \(-0.414278\pi\)
\(84\) 0 0
\(85\) −50.6517 + 155.890i −0.595902 + 1.83400i
\(86\) 0 0
\(87\) 33.4483 + 153.018i 0.384463 + 1.75883i
\(88\) 0 0
\(89\) 165.487i 1.85940i 0.368312 + 0.929702i \(0.379936\pi\)
−0.368312 + 0.929702i \(0.620064\pi\)
\(90\) 0 0
\(91\) −0.150577 + 0.463427i −0.00165469 + 0.00509261i
\(92\) 0 0
\(93\) 89.0093 100.008i 0.957089 1.07536i
\(94\) 0 0
\(95\) −3.97308 + 1.29093i −0.0418219 + 0.0135888i
\(96\) 0 0
\(97\) −79.1668 57.5180i −0.816152 0.592969i 0.0994555 0.995042i \(-0.468290\pi\)
−0.915608 + 0.402073i \(0.868290\pi\)
\(98\) 0 0
\(99\) 70.9640 69.0298i 0.716808 0.697270i
\(100\) 0 0
\(101\) −88.6783 + 122.055i −0.878003 + 1.20847i 0.0989666 + 0.995091i \(0.468446\pi\)
−0.976970 + 0.213377i \(0.931554\pi\)
\(102\) 0 0
\(103\) 6.58597 + 20.2695i 0.0639415 + 0.196792i 0.977924 0.208963i \(-0.0670088\pi\)
−0.913982 + 0.405755i \(0.867009\pi\)
\(104\) 0 0
\(105\) 45.5387 + 40.5302i 0.433702 + 0.386002i
\(106\) 0 0
\(107\) −112.194 36.4542i −1.04855 0.340693i −0.266449 0.963849i \(-0.585850\pi\)
−0.782098 + 0.623156i \(0.785850\pi\)
\(108\) 0 0
\(109\) −101.381 −0.930102 −0.465051 0.885284i \(-0.653964\pi\)
−0.465051 + 0.885284i \(0.653964\pi\)
\(110\) 0 0
\(111\) −90.2140 + 19.7199i −0.812738 + 0.177657i
\(112\) 0 0
\(113\) −142.057 46.1570i −1.25714 0.408469i −0.396665 0.917964i \(-0.629832\pi\)
−0.860474 + 0.509495i \(0.829832\pi\)
\(114\) 0 0
\(115\) 33.0812 24.0349i 0.287662 0.208999i
\(116\) 0 0
\(117\) 0.981771 + 1.06540i 0.00839121 + 0.00910599i
\(118\) 0 0
\(119\) 43.4428 59.7940i 0.365066 0.502470i
\(120\) 0 0
\(121\) −43.5507 112.891i −0.359923 0.932982i
\(122\) 0 0
\(123\) 2.28090 5.20353i 0.0185439 0.0423051i
\(124\) 0 0
\(125\) 31.4970 10.2340i 0.251976 0.0818718i
\(126\) 0 0
\(127\) 157.846 114.682i 1.24288 0.903004i 0.245092 0.969500i \(-0.421182\pi\)
0.997787 + 0.0664953i \(0.0211817\pi\)
\(128\) 0 0
\(129\) −23.5749 + 237.463i −0.182751 + 1.84080i
\(130\) 0 0
\(131\) 132.420i 1.01084i −0.862873 0.505420i \(-0.831337\pi\)
0.862873 0.505420i \(-0.168663\pi\)
\(132\) 0 0
\(133\) 1.88369 0.0141631
\(134\) 0 0
\(135\) 171.390 58.9843i 1.26955 0.436921i
\(136\) 0 0
\(137\) −45.3714 62.4484i −0.331178 0.455828i 0.610661 0.791892i \(-0.290904\pi\)
−0.941839 + 0.336065i \(0.890904\pi\)
\(138\) 0 0
\(139\) 4.63361 + 14.2608i 0.0333353 + 0.102596i 0.966340 0.257269i \(-0.0828228\pi\)
−0.933004 + 0.359865i \(0.882823\pi\)
\(140\) 0 0
\(141\) 17.7956 40.5978i 0.126210 0.287928i
\(142\) 0 0
\(143\) 1.66867 0.592471i 0.0116690 0.00414315i
\(144\) 0 0
\(145\) 283.559 + 206.017i 1.95558 + 1.42081i
\(146\) 0 0
\(147\) 60.3514 + 103.154i 0.410554 + 0.701725i
\(148\) 0 0
\(149\) −3.02024 4.15701i −0.0202701 0.0278994i 0.798762 0.601648i \(-0.205489\pi\)
−0.819032 + 0.573748i \(0.805489\pi\)
\(150\) 0 0
\(151\) −52.4433 + 161.404i −0.347307 + 1.06890i 0.613031 + 0.790059i \(0.289950\pi\)
−0.960337 + 0.278841i \(0.910050\pi\)
\(152\) 0 0
\(153\) −91.6887 199.706i −0.599273 1.30527i
\(154\) 0 0
\(155\) 299.591i 1.93284i
\(156\) 0 0
\(157\) 16.0439 49.3779i 0.102190 0.314509i −0.886871 0.462018i \(-0.847126\pi\)
0.989061 + 0.147509i \(0.0471255\pi\)
\(158\) 0 0
\(159\) 106.939 + 95.1779i 0.672575 + 0.598603i
\(160\) 0 0
\(161\) −17.5355 + 5.69762i −0.108916 + 0.0353889i
\(162\) 0 0
\(163\) −78.7195 57.1931i −0.482942 0.350878i 0.319522 0.947579i \(-0.396478\pi\)
−0.802464 + 0.596701i \(0.796478\pi\)
\(164\) 0 0
\(165\) 15.9237 220.962i 0.0965075 1.33916i
\(166\) 0 0
\(167\) 95.4091 131.319i 0.571312 0.786344i −0.421397 0.906876i \(-0.638460\pi\)
0.992709 + 0.120532i \(0.0384602\pi\)
\(168\) 0 0
\(169\) −52.2159 160.704i −0.308970 0.950911i
\(170\) 0 0
\(171\) 2.74419 4.88224i 0.0160479 0.0285511i
\(172\) 0 0
\(173\) −188.563 61.2678i −1.08996 0.354149i −0.291729 0.956501i \(-0.594230\pi\)
−0.798231 + 0.602352i \(0.794230\pi\)
\(174\) 0 0
\(175\) 60.7425 0.347100
\(176\) 0 0
\(177\) −14.0482 64.2673i −0.0793684 0.363092i
\(178\) 0 0
\(179\) 185.458 + 60.2590i 1.03608 + 0.336643i 0.777191 0.629265i \(-0.216644\pi\)
0.258888 + 0.965907i \(0.416644\pi\)
\(180\) 0 0
\(181\) −19.2475 + 13.9841i −0.106340 + 0.0772603i −0.639684 0.768638i \(-0.720935\pi\)
0.533345 + 0.845898i \(0.320935\pi\)
\(182\) 0 0
\(183\) 93.4222 + 159.679i 0.510504 + 0.872561i
\(184\) 0 0
\(185\) −121.460 + 167.176i −0.656543 + 0.903653i
\(186\) 0 0
\(187\) −268.484 + 7.25429i −1.43574 + 0.0387930i
\(188\) 0 0
\(189\) −81.7175 + 1.41361i −0.432368 + 0.00747940i
\(190\) 0 0
\(191\) −144.795 + 47.0467i −0.758088 + 0.246318i −0.662458 0.749099i \(-0.730487\pi\)
−0.0956300 + 0.995417i \(0.530487\pi\)
\(192\) 0 0
\(193\) 104.155 75.6733i 0.539665 0.392090i −0.284296 0.958737i \(-0.591760\pi\)
