Properties

Label 1445.2.b.e.579.1
Level $1445$
Weight $2$
Character 1445.579
Analytic conductor $11.538$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1445,2,Mod(579,1445)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1445.579"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1445, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.619810816.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{5} + 14x^{4} - 8x^{3} + 2x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 579.1
Root \(1.18254 + 1.18254i\) of defining polynomial
Character \(\chi\) \(=\) 1445.579
Dual form 1445.2.b.e.579.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.31627i q^{2} -0.203185i q^{3} -3.36509 q^{4} +(1.55654 + 1.60536i) q^{5} -0.470630 q^{6} +0.683735i q^{7} +3.16190i q^{8} +2.95872 q^{9} +(3.71844 - 3.60536i) q^{10} -3.68135 q^{11} +0.683735i q^{12} +4.43927i q^{13} +1.58371 q^{14} +(0.326185 - 0.316265i) q^{15} +0.593630 q^{16} -6.85317i q^{18} +1.03890 q^{19} +(-5.23789 - 5.40218i) q^{20} +0.138925 q^{21} +8.52699i q^{22} +4.52699i q^{23} +0.642450 q^{24} +(-0.154365 + 4.99762i) q^{25} +10.2825 q^{26} -1.21072i q^{27} -2.30083i q^{28} -3.69127 q^{29} +(-0.732555 - 0.755531i) q^{30} +10.8921 q^{31} +4.94880i q^{32} +0.747995i q^{33} +(-1.09764 + 1.06426i) q^{35} -9.95633 q^{36} +0.308729i q^{37} -2.40637i q^{38} +0.901992 q^{39} +(-5.07599 + 4.92163i) q^{40} +6.15198 q^{41} -0.321786i q^{42} +7.88454i q^{43} +12.3881 q^{44} +(4.60536 + 4.74981i) q^{45} +10.4857 q^{46} -4.43927i q^{47} -0.120617i q^{48} +6.53251 q^{49} +(11.5758 + 0.357550i) q^{50} -14.9385i q^{52} +11.4603i q^{53} -2.80435 q^{54} +(-5.73017 - 5.90990i) q^{55} -2.16190 q^{56} -0.211089i q^{57} +8.54996i q^{58} +2.00000 q^{59} +(-1.09764 + 1.06426i) q^{60} -9.94089 q^{61} -25.2289i q^{62} +2.02298i q^{63} +12.6500 q^{64} +(-7.12662 + 6.90990i) q^{65} +1.73255 q^{66} -9.16944i q^{67} +0.919815 q^{69} +(2.46511 + 2.54243i) q^{70} +9.37262 q^{71} +9.35517i q^{72} +2.26946i q^{73} +0.715099 q^{74} +(1.01544 + 0.0313646i) q^{75} -3.49599 q^{76} -2.51707i q^{77} -2.08925i q^{78} +7.42696 q^{79} +(0.924009 + 0.952991i) q^{80} +8.63015 q^{81} -14.2496i q^{82} -8.92344i q^{83} -0.467493 q^{84} +18.2627 q^{86} +0.750010i q^{87} -11.6401i q^{88} -11.5523 q^{89} +(11.0018 - 10.6672i) q^{90} -3.03528 q^{91} -15.2337i q^{92} -2.21310i q^{93} -10.2825 q^{94} +(1.61709 + 1.66781i) q^{95} +1.00552 q^{96} -12.5500i q^{97} -15.1310i q^{98} -10.8921 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 2 q^{5} - 8 q^{9} - 6 q^{10} + 4 q^{11} - 12 q^{14} - 8 q^{16} - 8 q^{19} + 2 q^{20} + 24 q^{21} - 12 q^{24} - 12 q^{25} - 8 q^{29} - 16 q^{30} + 24 q^{31} - 44 q^{39} - 22 q^{40} + 12 q^{41}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.31627i 1.63785i −0.573903 0.818924i \(-0.694571\pi\)