0.823961 + 0.566647i \(0.191760\pi\)
\(194\) 0 0
\(195\) 3.22611 + 0.320282i 0.0165441 + 0.00164247i
\(196\) 0 0
\(197\) 141.406i 0.717798i 0.933376 + 0.358899i \(0.116848\pi\)
−0.933376 + 0.358899i \(0.883152\pi\)
\(198\) 0 0
\(199\) −162.261 −0.815381 −0.407690 0.913120i \(-0.633666\pi\)
−0.407690 + 0.913120i \(0.633666\pi\)
\(200\) 0 0
\(201\) 16.6932 168.146i 0.0830510 0.836547i
\(202\) 0 0
\(203\) −92.8950 127.859i −0.457611 0.629847i
\(204\) 0 0
\(205\) −3.92872 12.0913i −0.0191645 0.0589822i
\(206\) 0 0
\(207\) −10.7786 + 53.7497i −0.0520705 + 0.259660i
\(208\) 0 0
\(209\) −4.17161 5.42718i −0.0199599 0.0259674i
\(210\) 0 0
\(211\) 202.696 + 147.268i 0.960647 + 0.697951i 0.953301 0.302022i \(-0.0976617\pi\)
0.00734596 + 0.999973i \(0.497662\pi\)
\(212\) 0 0
\(213\) −233.461 + 136.589i −1.09606 + 0.641264i
\(214\) 0 0
\(215\) 313.871 + 432.006i 1.45987 + 2.00933i
\(216\) 0 0
\(217\) −41.7444 + 128.476i −0.192371 + 0.592056i
\(218\) 0 0
\(219\) 206.474 45.1332i 0.942803 0.206087i
\(220\) 0 0
\(221\) 3.93045i 0.0177848i
\(222\) 0 0
\(223\) −22.8305 + 70.2650i −0.102379 + 0.315090i −0.989106 0.147203i \(-0.952973\pi\)
0.886728 + 0.462292i \(0.152973\pi\)
\(224\) 0 0
\(225\) 88.4908 157.436i 0.393292 0.699714i
\(226\) 0 0
\(227\) 26.0651 8.46905i 0.114824 0.0373086i −0.251041 0.967976i \(-0.580773\pi\)
0.365865 + 0.930668i \(0.380773\pi\)
\(228\) 0 0
\(229\) −7.28457 5.29255i −0.0318104 0.0231116i 0.571766 0.820416i \(-0.306258\pi\)
−0.603577 + 0.797305i \(0.706258\pi\)
\(230\) 0 0
\(231\) −37.6172 + 92.5383i −0.162845 + 0.400599i
\(232\) 0 0
\(233\) −69.9579 + 96.2887i −0.300248 + 0.413256i −0.932309 0.361662i \(-0.882209\pi\)
0.632061 + 0.774919i \(0.282209\pi\)
\(234\) 0 0
\(235\) −30.6518 94.3365i −0.130433 0.401432i
\(236\) 0 0
\(237\) −196.930 + 221.265i −0.830927 + 0.933607i
\(238\) 0 0
\(239\) 349.506 + 113.561i 1.46237 + 0.475152i 0.928792 0.370601i \(-0.120848\pi\)
0.533575 + 0.845753i \(0.320848\pi\)
\(240\) 0 0
\(241\) −237.557 −0.985713 −0.492856 0.870111i \(-0.664047\pi\)
−0.492856 + 0.870111i \(0.664047\pi\)
\(242\) 0 0
\(243\) −115.384 + 213.859i −0.474830 + 0.880078i
\(244\) 0 0
\(245\) 254.344 + 82.6415i 1.03814 + 0.337312i
\(246\) 0 0
\(247\) 0.0810419 0.0588804i 0.000328105 0.000238382i
\(248\) 0 0
\(249\) 267.992 156.792i 1.07627 0.629688i
\(250\) 0 0
\(251\) −36.8500 + 50.7197i −0.146813 + 0.202071i −0.876090 0.482148i \(-0.839857\pi\)
0.729277 + 0.684219i \(0.239857\pi\)
\(252\) 0 0
\(253\) 55.2497 + 37.9043i 0.218378 + 0.149819i
\(254\) 0 0
\(255\) −450.370 197.414i −1.76616 0.774173i
\(256\) 0 0
\(257\) 200.555 65.1643i 0.780370 0.253558i 0.108372 0.994110i \(-0.465436\pi\)
0.671998 + 0.740553i \(0.265436\pi\)
\(258\) 0 0
\(259\) 75.3810 54.7675i 0.291046 0.211457i
\(260\) 0 0
\(261\) −466.722 + 54.5027i −1.78821 + 0.208823i
\(262\) 0 0
\(263\) 113.017i 0.429723i 0.976645 + 0.214861i \(0.0689300\pi\)
−0.976645 + 0.214861i \(0.931070\pi\)
\(264\) 0 0
\(265\) 320.353 1.20888
\(266\) 0 0
\(267\) −494.032 49.0467i −1.85031 0.183696i
\(268\) 0 0
\(269\) 279.218 + 384.310i 1.03798 + 1.42866i 0.898781 + 0.438397i \(0.144454\pi\)
0.139202 + 0.990264i \(0.455546\pi\)
\(270\) 0 0
\(271\) −81.9833 252.319i −0.302521 0.931065i −0.980591 0.196067i \(-0.937183\pi\)
0.678069 0.734998i \(-0.262817\pi\)
\(272\) 0 0
\(273\) −1.33885 0.586870i −0.00490422 0.00214971i
\(274\) 0 0
\(275\) −134.520 175.008i −0.489165 0.636393i
\(276\) 0 0
\(277\) 122.544 + 89.0332i 0.442396 + 0.321420i 0.786586 0.617480i \(-0.211847\pi\)
−0.344190 + 0.938900i \(0.611847\pi\)
\(278\) 0 0
\(279\) 272.177 + 295.362i 0.975545 + 1.05864i
\(280\) 0 0
\(281\) −225.243 310.020i −0.801576 1.10327i −0.992569 0.121683i \(-0.961171\pi\)
0.190993 0.981591i \(-0.438829\pi\)
\(282\) 0 0
\(283\) 128.017 393.996i 0.452357 1.39221i −0.421854 0.906664i \(-0.638620\pi\)
0.874210 0.485547i \(-0.161380\pi\)
\(284\) 0 0
\(285\) −2.67632 12.2435i −0.00939059 0.0429598i
\(286\) 0 0
\(287\) 5.73266i 0.0199744i
\(288\) 0 0
\(289\) −94.9194 + 292.132i −0.328441 + 1.01084i
\(290\) 0 0
\(291\) 195.173 219.291i 0.670698 0.753579i
\(292\) 0 0
\(293\) −330.857 + 107.502i −1.12920 + 0.366901i −0.813273 0.581882i \(-0.802317\pi\)
−0.315930 + 0.948782i \(0.602317\pi\)
\(294\) 0 0
\(295\) −119.094 86.5269i −0.403709 0.293312i
\(296\) 0 0
\(297\) 185.044 + 232.309i 0.623044 + 0.782187i
\(298\) 0 0
\(299\) −0.576332 + 0.793253i −0.00192753 + 0.00265302i
\(300\) 0 0
\(301\) −74.4051 228.995i −0.247193 0.760782i
\(302\) 0 0
\(303\) −338.092 300.908i −1.11582 0.993096i
\(304\) 0 0
\(305\) 393.718 + 127.927i 1.29088 + 0.419432i
\(306\) 0 0
\(307\) 507.760 1.65394 0.826971 0.562245i \(-0.190062\pi\)
0.826971 + 0.562245i \(0.190062\pi\)
\(308\) 0 0
\(309\) −62.4631 + 13.6538i −0.202146 + 0.0441871i
\(310\) 0 0
\(311\) −86.9099 28.2388i −0.279453 0.0907998i 0.165937 0.986136i \(-0.446935\pi\)
−0.445390 + 0.895336i \(0.646935\pi\)
\(312\) 0 0
\(313\) −387.262 + 281.363i −1.23726 + 0.898922i −0.997413 0.0718884i \(-0.977097\pi\)
−0.239848 + 0.970811i \(0.577097\pi\)
\(314\) 0 0
\(315\) −134.493 + 123.935i −0.426961 + 0.393446i
\(316\) 0 0
\(317\) 295.722 407.026i 0.932876 1.28399i −0.0258512 0.999666i \(-0.508230\pi\)
0.958727 0.284328i \(-0.0917704\pi\)
\(318\) 0 0
\(319\) −162.655 + 550.800i −0.509892 + 1.72665i
\(320\) 0 0
\(321\) 142.080 324.133i 0.442615 1.00976i
\(322\) 0 0
\(323\) −14.4505 + 4.69525i −0.0447384 + 0.0145364i
\(324\) 0 0
\(325\) 2.61332 1.89869i 0.00804100 0.00584213i
\(326\) 0 0
\(327\) 30.0471 302.656i 0.0918873 0.925552i
\(328\) 0 0
\(329\) 44.7261i 0.135946i
\(330\) 0 0
\(331\) 154.468 0.466670 0.233335 0.972396i \(-0.425036\pi\)
0.233335 + 0.972396i \(0.425036\pi\)
\(332\) 0 0
\(333\) −32.1328 275.162i −0.0964949 0.826314i
\(334\) 0 0
\(335\) −222.250 305.901i −0.663432 0.913136i
\(336\) 0 0
\(337\) −93.7345 288.485i −0.278144 0.856039i −0.988370 0.152066i \(-0.951407\pi\)
0.710226 0.703973i \(-0.248593\pi\)
\(338\) 0 0
\(339\) 179.896 410.405i 0.530667 1.21063i
\(340\) 0 0
\(341\) 462.606 164.251i 1.35662 0.481675i
\(342\) 0 0
\(343\) −217.555 158.063i −0.634270 0.460824i
\(344\) 0 0
\(345\) 61.9473 + 105.881i 0.179558 + 0.306903i
\(346\) 0 0
\(347\) −190.035 261.561i −0.547651 0.753777i 0.442040 0.896995i \(-0.354255\pi\)
−0.989691 + 0.143218i \(0.954255\pi\)
\(348\) 0 0
\(349\) 172.352 530.445i 0.493845 1.51990i −0.324903 0.945747i \(-0.605332\pi\)
0.818748 0.574152i \(-0.194668\pi\)
\(350\) 0 0
\(351\) −3.47154 + 2.61514i −0.00989043 + 0.00745055i
\(352\) 0 0
\(353\) 31.0942i 0.0880857i 0.999030 + 0.0440428i \(0.0140238\pi\)
−0.999030 + 0.0440428i \(0.985976\pi\)
\(354\) 0 0
\(355\) −187.037 + 575.641i −0.526865 + 1.62152i
\(356\) 0 0
\(357\) 165.629 + 147.413i 0.463946 + 0.412920i
\(358\) 0 0
\(359\) 99.5764 32.3543i 0.277371 0.0901234i −0.167028 0.985952i \(-0.553417\pi\)
0.444400 + 0.895829i \(0.353417\pi\)
\(360\) 0 0
\(361\) 291.742 + 211.963i 0.808149 + 0.587155i
\(362\) 0 0
\(363\) 349.923 96.5544i 0.963976 0.265990i
\(364\) 0 0
\(365\) 277.988 382.618i 0.761611 1.04827i
\(366\) 0 0
\(367\) 41.8989 + 128.951i 0.114166 + 0.351366i 0.991772 0.128016i \(-0.0408608\pi\)
−0.877606 + 0.479382i \(0.840861\pi\)
\(368\) 0 0
\(369\) 14.8582 + 8.35145i 0.0402662 + 0.0226326i
\(370\) 0 0
\(371\) −137.380 44.6375i −0.370297 0.120317i
\(372\) 0 0
\(373\) −275.618 −0.738921 −0.369461 0.929246i \(-0.620457\pi\)
−0.369461 + 0.929246i \(0.620457\pi\)
\(374\) 0 0
\(375\) 21.2167 + 97.0617i 0.0565780 + 0.258831i
\(376\) 0 0
\(377\) −7.99324 2.59716i −0.0212022 0.00688902i
\(378\) 0 0
\(379\) −227.546 + 165.322i −0.600385 + 0.436205i −0.846015 0.533158i \(-0.821005\pi\)
0.245631 + 0.969363i \(0.421005\pi\)
\(380\) 0 0
\(381\) 295.580 + 505.209i 0.775800 + 1.32601i
\(382\) 0 0
\(383\) −233.294 + 321.102i −0.609123 + 0.838386i −0.996505 0.0835335i \(-0.973379\pi\)
0.387382 + 0.921919i \(0.373379\pi\)
\(384\) 0 0
\(385\) 74.7915 + 210.647i 0.194264 + 0.547135i
\(386\) 0 0
\(387\) −701.917 140.758i −1.81374 0.363715i
\(388\) 0 0
\(389\) 79.1447 25.7157i 0.203457 0.0661072i −0.205516 0.978654i \(-0.565887\pi\)
0.408973 + 0.912547i \(0.365887\pi\)
\(390\) 0 0
\(391\) 120.320 87.4172i 0.307723 0.223574i
\(392\) 0 0
\(393\) 395.317 + 39.2464i 1.00590 + 0.0998637i
\(394\) 0 0
\(395\) 662.833i 1.67806i
\(396\) 0 0
\(397\) 173.738 0.437627 0.218813 0.975767i \(-0.429781\pi\)
0.218813 + 0.975767i \(0.429781\pi\)
\(398\) 0 0
\(399\) −0.558284 + 5.62342i −0.00139921 + 0.0140938i
\(400\) 0 0
\(401\) −325.191 447.587i −0.810950 1.11618i −0.991176 0.132552i \(-0.957683\pi\)
0.180226 0.983625i \(-0.442317\pi\)
\(402\) 0 0
\(403\) 2.21994 + 6.83228i 0.00550854 + 0.0169535i
\(404\) 0 0
\(405\) 125.291 + 529.136i 0.309361 + 1.30651i
\(406\) 0 0
\(407\) −324.732 95.8957i −0.797866 0.235616i
\(408\) 0 0
\(409\) 120.270 + 87.3813i 0.294059 + 0.213646i 0.725026 0.688721i \(-0.241828\pi\)
−0.430968 + 0.902367i \(0.641828\pi\)
\(410\) 0 0
\(411\) 199.876 116.940i 0.486316 0.284526i
\(412\) 0 0
\(413\) 39.0157 + 53.7005i 0.0944690 + 0.130025i
\(414\) 0 0
\(415\) 214.702 660.784i 0.517353 1.59225i
\(416\) 0 0
\(417\) −43.9464 + 9.60625i −0.105387 + 0.0230366i
\(418\) 0 0
\(419\) 326.983i 0.780389i 0.920732 + 0.390195i \(0.127592\pi\)
−0.920732 + 0.390195i \(0.872408\pi\)
\(420\) 0 0
\(421\) 145.745 448.557i 0.346188 1.06546i −0.614757 0.788716i \(-0.710746\pi\)
0.960945 0.276740i \(-0.0892539\pi\)
\(422\) 0 0
\(423\) 115.924 + 65.1578i 0.274051 + 0.154037i
\(424\) 0 0