0.573903 0.818924i \(-0.305429\pi\)
\(3\) 0.203185i 0.117309i −0.998278 0.0586544i \(-0.981319\pi\)
0.998278 0.0586544i \(-0.0186810\pi\)
\(4\) −3.36509 −1.68254
\(5\) 1.55654 + 1.60536i 0.696106 + 0.717939i
\(6\) −0.470630 −0.192134
\(7\) 0.683735i 0.258427i 0.991617 + 0.129214i \(0.0412453\pi\)
−0.991617 + 0.129214i \(0.958755\pi\)
\(8\) 3.16190i 1.11790i
\(9\) 2.95872 0.986239
\(10\) 3.71844 3.60536i 1.17587 1.14012i
\(11\) −3.68135 −1.10997 −0.554985 0.831861i \(-0.687276\pi\)
−0.554985 + 0.831861i \(0.687276\pi\)
\(12\) 0.683735i 0.197377i
\(13\) 4.43927i 1.23123i 0.788047 + 0.615615i \(0.211092\pi\)
−0.788047 + 0.615615i \(0.788908\pi\)
\(14\) 1.58371 0.423264
\(15\) 0.326185 0.316265i 0.0842206 0.0816594i
\(16\) 0.593630 0.148408
\(17\) 0 0
\(18\) 6.85317i 1.61531i
\(19\) 1.03890 0.238340 0.119170 0.992874i \(-0.461977\pi\)
0.119170 + 0.992874i \(0.461977\pi\)
\(20\) −5.23789 5.40218i −1.17123 1.20796i
\(21\) 0.138925 0.0303158
\(22\) 8.52699i 1.81796i
\(23\) 4.52699i 0.943942i 0.881614 + 0.471971i \(0.156457\pi\)
−0.881614 + 0.471971i \(0.843543\pi\)
\(24\) 0.642450 0.131140
\(25\) −0.154365 + 4.99762i −0.0308729 + 0.999523i
\(26\) 10.2825 2.01657
\(27\) 1.21072i 0.233003i
\(28\) 2.30083i 0.434815i
\(29\) −3.69127 −0.685452 −0.342726 0.939435i \(-0.611350\pi\)
−0.342726 + 0.939435i \(0.611350\pi\)
\(30\) −0.732555 0.755531i −0.133746 0.137940i
\(31\) 10.8921 1.95627 0.978137 0.207962i \(-0.0666830\pi\)
0.978137 + 0.207962i \(0.0666830\pi\)
\(32\) 4.94880i 0.874832i
\(33\) 0.747995i 0.130209i
\(34\) 0 0
\(35\) −1.09764 + 1.06426i −0.185535 + 0.179893i
\(36\) −9.95633 −1.65939
\(37\) 0.308729i 0.0507548i 0.999678 + 0.0253774i \(0.00807874\pi\)
−0.999678 + 0.0253774i \(0.991921\pi\)
\(38\) 2.40637i 0.390365i
\(39\) 0.901992 0.144434
\(40\) −5.07599 + 4.92163i −0.802585 + 0.778177i
\(41\) 6.15198 0.960778 0.480389 0.877056i \(-0.340495\pi\)
0.480389 + 0.877056i \(0.340495\pi\)
\(42\) 0.321786i 0.0496527i
\(43\) 7.88454i 1.20238i 0.799106 + 0.601190i \(0.205307\pi\)
−0.799106 + 0.601190i \(0.794693\pi\)
\(44\) 12.3881 1.86757
\(45\) 4.60536 + 4.74981i 0.686527 + 0.708059i
\(46\) 10.4857 1.54603
\(47\) 4.43927i 0.647533i −0.946137 0.323767i \(-0.895051\pi\)
0.946137 0.323767i \(-0.104949\pi\)
\(48\) 0.120617i 0.0174095i
\(49\) 6.53251 0.933215
\(50\) 11.5758 + 0.357550i 1.63707 + 0.0505651i
\(51\) 0 0
\(52\) 14.9385i 2.07160i