\(425\) −465.979 + 151.406i −1.09642 + 0.356249i
\(426\) 0 0
\(427\) −151.016 109.720i −0.353669 0.256955i
\(428\) 0 0
\(429\) 1.27416 + 5.15711i 0.00297007 + 0.0120212i
\(430\) 0 0
\(431\) −332.586 + 457.765i −0.771661 + 1.06210i 0.224492 + 0.974476i \(0.427928\pi\)
−0.996154 + 0.0876247i \(0.972072\pi\)
\(432\) 0 0
\(433\) −177.300 545.673i −0.409468 1.26021i −0.917106 0.398643i \(-0.869481\pi\)
0.507638 0.861571i \(-0.330519\pi\)
\(434\) 0 0
\(435\) −699.069 + 785.456i −1.60706 + 1.80565i
\(436\) 0 0
\(437\) 3.60491 + 1.17131i 0.00824922 + 0.00268033i
\(438\) 0 0
\(439\) 262.112 0.597066 0.298533 0.954399i \(-0.403503\pi\)
0.298533 + 0.954399i \(0.403503\pi\)
\(440\) 0 0
\(441\) −325.834 + 149.596i −0.738852 + 0.339220i
\(442\) 0 0
\(443\) −389.672 126.612i −0.879622 0.285806i −0.165821 0.986156i \(-0.553028\pi\)
−0.713800 + 0.700349i \(0.753028\pi\)
\(444\) 0 0
\(445\) −898.772 + 652.996i −2.01971 + 1.46741i
\(446\) 0 0
\(447\) 13.3052 7.78436i 0.0297654 0.0174147i
\(448\) 0 0
\(449\) −123.881 + 170.508i −0.275905 + 0.379751i −0.924372 0.381492i \(-0.875410\pi\)
0.648467 + 0.761243i \(0.275410\pi\)
\(450\) 0 0
\(451\) 16.5166 12.6955i 0.0366223 0.0281498i
\(452\) 0 0
\(453\) −466.300 204.397i −1.02936 0.451207i
\(454\) 0 0
\(455\) −3.11107 + 1.01085i −0.00683751 + 0.00222164i
\(456\) 0 0
\(457\) 78.0919 56.7371i 0.170879 0.124151i −0.499058 0.866568i \(-0.666321\pi\)
0.669938 + 0.742417i \(0.266321\pi\)
\(458\) 0 0
\(459\) 623.363 214.532i 1.35809 0.467390i
\(460\) 0 0
\(461\) 542.354i 1.17647i −0.808689 0.588237i \(-0.799822\pi\)
0.808689 0.588237i \(-0.200178\pi\)
\(462\) 0 0
\(463\) 488.061 1.05413 0.527064 0.849826i \(-0.323293\pi\)
0.527064 + 0.849826i \(0.323293\pi\)
\(464\) 0 0
\(465\) 894.375 + 88.7921i 1.92339 + 0.190951i
\(466\) 0 0
\(467\) 314.910 + 433.437i 0.674326 + 0.928130i 0.999849 0.0174039i \(-0.00554013\pi\)
−0.325522 + 0.945534i \(0.605540\pi\)
\(468\) 0 0
\(469\) 52.6858 + 162.150i 0.112336 + 0.345736i
\(470\) 0 0
\(471\) 142.654 + 62.5307i 0.302875 + 0.132761i
\(472\) 0 0
\(473\) −494.992 + 721.505i −1.04650 + 1.52538i
\(474\) 0 0
\(475\) −10.1025 7.33987i −0.0212684 0.0154524i
\(476\) 0 0
\(477\) −315.831 + 291.040i −0.662120 + 0.610147i
\(478\) 0 0
\(479\) 326.911 + 449.955i 0.682487 + 0.939363i 0.999960 0.00890429i \(-0.00283436\pi\)
−0.317473 + 0.948267i \(0.602834\pi\)
\(480\) 0 0
\(481\) 1.53119 4.71252i 0.00318335 0.00979734i
\(482\) 0 0
\(483\) −11.8121 54.0377i −0.0244557 0.111879i
\(484\) 0 0
\(485\) 656.921i 1.35448i
\(486\) 0 0
\(487\) −151.085 + 464.991i −0.310235 + 0.954807i 0.667436 + 0.744667i \(0.267392\pi\)
−0.977671 + 0.210139i \(0.932608\pi\)
\(488\) 0 0
\(489\) 194.071 218.053i 0.396872 0.445915i
\(490\) 0 0
\(491\) 400.794 130.226i 0.816282 0.265226i 0.129026 0.991641i \(-0.458815\pi\)
0.687256 + 0.726415i \(0.258815\pi\)
\(492\) 0 0
\(493\) 1031.33 + 749.306i 2.09195 + 1.51989i
\(494\) 0 0
\(495\) 654.923 + 113.026i 1.32308 + 0.228335i
\(496\) 0 0
\(497\) 160.418 220.796i 0.322772 0.444257i
\(498\) 0 0
\(499\) −167.289 514.863i −0.335249 1.03179i −0.966599 0.256292i \(-0.917499\pi\)
0.631351 0.775497i \(-0.282501\pi\)
\(500\) 0 0
\(501\) 363.754 + 323.747i 0.726056 + 0.646202i
\(502\) 0 0
\(503\) −453.350 147.302i −0.901293 0.292848i −0.178522 0.983936i \(-0.557132\pi\)
−0.722771 + 0.691088i \(0.757132\pi\)
\(504\) 0 0
\(505\) −1012.81 −2.00556
\(506\) 0 0
\(507\) 495.229 108.252i 0.976783 0.213515i
\(508\) 0 0
\(509\) −56.2723 18.2840i −0.110555 0.0359214i 0.253217 0.967409i \(-0.418511\pi\)
−0.363772 + 0.931488i \(0.618511\pi\)
\(510\) 0 0
\(511\) −172.525 + 125.347i −0.337623 + 0.245297i
\(512\) 0 0
\(513\) 13.7618 + 9.63929i 0.0268260 + 0.0187900i
\(514\) 0 0
\(515\) −84.0977 + 115.751i −0.163297 + 0.224758i
\(516\) 0 0
\(517\) 128.863 99.0504i 0.249251 0.191587i
\(518\) 0 0
\(519\) 238.790 544.763i 0.460097 1.04964i
\(520\) 0 0
\(521\) −330.109 + 107.259i −0.633607 + 0.205871i −0.608172 0.793805i \(-0.708097\pi\)
−0.0254349 + 0.999676i \(0.508097\pi\)
\(522\) 0 0
\(523\) −621.557 + 451.587i −1.18844 + 0.863456i −0.993099 0.117279i \(-0.962583\pi\)
−0.195346 + 0.980734i \(0.562583\pi\)
\(524\) 0 0
\(525\) −18.0028 + 181.336i −0.0342910 + 0.345402i
\(526\) 0 0
\(527\) 1089.64i 2.06763i
\(528\) 0 0
\(529\) 491.899 0.929865
\(530\) 0 0
\(531\) 196.022 22.8910i 0.369157 0.0431093i
\(532\) 0 0
\(533\) 0.179192 + 0.246636i 0.000336195 + 0.000462732i
\(534\) 0 0
\(535\) −244.723 753.181i −0.457427 1.40782i
\(536\) 0 0
\(537\) −234.858 + 535.793i −0.437353 + 0.997753i
\(538\) 0 0
\(539\) 11.8358 + 438.048i 0.0219589 + 0.812706i
\(540\) 0 0
\(541\) 385.903 + 280.375i 0.713315 + 0.518253i 0.884241 0.467030i \(-0.154676\pi\)
−0.170927 + 0.985284i \(0.554676\pi\)