\(53\) 11.4603i 1.57420i 0.616826 + 0.787100i \(0.288418\pi\)
−0.616826 + 0.787100i \(0.711582\pi\)
\(54\) −2.80435 −0.381624
\(55\) −5.73017 5.90990i −0.772656 0.796890i
\(56\) −2.16190 −0.288896
\(57\) 0.211089i 0.0279594i
\(58\) 8.54996i 1.12267i
\(59\) 2.00000 0.260378 0.130189 0.991489i \(-0.458442\pi\)
0.130189 + 0.991489i \(0.458442\pi\)
\(60\) −1.09764 + 1.06426i −0.141705 + 0.137395i
\(61\) −9.94089 −1.27280 −0.636400 0.771359i \(-0.719577\pi\)
−0.636400 + 0.771359i \(0.719577\pi\)
\(62\) 25.2289i 3.20408i
\(63\) 2.02298i 0.254871i
\(64\) 12.6500 1.58125
\(65\) −7.12662 + 6.90990i −0.883949 + 0.857067i
\(66\) 1.73255 0.213263
\(67\) 9.16944i 1.12023i −0.828417 0.560113i \(-0.810758\pi\)
0.828417 0.560113i \(-0.189242\pi\)
\(68\) 0 0
\(69\) 0.919815 0.110733
\(70\) 2.46511 + 2.54243i 0.294637 + 0.303878i
\(71\) 9.37262 1.11233 0.556163 0.831073i \(-0.312273\pi\)
0.556163 + 0.831073i \(0.312273\pi\)
\(72\) 9.35517i 1.10252i
\(73\) 2.26946i 0.265620i 0.991141 + 0.132810i \(0.0424001\pi\)
−0.991141 + 0.132810i \(0.957600\pi\)
\(74\) 0.715099 0.0831286
\(75\) 1.01544 + 0.0313646i 0.117253 + 0.00362167i
\(76\) −3.49599 −0.401018
\(77\) 2.51707i 0.286846i
\(78\) 2.08925i 0.236561i
\(79\) 7.42696 0.835599 0.417799 0.908539i \(-0.362802\pi\)
0.417799 + 0.908539i \(0.362802\pi\)
\(80\) 0.924009 + 0.952991i 0.103307 + 0.106548i
\(81\) 8.63015 0.958905
\(82\) 14.2496i 1.57361i
\(83\) 8.92344i 0.979474i −0.871870 0.489737i \(-0.837093\pi\)
0.871870 0.489737i \(-0.162907\pi\)
\(84\) −0.467493 −0.0510077
\(85\) 0 0
\(86\) 18.2627 1.96932
\(87\) 0.750010i 0.0804096i
\(88\) 11.6401i 1.24084i
\(89\) −11.5523 −1.22455 −0.612273 0.790646i \(-0.709745\pi\)
−0.612273 + 0.790646i \(0.709745\pi\)
\(90\) 11.0018 10.6672i 1.15969 1.12443i
\(91\) −3.03528 −0.318184
\(92\) 15.2337i 1.58822i
\(93\) 2.21310i 0.229488i
\(94\) −10.2825 −1.06056
\(95\) 1.61709 + 1.66781i 0.165910 + 0.171114i
\(96\) 1.00552 0.102626
\(97\) 12.5500i 1.27426i −0.770758 0.637128i \(-0.780122\pi\)
0.770758 0.637128i \(-0.219878\pi\)
\(98\) 15.1310i 1.52846i
\(99\) −10.8921 −1.09469
\(100\) 0.519450 16.8174i 0.0519450 1.68174i
\(101\) −6.78653 −0.675285 −0.337642 0.941274i \(-0.609629\pi\)
−0.337642 + 0.941274i \(0.609629\pi\)
\(102\) 0 0
\(103\) 8.74799i 0.861966i 0.902360 + 0.430983i \(0.141833\pi\)
−0.902360 + 0.430983i \(0.858167\pi\)
\(104\) −14.0365 −1.37639
\(105\) 0.216242 + 0.223024i 0.0211030 + 0.0217649i
\(106\) 26.5452 2.57830
\(107\) 8.10078i 0.783132i 0.920150 + 0.391566i \(0.128066\pi\)
−0.920150 + 0.391566i \(0.871934\pi\)
\(108\) 4.07418i 0.392038i
\(109\) −3.11308 −0.298179 −0.149090 0.988824i \(-0.547634\pi\)