\(542\) 0 0
\(543\) −36.0426 61.6045i −0.0663768 0.113452i
\(544\) 0 0
\(545\) −400.040 550.609i −0.734019 1.01029i
\(546\) 0 0
\(547\) 10.0893 31.0516i 0.0184447 0.0567670i −0.941411 0.337263i \(-0.890499\pi\)
0.959855 + 0.280496i \(0.0904989\pi\)
\(548\) 0 0
\(549\) −504.381 + 231.570i −0.918727 + 0.421804i
\(550\) 0 0
\(551\) 32.4901i 0.0589656i
\(552\) 0 0
\(553\) 92.3581 284.249i 0.167013 0.514012i
\(554\) 0 0
\(555\) −463.076 412.146i −0.834371 0.742605i
\(556\) 0 0
\(557\) 753.009 244.667i 1.35190 0.439259i 0.458570 0.888658i \(-0.348362\pi\)
0.893331 + 0.449399i \(0.148362\pi\)
\(558\) 0 0
\(559\) −10.3591 7.52631i −0.0185314 0.0134639i
\(560\) 0 0
\(561\) 57.9162 803.660i 0.103238 1.43255i
\(562\) 0 0
\(563\) 309.395 425.846i 0.549547 0.756387i −0.440403 0.897800i \(-0.645165\pi\)
0.989951 + 0.141413i \(0.0451645\pi\)
\(564\) 0 0
\(565\) −309.860 953.651i −0.548425 1.68788i
\(566\) 0 0
\(567\) 19.9992 244.372i 0.0352719 0.430991i
\(568\) 0 0
\(569\) −690.404 224.326i −1.21336 0.394246i −0.368703 0.929547i \(-0.620198\pi\)
−0.844661 + 0.535302i \(0.820198\pi\)
\(570\) 0 0
\(571\) −227.235 −0.397959 −0.198980 0.980004i \(-0.563763\pi\)
−0.198980 + 0.980004i \(0.563763\pi\)
\(572\) 0 0
\(573\) −97.5356 446.203i −0.170219 0.778714i
\(574\) 0 0
\(575\) 116.246 + 37.7706i 0.202167 + 0.0656880i
\(576\) 0 0
\(577\) −402.346 + 292.322i −0.697307 + 0.506623i −0.879054 0.476722i \(-0.841825\pi\)
0.181747 + 0.983345i \(0.441825\pi\)
\(578\) 0 0
\(579\) 195.040 + 333.365i 0.336857 + 0.575761i
\(580\) 0 0
\(581\) −184.145 + 253.454i −0.316945 + 0.436237i
\(582\) 0 0
\(583\) 175.634 + 494.666i 0.301260 + 0.848484i
\(584\) 0 0
\(585\) −1.91229 + 9.53604i −0.00326888 + 0.0163009i
\(586\) 0 0
\(587\) −214.156 + 69.5836i −0.364832 + 0.118541i −0.485695 0.874128i \(-0.661434\pi\)
0.120864 + 0.992669i \(0.461434\pi\)
\(588\) 0 0
\(589\) 22.4673 16.3235i 0.0381448 0.0277138i
\(590\) 0 0
\(591\) −422.143 41.9097i −0.714287 0.0709132i
\(592\) 0 0
\(593\) 418.371i 0.705516i −0.935715 0.352758i \(-0.885244\pi\)
0.935715 0.352758i \(-0.114756\pi\)
\(594\) 0 0
\(595\) 496.167 0.833894
\(596\) 0 0
\(597\) 48.0905 484.401i 0.0805537 0.811392i
\(598\) 0 0
\(599\) −250.864 345.285i −0.418805 0.576436i 0.546533 0.837437i \(-0.315947\pi\)
−0.965338 + 0.261002i \(0.915947\pi\)
\(600\) 0 0
\(601\) 192.876 + 593.610i 0.320924 + 0.987704i 0.973247 + 0.229762i \(0.0737948\pi\)
−0.652322 + 0.757942i \(0.726205\pi\)
\(602\) 0 0
\(603\) 497.022 + 99.6695i 0.824250 + 0.165289i
\(604\) 0 0
\(605\) 441.272 681.983i 0.729375 1.12725i
\(606\) 0 0
\(607\) 71.8971 + 52.2363i 0.118447 + 0.0860565i 0.645432 0.763818i \(-0.276678\pi\)
−0.526985 + 0.849875i \(0.676678\pi\)
\(608\) 0 0
\(609\) 409.232 239.427i 0.671974 0.393148i
\(610\) 0 0
\(611\) 1.39805 + 1.92425i 0.00228814 + 0.00314935i
\(612\) 0 0
\(613\) 231.825 713.485i 0.378182 1.16392i −0.563125 0.826372i \(-0.690401\pi\)
0.941307 0.337552i \(-0.109599\pi\)
\(614\) 0 0
\(615\) 37.2610 8.14488i 0.0605870 0.0132437i
\(616\) 0 0
\(617\) 996.446i 1.61499i 0.589878 + 0.807493i \(0.299176\pi\)
−0.589878 + 0.807493i \(0.700824\pi\)
\(618\) 0 0
\(619\) −85.3058 + 262.544i −0.137812 + 0.424143i −0.996017 0.0891652i \(-0.971580\pi\)
0.858205 + 0.513308i \(0.171580\pi\)
\(620\) 0 0
\(621\) −157.266 48.1079i −0.253246 0.0774684i
\(622\) 0 0
\(623\) 476.416 154.797i 0.764713 0.248470i
\(624\) 0 0
\(625\) 585.724 + 425.553i 0.937158 + 0.680885i
\(626\) 0 0
\(627\) 17.4383 10.8451i 0.0278122 0.0172968i
\(628\) 0 0
\(629\) −441.764 + 608.036i −0.702327 + 0.966670i
\(630\) 0 0
\(631\) 175.851 + 541.213i 0.278686 + 0.857706i 0.988221 + 0.153036i \(0.0489050\pi\)
−0.709535 + 0.704670i \(0.751095\pi\)
\(632\) 0 0
\(633\) −499.716 + 561.468i −0.789441 + 0.886995i
\(634\) 0 0
\(635\) 1245.69 + 404.749i 1.96171 + 0.637399i
\(636\) 0 0
\(637\) −6.41279 −0.0100672
\(638\) 0 0
\(639\) −338.571 737.438i −0.529845 1.15405i
\(640\) 0 0
\(641\) −232.830 75.6509i −0.363229 0.118020i 0.121716 0.992565i \(-0.461160\pi\)
−0.484945 + 0.874545i \(0.661160\pi\)
\(642\) 0 0
\(643\) 247.364 179.720i 0.384703 0.279503i −0.378579 0.925569i \(-0.623587\pi\)
0.763281 + 0.646066i \(0.223587\pi\)
\(644\) 0 0
\(645\) −1382.70 + 808.969i −2.14373 + 1.25422i
\(646\) 0 0
\(647\) 598.342 823.547i 0.924794 1.27287i −0.0370619 0.999313i \(-0.511800\pi\)
0.961856 0.273557i \(-0.0882001\pi\)
\(648\) 0 0
\(649\) 68.3150 231.335i 0.105262 0.356448i
\(650\) 0 0
\(651\) −371.171 162.698i −0.570155 0.249920i
\(652\) 0 0
\(653\) 605.849 196.852i 0.927794 0.301458i 0.194134 0.980975i \(-0.437811\pi\)
0.733660 + 0.679517i \(0.237811\pi\)
\(654\) 0 0
\(655\) 719.183 522.517i 1.09799 0.797736i
\(656\) 0 0
\(657\) 73.5428 + 629.768i 0.111937 + 0.958551i
\(658\) 0 0
\(659\) 163.018i 0.247373i 0.992321 + 0.123686i \(0.0394716\pi\)
−0.992321 + 0.123686i \(0.960528\pi\)
\(660\) 0 0
\(661\) −361.095 −0.546285 −0.273143 0.961974i \(-0.588063\pi\)
−0.273143 + 0.961974i \(0.588063\pi\)
\(662\) 0 0
\(663\) 11.7337 + 1.16490i 0.0176978 + 0.00175701i
\(664\) 0 0
\(665\) 7.43286 + 10.2305i 0.0111772 + 0.0153841i
\(666\) 0 0
\(667\) −98.2731 302.453i −0.147336 0.453454i
\(668\) 0 0
\(669\) −202.997 88.9814i −0.303434 0.133007i
\(670\) 0 0
\(671\) 18.3215 + 678.086i 0.0273048 + 1.01056i
\(672\) 0 0
\(673\) −336.391 244.402i −0.499837 0.363153i 0.309117 0.951024i \(-0.399966\pi\)
−0.808955 + 0.587871i \(0.799966\pi\)
\(674\) 0 0
\(675\) 443.770 + 310.834i 0.657436 + 0.460495i
\(676\) 0 0
\(677\) 263.727 + 362.989i 0.389553 + 0.536173i 0.958084 0.286489i \(-0.0924880\pi\)
−0.568531 + 0.822662i \(0.692488\pi\)
\(678\) 0 0
\(679\) −91.5343 + 281.714i −0.134807 + 0.414895i
\(680\) 0 0
\(681\) 17.5578 + 80.3227i 0.0257823 + 0.117948i
\(682\) 0 0
\(683\) 759.557i 1.11209i 0.831152 + 0.556045i \(0.187682\pi\)
−0.831152 + 0.556045i \(0.812318\pi\)
\(684\) 0 0
\(685\) 160.131 492.831i 0.233767 0.719462i
\(686\) 0 0
\(687\) 17.9590 20.1782i 0.0261412 0.0293715i
\(688\) 0 0
\(689\) −7.30578 + 2.37379i −0.0106035 + 0.00344527i
\(690\) 0 0
\(691\) −912.455 662.937i −1.32048 0.959388i −0.999926 0.0121593i \(-0.996129\pi\)
−0.320558 0.947229i \(-0.603871\pi\)
\(692\) 0 0
\(693\) −265.108 139.726i −0.382551 0.201624i
\(694\) 0 0
\(695\) −59.1676 + 81.4372i −0.0851332 + 0.117176i
\(696\) 0 0
\(697\) −14.2891 43.9775i −0.0205009 0.0630954i
\(698\) 0 0
\(699\) −266.719 237.385i −0.381572 0.339606i
\(700\) 0 0
\(701\) −261.087 84.8322i −0.372449 0.121016i 0.116811 0.993154i \(-0.462733\pi\)
−0.489260 + 0.872138i \(0.662733\pi\)
\(702\) 0 0
\(703\) −19.1550 −0.0272474
\(704\) 0 0
\(705\) 290.710 63.5462i 0.412354 0.0901365i
\(706\) 0 0
\(707\) 434.331 + 141.123i 0.614330 + 0.199608i
\(708\) 0 0
\(709\) −664.060 + 482.468i −0.936615 + 0.680491i −0.947604 0.319449i \(-0.896502\pi\)
0.0109882 + 0.999940i \(0.496502\pi\)
\(710\) 0 0
\(711\) −602.182 653.477i −0.846951 0.919096i
\(712\) 0 0
\(713\) −159.777 + 219.914i −0.224091 + 0.308435i
\(714\) 0 0
\(715\) 9.80216 + 6.72482i 0.0137093 + 0.00940535i
\(716\) 0 0
\(717\) −442.603 + 1009.73i −0.617298 + 1.40827i
\(718\) 0 0
\(719\) 84.2931 27.3885i 0.117237 0.0380925i −0.249811 0.968295i \(-0.580369\pi\)
0.367048 + 0.930202i \(0.380369\pi\)
\(720\) 0 0
\(721\) 52.1929 37.9204i 0.0723896 0.0525941i
\(722\) 0 0
\(723\) 70.4066 709.184i 0.0973812 0.980891i
\(724\) 0 0
\(725\) 1047.69i 1.44509i
\(726\) 0 0
\(727\) −1060.77 −1.45910 −0.729552 0.683925i \(-0.760272\pi\)
−0.729552 + 0.683925i \(0.760272\pi\)
\(728\) 0 0
\(729\) −604.241 407.841i −0.828863 0.559452i
\(730\) 0 0
\(731\) 1141.58 + 1571.25i 1.56167 + 2.14945i
\(732\) 0 0
\(733\) 277.962 + 855.480i 0.379212 + 1.16709i 0.940593 + 0.339537i \(0.110270\pi\)
−0.561381 + 0.827558i \(0.689730\pi\)
\(734\) 0 0
\(735\) −322.094 + 734.807i −0.438223 + 0.999738i
\(736\) 0 0
\(737\) 350.501 510.893i 0.475577 0.693206i
\(738\) 0 0
\(739\) 777.319 + 564.755i 1.05185 + 0.764215i 0.972564 0.232636i \(-0.0747352\pi\)
0.0792884 + 0.996852i \(0.474735\pi\)
\(740\) 0 0
\(741\) 0.151758 + 0.259387i 0.000204802 + 0.000350050i
\(742\) 0 0
\(743\) −560.693 771.727i −0.754634 1.03866i −0.997642 0.0686397i \(-0.978134\pi\)
0.243008 0.970024i \(-0.421866\pi\)
\(744\) 0 0
\(745\) 10.6594 32.8063i 0.0143080 0.0440354i
\(746\) 0 0
\(747\) 388.649 + 846.512i 0.520279 + 1.13322i
\(748\) 0 0
\(749\) 357.093i 0.476760i
\(750\) 0 0
\(751\) −115.245 + 354.687i −0.153455 + 0.472287i −0.998001 0.0631965i \(-0.979871\pi\)
0.844546 + 0.535483i \(0.179871\pi\)
\(752\) 0 0
\(753\) −140.493 125.041i −0.186578 0.166058i
\(754\) 0 0
\(755\) −1083.53 + 352.061i −1.43514 + 0.466306i
\(756\) 0 0
\(757\) 18.7633 + 13.6324i 0.0247864 + 0.0180084i 0.600110 0.799918i \(-0.295124\pi\)
−0.575323 + 0.817926i \(0.695124\pi\)
\(758\) 0 0
\(759\) −129.532 + 153.704i −0.170661 + 0.202509i
\(760\) 0 0
\(761\) −121.840 + 167.698i −0.160105 + 0.220366i −0.881531 0.472126i \(-0.843487\pi\)
0.721426 + 0.692491i \(0.243487\pi\)
\(762\) 0 0
\(763\) 94.8322 + 291.863i 0.124289 + 0.382521i
\(764\) 0 0
\(765\) 722.825 1285.99i 0.944869 1.68103i
\(766\) 0 0
\(767\) 3.35714 + 1.09080i 0.00437698 + 0.00142217i
\(768\) 0 0
\(769\) −140.439 −0.182626 −0.0913130 0.995822i \(-0.529106\pi\)
−0.0913130 + 0.995822i \(0.529106\pi\)
\(770\) 0 0
\(771\) 135.096 + 618.035i 0.175222 + 0.801602i
\(772\) 0 0
\(773\) 239.002 + 77.6565i 0.309188 + 0.100461i 0.459501 0.888177i \(-0.348028\pi\)
−0.150313 + 0.988638i \(0.548028\pi\)