−0.149090 + 0.988824i \(0.547634\pi\)
\(110\) −13.6889 + 13.2726i −1.30518 + 1.26549i
\(111\) 0.0627291 0.00595399
\(112\) 0.405885i 0.0383526i
\(113\) 6.93287i 0.652190i 0.945337 + 0.326095i \(0.105733\pi\)
−0.945337 + 0.326095i \(0.894267\pi\)
\(114\) −0.488938 −0.0457932
\(115\) −7.26745 + 7.04644i −0.677693 + 0.657084i
\(116\) 12.4214 1.15330
\(117\) 13.1345i 1.21429i
\(118\) 4.63253i 0.426459i
\(119\) 0 0
\(120\) 1.00000 + 1.03136i 0.0912871 + 0.0941503i
\(121\) 2.55235 0.232031
\(122\) 23.0257i 2.08465i
\(123\) 1.24999i 0.112708i
\(124\) −36.6528 −3.29151
\(125\) −8.26325 + 7.53118i −0.739088 + 0.673609i
\(126\) 4.68575 0.417440
\(127\) 21.1496i 1.87672i −0.345655 0.938362i \(-0.612343\pi\)
0.345655 0.938362i \(-0.387657\pi\)
\(128\) 19.4031i 1.71501i
\(129\) 1.60202 0.141050
\(130\) 16.0052 + 16.5071i 1.40374 + 1.44777i
\(131\) −8.71186 −0.761159 −0.380580 0.924748i \(-0.624275\pi\)
−0.380580 + 0.924748i \(0.624275\pi\)
\(132\) 2.51707i 0.219083i
\(133\) 0.710332i 0.0615936i
\(134\) −21.2388 −1.83476
\(135\) 1.94364 1.88454i 0.167282 0.162195i
\(136\) 0 0
\(137\) 0.243985i 0.0208450i −0.999946 0.0104225i \(-0.996682\pi\)
0.999946 0.0104225i \(-0.00331765\pi\)
\(138\) 2.13054i 0.181363i
\(139\) 12.6884 1.07622 0.538108 0.842876i \(-0.319139\pi\)
0.538108 + 0.842876i \(0.319139\pi\)
\(140\) 3.69365 3.58133i 0.312171 0.302677i
\(141\) −0.901992 −0.0759614
\(142\) 21.7095i 1.82182i
\(143\) 16.3425i 1.36663i
\(144\) 1.75638 0.146365
\(145\) −5.74561 5.92582i −0.477147 0.492113i
\(146\) 5.25667 0.435045
\(147\) 1.32731i 0.109474i
\(148\) 1.03890i 0.0853971i
\(149\) −12.0103 −0.983923 −0.491961 0.870617i \(-0.663720\pi\)
−0.491961 + 0.870617i \(0.663720\pi\)
\(150\) 0.0726487 2.35203i 0.00593174 0.192042i
\(151\) 8.95633 0.728856 0.364428 0.931232i \(-0.381265\pi\)
0.364428 + 0.931232i \(0.381265\pi\)
\(152\) 3.28490i 0.266441i
\(153\) 0 0
\(154\) −5.83020 −0.469811
\(155\) 16.9539 + 17.4857i 1.36177 + 1.40449i
\(156\) −3.03528 −0.243017
\(157\) 19.9127i 1.58920i 0.607131 + 0.794602i \(0.292320\pi\)
−0.607131 + 0.794602i \(0.707680\pi\)
\(158\) 17.2028i 1.36858i
\(159\) 2.32857 0.184667
\(160\) −7.94460 + 7.70300i −0.628076 + 0.608976i
\(161\) −3.09526 −0.243940
\(162\) 19.9897i 1.57054i
\(163\) 22.4011i 1.75459i −0.479951 0.877296i \(-0.659345\pi\)
0.479951 0.877296i \(-0.340655\pi\)
\(164\) −20.7019 −1.61655
\(165\) −1.20080 + 1.16428i −0.0934823 + 0.0906394i
\(166\) −20.6690 −1.60423
\(167\) 4.58133i 0.354514i −0.984165 0.177257i \(-0.943278\pi\)
0.984165 0.177257i \(-0.0567223\pi\)
\(168\) 0.439266i 0.0338901i
\(169\) −6.70708 −0.515929
\(170\) 0 0
\(171\) 3.07381 0.235060
\(172\) 26.5321i 2.02306i
\(173\) 8.09764i 0.615652i 0.951443 + 0.307826i \(0.0996015\pi\)
−0.951443 + 0.307826i \(0.900399\pi\)
\(174\) 1.73722 0.131699
\(175\) −3.41704 0.105544i −0.258304 0.00797841i
\(176\) −2.18536 −0.164728
\(177\) 0.406370i 0.0305446i
\(178\) 26.7583i 2.00562i
\(179\) −4.40637 −0.329348 −0.164674 0.986348i \(-0.552657\pi\)
−0.164674 + 0.986348i \(0.552657\pi\)
\(180\) −15.4974 15.9835i −1.15511 1.19134i
\(181\) 5.93727 0.441314 0.220657 0.975351i \(-0.429180\pi\)
0.220657 + 0.975351i \(0.429180\pi\)
\(182\) 7.03051i 0.521136i
\(183\) 2.01984i 0.149311i
\(184\) −14.3139 −1.05523
\(185\) −0.495622 + 0.480550i −0.0364388 + 0.0353307i
\(186\) −5.12614 −0.375867
\(187\) 0 0
\(188\) 14.9385i 1.08950i
\(189\) 0.827812 0.0602144
\(190\) 3.86309 3.74561i 0.280258 0.271735i
\(191\) −9.89759 −0.716165 −0.358082 0.933690i \(-0.616569\pi\)
−0.358082 + 0.933690i \(0.616569\pi\)
\(192\) 2.57029i 0.185494i
\(193\) 8.47578i 0.610100i 0.952336 + 0.305050i \(0.0986732\pi\)
−0.952336 + 0.305050i \(0.901327\pi\)
\(194\) −29.0690 −2.08704
\(195\) 1.40399 + 1.44802i 0.100542 + 0.103695i
\(196\) −21.9824 −1.57017
\(197\) 13.5381i 0.964553i 0.876019 + 0.482276i \(0.160190\pi\)
−0.876019 + 0.482276i \(0.839810\pi\)
\(198\) 25.2289i 1.79294i
\(199\) −9.15388 −0.648901 −0.324451 0.945903i \(-0.605179\pi\)
−0.324451 + 0.945903i \(0.605179\pi\)
\(200\) −15.8020 0.488086i −1.11737 0.0345129i
\(201\) −1.86309 −0.131412
\(202\) 15.7194i 1.10601i
\(203\) 2.52385i 0.177139i
\(204\) 0 0
\(205\) 9.57581 + 9.87615i 0.668803 + 0.689780i
\(206\) 20.2627 1.41177
\(207\) 13.3941i 0.930952i
\(208\) 2.63528i 0.182724i
\(209\) −3.82456 −0.264550
\(210\) 0.516583 0.500873i 0.0356476 0.0345635i
\(211\) −7.72465 −0.531787 −0.265893 0.964002i \(-0.585667\pi\)
−0.265893 + 0.964002i \(0.585667\pi\)
\(212\) 38.5650i 2.64866i
\(213\) 1.90438i 0.130486i
\(214\) 18.7636 1.28265
\(215\) −12.6575 + 12.2726i −0.863236 + 0.836984i
\(216\) 3.82818 0.260475
\(217\) 7.44729i 0.505555i
\(218\) 7.21072i 0.488372i
\(219\) 0.461120 0.0311596
\(220\) 19.2825 + 19.8873i 1.30003 + 1.34080i
\(221\) 0 0
\(222\) 0.145297i 0.00975172i
\(223\) 13.7194i 0.918719i −0.888250 0.459359i \(-0.848079\pi\)
0.888250 0.459359i \(-0.151921\pi\)
\(224\) −3.38366 −0.226080
\(225\) −0.456721 + 14.7865i −0.0304481 + 0.985769i
\(226\) 16.0584 1.06819
\(227\) 1.80044i 0.119499i −0.998213 0.0597496i \(-0.980970\pi\)
0.998213 0.0597496i \(-0.0190302\pi\)
\(228\) 0.710332i 0.0470429i
\(229\) 3.24838 0.214659 0.107330 0.994223i \(-0.465770\pi\)
0.107330 + 0.994223i \(0.465770\pi\)