\(774\) 0 0
\(775\) 724.494 526.376i 0.934831 0.679194i
\(776\) 0 0
\(777\) 141.157 + 241.269i 0.181670 + 0.310513i
\(778\) 0 0
\(779\) 0.692711 0.953435i 0.000889231 0.00122392i
\(780\) 0 0
\(781\) −991.405 + 26.7873i −1.26940 + 0.0342987i
\(782\) 0 0
\(783\) −24.3820 1409.47i −0.0311392 1.80009i
\(784\) 0 0
\(785\) 331.483 107.705i 0.422271 0.137204i
\(786\) 0 0
\(787\) 150.499 109.344i 0.191231 0.138937i −0.488050 0.872816i \(-0.662292\pi\)
0.679281 + 0.733878i \(0.262292\pi\)
\(788\) 0 0
\(789\) −337.393 33.4958i −0.427621 0.0424535i
\(790\) 0 0
\(791\) 452.138i 0.571604i
\(792\) 0 0
\(793\) −9.92680 −0.0125180
\(794\) 0 0
\(795\) −94.9457 + 956.359i −0.119429 + 1.20297i
\(796\) 0 0
\(797\) −462.837 637.040i −0.580724 0.799298i 0.413051 0.910708i \(-0.364463\pi\)
−0.993774 + 0.111410i \(0.964463\pi\)
\(798\) 0 0
\(799\) −111.484 343.111i −0.139529 0.429426i
\(800\) 0 0
\(801\) 292.841 1460.31i 0.365594 1.82311i
\(802\) 0 0
\(803\) 743.217 + 219.478i 0.925551 + 0.273322i
\(804\) 0 0
\(805\) −100.138 72.7542i −0.124394 0.0903778i
\(806\) 0 0
\(807\) −1230.04 + 719.654i −1.52422 + 0.891764i
\(808\) 0 0
\(809\) 204.853 + 281.956i 0.253218 + 0.348524i 0.916635 0.399725i \(-0.130894\pi\)
−0.663417 + 0.748250i \(0.730894\pi\)
\(810\) 0 0
\(811\) −323.730 + 996.340i −0.399174 + 1.22853i 0.526488 + 0.850183i \(0.323508\pi\)
−0.925663 + 0.378350i \(0.876492\pi\)
\(812\) 0 0
\(813\) 777.551 169.965i 0.956397 0.209059i
\(814\) 0 0
\(815\) 653.210i 0.801485i
\(816\) 0 0
\(817\) −15.2961 + 47.0765i −0.0187222 + 0.0576211i
\(818\) 0 0
\(819\) 2.14880 3.82297i 0.00262369 0.00466786i
\(820\) 0 0
\(821\) 334.935 108.827i 0.407960 0.132554i −0.0978461 0.995202i \(-0.531195\pi\)
0.505806 + 0.862647i \(0.331195\pi\)
\(822\) 0 0
\(823\) −768.207 558.135i −0.933422 0.678171i 0.0134060 0.999910i \(-0.495733\pi\)
−0.946828 + 0.321739i \(0.895733\pi\)
\(824\) 0 0
\(825\) 562.325 349.718i 0.681606 0.423901i
\(826\) 0 0
\(827\) 488.020 671.702i 0.590109 0.812215i −0.404649 0.914472i \(-0.632606\pi\)
0.994758 + 0.102257i \(0.0326064\pi\)
\(828\) 0 0
\(829\) −15.5344 47.8100i −0.0187387 0.0576718i 0.941250 0.337711i \(-0.109653\pi\)
−0.959989 + 0.280039i \(0.909653\pi\)
\(830\) 0 0
\(831\) −302.112 + 339.445i −0.363553 + 0.408478i
\(832\) 0 0
\(833\) 925.077 + 300.576i 1.11054 + 0.360835i
\(834\) 0 0
\(835\) 1089.68 1.30501
\(836\) 0 0
\(837\) −962.418 + 724.998i −1.14984 + 0.866187i
\(838\) 0 0
\(839\) −1000.90 325.211i −1.19296 0.387617i −0.355796 0.934564i \(-0.615790\pi\)
−0.837168 + 0.546946i \(0.815790\pi\)
\(840\) 0 0
\(841\) 1524.94 1107.93i 1.81325 1.31740i
\(842\) 0 0
\(843\) 992.267 580.540i 1.17707 0.688659i
\(844\) 0 0
\(845\) 666.756 917.711i 0.789060 1.08605i
\(846\) 0 0
\(847\) −284.261 + 230.975i −0.335609 + 0.272698i
\(848\) 0 0
\(849\) 1138.26 + 498.944i 1.34071 + 0.587684i
\(850\) 0 0
\(851\) 178.316 57.9382i 0.209537 0.0680825i
\(852\) 0 0
\(853\) −494.172 + 359.037i −0.579334 + 0.420911i −0.838484 0.544926i \(-0.816558\pi\)
0.259150 + 0.965837i \(0.416558\pi\)
\(854\) 0 0
\(855\) 37.3441 4.36096i 0.0436774 0.00510054i
\(856\) 0 0
\(857\) 125.921i 0.146932i −0.997298 0.0734661i \(-0.976594\pi\)
0.997298 0.0734661i \(-0.0234061\pi\)
\(858\) 0 0
\(859\) 382.660 0.445472 0.222736 0.974879i \(-0.428501\pi\)
0.222736 + 0.974879i \(0.428501\pi\)
\(860\) 0 0
\(861\) −17.1139 1.69904i −0.0198767 0.00197333i
\(862\) 0 0
\(863\) −206.116 283.695i −0.238837 0.328731i 0.672726 0.739892i \(-0.265123\pi\)
−0.911563 + 0.411161i \(0.865123\pi\)
\(864\) 0 0
\(865\) −411.302 1265.86i −0.475493 1.46342i
\(866\) 0 0
\(867\) −843.976 369.947i −0.973444 0.426697i
\(868\) 0 0
\(869\) −1023.50 + 363.400i −1.17779 + 0.418181i
\(870\) 0 0
\(871\) 7.33519 + 5.32933i 0.00842157 + 0.00611863i
\(872\) 0 0
\(873\) 596.811 + 647.649i 0.683632 + 0.741865i
\(874\) 0 0
\(875\) −58.9247 81.1028i −0.0673425 0.0926889i
\(876\) 0 0
\(877\) −163.941 + 504.559i −0.186934 + 0.575324i −0.999976 0.00688082i \(-0.997810\pi\)
0.813042 + 0.582205i \(0.197810\pi\)
\(878\) 0 0
\(879\) −222.869 1019.58i −0.253549 1.15993i
\(880\) 0 0
\(881\) 1455.22i 1.65179i −0.563826 0.825893i \(-0.690671\pi\)
0.563826 0.825893i \(-0.309329\pi\)
\(882\) 0 0
\(883\) −227.256 + 699.421i −0.257368 + 0.792096i 0.735986 + 0.676996i \(0.236719\pi\)
−0.993354 + 0.115100i \(0.963281\pi\)
\(884\) 0 0
\(885\) 293.608 329.890i 0.331760 0.372757i
\(886\) 0 0
\(887\) 235.954 76.6659i 0.266013 0.0864329i −0.172974 0.984926i \(-0.555338\pi\)
0.438987 + 0.898494i \(0.355338\pi\)
\(888\) 0 0
\(889\) −477.803 347.144i −0.537461 0.390488i
\(890\) 0 0
\(891\) −748.362 + 483.565i −0.839913 + 0.542722i
\(892\) 0 0
\(893\) 5.40452 7.43868i 0.00605209 0.00832999i
\(894\) 0 0