\(230\) 16.3214 + 16.8333i 1.07620 + 1.10996i
\(231\) −0.511430 −0.0336496
\(232\) 11.6714i 0.766267i
\(233\) 5.38254i 0.352622i −0.984335 0.176311i \(-0.943584\pi\)
0.984335 0.176311i \(-0.0564164\pi\)
\(234\) 30.4230 1.98882
\(235\) 7.12662 6.90990i 0.464890 0.450752i
\(236\) −6.73017 −0.438097
\(237\) 1.50905i 0.0980231i
\(238\) 0 0
\(239\) 3.62071 0.234204 0.117102 0.993120i \(-0.462639\pi\)
0.117102 + 0.993120i \(0.462639\pi\)
\(240\) 0.193633 0.187745i 0.0124990 0.0121189i
\(241\) 7.66781 0.493927 0.246964 0.969025i \(-0.420567\pi\)
0.246964 + 0.969025i \(0.420567\pi\)
\(242\) 5.91191i 0.380032i
\(243\) 5.38568i 0.345491i
\(244\) 33.4520 2.14154
\(245\) 10.1681 + 10.4870i 0.649617 + 0.669992i
\(246\) −2.89531 −0.184598
\(247\) 4.61196i 0.293452i
\(248\) 34.4397i 2.18692i
\(249\) −1.81311 −0.114901
\(250\) 17.4442 + 19.1399i 1.10327 + 1.21051i
\(251\) −6.04595 −0.381617 −0.190809 0.981627i \(-0.561111\pi\)
−0.190809 + 0.981627i \(0.561111\pi\)
\(252\) 6.80749i 0.428831i
\(253\) 16.6654i 1.04775i
\(254\) −48.9881 −3.07379
\(255\) 0 0
\(256\) −19.6428 −1.22768
\(257\) 6.13054i 0.382412i 0.981550 + 0.191206i \(0.0612399\pi\)
−0.981550 + 0.191206i \(0.938760\pi\)
\(258\) 3.71070i 0.231018i
\(259\) −0.211089 −0.0131164
\(260\) 23.9817 23.2524i 1.48728 1.44205i
\(261\) −10.9214 −0.676019
\(262\) 20.1790i 1.24666i
\(263\) 12.3012i 0.758525i −0.925289 0.379263i \(-0.876178\pi\)
0.925289 0.379263i \(-0.123822\pi\)
\(264\) −2.36509 −0.145561
\(265\) −18.3980 + 17.8385i −1.13018 + 1.09581i
\(266\) 1.64532 0.100881
\(267\) 2.34726i 0.143650i
\(268\) 30.8559i 1.88483i
\(269\) 9.92508 0.605143 0.302572 0.953127i \(-0.402155\pi\)
0.302572 + 0.953127i \(0.402155\pi\)
\(270\) −4.36509 4.50199i −0.265651 0.273983i
\(271\) 20.3040 1.23338 0.616689 0.787207i \(-0.288474\pi\)
0.616689 + 0.787207i \(0.288474\pi\)
\(272\) 0 0
\(273\) 0.616723i 0.0373258i
\(274\) −0.565133 −0.0341410
\(275\) 0.568271 18.3980i 0.0342680 1.10944i
\(276\) −3.09526 −0.186313
\(277\) 18.1671i 1.09155i 0.837931 + 0.545776i \(0.183765\pi\)
−0.837931 + 0.545776i \(0.816235\pi\)
\(278\) 29.3897i 1.76268i
\(279\) 32.2265 1.92935
\(280\) −3.36509 3.47063i −0.201102 0.207410i
\(281\) 10.6983 0.638208 0.319104 0.947720i \(-0.396618\pi\)
0.319104 + 0.947720i \(0.396618\pi\)
\(282\) 2.08925i 0.124413i
\(283\) 10.0773i 0.599034i −0.954091 0.299517i \(-0.903174\pi\)
0.954091 0.299517i \(-0.0968256\pi\)
\(284\) −31.5397 −1.87154
\(285\) 0.338874 0.328568i 0.0200732 0.0194627i
\(286\) −37.8536 −2.23833
\(287\) 4.20632i 0.248291i
\(288\) 14.6421i 0.862793i
\(289\) 0 0
\(290\) −13.7258 + 13.3084i −0.806005 + 0.781494i