\(895\) 404.529 + 1245.01i 0.451988 + 1.39108i
\(896\) 0 0
\(897\) −2.19730 1.95564i −0.00244961 0.00218020i
\(898\) 0 0
\(899\) −2215.97 720.012i −2.46493 0.800903i
\(900\) 0 0
\(901\) 1165.16 1.29318
\(902\) 0 0
\(903\) 705.678 154.254i 0.781481 0.170824i
\(904\) 0 0
\(905\) −151.897 49.3545i −0.167843 0.0545353i
\(906\) 0 0
\(907\) 784.360 569.871i 0.864785 0.628303i −0.0643973 0.997924i \(-0.520512\pi\)
0.929183 + 0.369621i \(0.120512\pi\)
\(908\) 0 0
\(909\) 998.511 920.132i 1.09847 1.01225i
\(910\) 0 0
\(911\) −148.796 + 204.801i −0.163333 + 0.224808i −0.882837 0.469680i \(-0.844369\pi\)
0.719504 + 0.694489i \(0.244369\pi\)
\(912\) 0 0
\(913\) 1138.04 30.7494i 1.24649 0.0336795i
\(914\) 0 0
\(915\) −498.592 + 1137.46i −0.544909 + 1.24313i
\(916\) 0 0
\(917\) −381.221 + 123.866i −0.415726 + 0.135078i
\(918\) 0 0
\(919\) 976.948 709.795i 1.06306 0.772355i 0.0884046 0.996085i \(-0.471823\pi\)
0.974651 + 0.223729i \(0.0718232\pi\)
\(920\) 0 0
\(921\) −150.489 + 1515.83i −0.163397 + 1.64585i
\(922\) 0 0
\(923\) 14.5136i 0.0157244i
\(924\) 0 0
\(925\) −617.682 −0.667764
\(926\) 0 0
\(927\) −22.2484 190.519i −0.0240004 0.205522i
\(928\) 0 0
\(929\) 31.5339 + 43.4027i 0.0339439 + 0.0467198i 0.825652 0.564180i \(-0.190808\pi\)
−0.791708 + 0.610900i \(0.790808\pi\)
\(930\) 0 0
\(931\) 7.66061 + 23.5769i 0.00822837 + 0.0253243i
\(932\) 0 0
\(933\) 110.060 251.085i 0.117964 0.269116i
\(934\) 0 0
\(935\) −1098.81 1429.53i −1.17520 1.52891i
\(936\) 0 0
\(937\) −310.002 225.229i −0.330845 0.240373i 0.409944 0.912111i \(-0.365548\pi\)
−0.740789 + 0.671738i \(0.765548\pi\)
\(938\) 0 0
\(939\) −725.183 1239.49i −0.772292 1.32001i
\(940\) 0 0
\(941\) 719.245 + 989.955i 0.764341 + 1.05202i 0.996841 + 0.0794283i \(0.0253095\pi\)
−0.232500 + 0.972596i \(0.574691\pi\)
\(942\) 0 0
\(943\) −3.56466 + 10.9709i −0.00378012 + 0.0116340i
\(944\) 0 0
\(945\) −330.127 438.236i −0.349341 0.463741i
\(946\) 0 0
\(947\) 1190.44i 1.25707i −0.777782 0.628534i \(-0.783655\pi\)
0.777782 0.628534i \(-0.216345\pi\)
\(948\) 0 0
\(949\) −3.50445 + 10.7856i −0.00369279 + 0.0113652i
\(950\) 0 0
\(951\) 1127.46 + 1003.46i 1.18555 + 1.05516i
\(952\) 0 0
\(953\) 111.747 36.3089i 0.117259 0.0380996i −0.249800 0.968297i \(-0.580365\pi\)
0.367059 + 0.930198i \(0.380365\pi\)
\(954\) 0 0
\(955\) −826.860 600.749i −0.865822 0.629057i
\(956\) 0 0
\(957\) −1596.11 648.824i −1.66783 0.677977i
\(958\) 0 0
\(959\) −137.340 + 189.033i −0.143212 + 0.197115i
\(960\) 0 0
\(961\) 318.471 + 980.152i 0.331395 + 1.01993i
\(962\) 0 0
\(963\) 925.532 + 520.219i 0.961092 + 0.540207i
\(964\) 0 0
\(965\) 821.974 + 267.076i 0.851787 + 0.276762i
\(966\) 0 0
\(967\) 488.396 0.505063 0.252531 0.967589i \(-0.418737\pi\)
0.252531 + 0.967589i \(0.418737\pi\)
\(968\) 0 0
\(969\) −9.73404 44.5310i −0.0100454 0.0459556i
\(970\) 0 0
\(971\) 125.133 + 40.6583i 0.128871 + 0.0418726i 0.372742 0.927935i \(-0.378418\pi\)
−0.243872 + 0.969808i \(0.578418\pi\)
\(972\) 0 0
\(973\) 36.7207 26.6792i 0.0377397 0.0274195i
\(974\) 0 0
\(975\) 4.89368 + 8.36435i 0.00501916 + 0.00857882i
\(976\) 0 0
\(977\) −733.587 + 1009.70i −0.750856 + 1.03346i 0.247064 + 0.968999i \(0.420534\pi\)
−0.997920 + 0.0644657i \(0.979466\pi\)
\(978\) 0 0
\(979\) −1501.06 1029.81i −1.53326 1.05190i
\(980\) 0 0
\(981\) 894.620 + 179.401i 0.911947 + 0.182876i
\(982\) 0 0
\(983\) −791.093 + 257.042i −0.804774 + 0.261487i −0.682383 0.730995i \(-0.739056\pi\)
−0.122391 + 0.992482i \(0.539056\pi\)
\(984\) 0 0
\(985\) −767.987 + 557.976i −0.779683 + 0.566473i
\(986\) 0 0
\(987\) −133.522 13.2558i −0.135281 0.0134304i
\(988\) 0 0
\(989\) 484.506i 0.489895i
\(990\) 0 0
\(991\) −1450.80 −1.46397 −0.731986 0.681319i \(-0.761407\pi\)
−0.731986 + 0.681319i \(0.761407\pi\)
\(992\) 0 0
\(993\) −45.7808 + 461.136i −0.0461036 + 0.464387i
\(994\) 0 0
\(995\) −640.266 881.250i −0.643483 0.885679i
\(996\) 0 0
\(997\) 410.589 + 1263.66i 0.411824 + 1.26746i 0.915061 + 0.403316i \(0.132143\pi\)
−0.503236 + 0.864149i \(0.667857\pi\)
\(998\) 0 0
\(999\) 830.973 14.3747i 0.831804 0.0143891i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 132.3.m.a.125.4 yes 32
3.2 odd 2 inner 132.3.m.a.125.3 yes 32
11.3 even 5 inner 132.3.m.a.113.3 32
11.5 even 5 1452.3.e.l.485.2 16
11.6 odd 10 1452.3.e.m.485.2 16
33.5 odd 10 1452.3.e.l.485.1 16
33.14 odd 10 inner 132.3.m.a.113.4 yes 32
33.17 even 10 1452.3.e.m.485.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.3.m.a.113.3 32 11.3 even 5 inner
132.3.m.a.113.4 yes 32 33.14 odd 10 inner
132.3.m.a.125.3 yes 32 3.2 odd 2 inner
132.3.m.a.125.4 yes 32 1.1 even 1 trivial
1452.3.e.l.485.1 16 33.5 odd 10
1452.3.e.l.485.2 16 11.5 even 5
1452.3.e.m.485.1 16 33.17 even 10
1452.3.e.m.485.2 16 11.6 odd 10