\(291\) −2.54996 −0.149481
\(292\) 7.63693i 0.446918i
\(293\) 20.5349i 1.19966i −0.800127 0.599831i \(-0.795235\pi\)
0.800127 0.599831i \(-0.204765\pi\)
\(294\) −3.07439 −0.179302
\(295\) 3.11308 + 3.21072i 0.181251 + 0.186935i
\(296\) −0.976172 −0.0567388
\(297\) 4.45709i 0.258627i
\(298\) 27.8191i 1.61151i
\(299\) −20.0965 −1.16221
\(300\) −3.41704 0.105544i −0.197283 0.00609361i
\(301\) −5.39093 −0.310728
\(302\) 20.7452i 1.19375i
\(303\) 1.37892i 0.0792169i
\(304\) 0.616723 0.0353715
\(305\) −15.4734 15.9587i −0.886004 0.913793i
\(306\) 0 0
\(307\) 13.1177i 0.748669i −0.927294 0.374335i \(-0.877871\pi\)
0.927294 0.374335i \(-0.122129\pi\)
\(308\) 8.47015i 0.482631i
\(309\) 1.77746 0.101116
\(310\) 40.5015 39.2698i 2.30033 2.23038i
\(311\) 12.3646 0.701132 0.350566 0.936538i \(-0.385989\pi\)
0.350566 + 0.936538i \(0.385989\pi\)
\(312\) 2.85201i 0.161463i
\(313\) 5.16000i 0.291661i 0.989310 + 0.145830i \(0.0465853\pi\)
−0.989310 + 0.145830i \(0.953415\pi\)
\(314\) 46.1230 2.60287
\(315\) −3.24761 + 3.14884i −0.182982 + 0.177417i
\(316\) −24.9924 −1.40593
\(317\) 23.7655i 1.33480i −0.744699 0.667400i \(-0.767407\pi\)
0.744699 0.667400i \(-0.232593\pi\)
\(318\) 5.39358i 0.302457i
\(319\) 13.5889 0.760830
\(320\) 19.6902 + 20.3078i 1.10072 + 1.13524i
\(321\) 1.64596 0.0918683
\(322\) 7.16944i 0.399537i
\(323\) 0 0
\(324\) −29.0412 −1.61340
\(325\) −22.1857 0.685266i −1.23064 0.0380117i
\(326\) −51.8869 −2.87375
\(327\) 0.632531i 0.0349790i
\(328\) 19.4520i 1.07405i
\(329\) 3.03528 0.167340
\(330\) 2.69679 + 2.78137i 0.148453 + 0.153110i
\(331\) 20.8341 1.14514 0.572572 0.819854i \(-0.305946\pi\)
0.572572 + 0.819854i \(0.305946\pi\)
\(332\) 30.0281i 1.64801i
\(333\) 0.913442i 0.0500563i
\(334\) −10.6116 −0.580639
\(335\) 14.7203 14.2726i 0.804253 0.779795i
\(336\) 0.0824698 0.00449910
\(337\) 14.3080i 0.779406i 0.920941 + 0.389703i \(0.127422\pi\)
−0.920941 + 0.389703i \(0.872578\pi\)
\(338\) 15.5354i 0.845013i
\(339\) 1.40865 0.0765076
\(340\) 0 0
\(341\) −40.0975 −2.17140
\(342\) 7.11976i 0.384993i
\(343\) 9.25264i 0.499596i
\(344\) −24.9301 −1.34414
\(345\) 1.43173 + 1.47664i 0.0770817 + 0.0794994i
\(346\) 18.7563 1.00834
\(347\) 21.9988i 1.18096i −0.807054 0.590478i \(-0.798939\pi\)
0.807054 0.590478i \(-0.201061\pi\)
\(348\) 2.52385i 0.135293i
\(349\) 6.06199 0.324491 0.162246 0.986750i \(-0.448126\pi\)
0.162246 + 0.986750i \(0.448126\pi\)
\(350\) −0.244469 + 7.91478i −0.0130674 + 0.423063i
\(351\) 5.37471 0.286881
\(352\) 18.2183i 0.971036i
\(353\) 20.8785i 1.11125i −0.831432 0.555626i \(-0.812479\pi\)
0.831432 0.555626i \(-0.187521\pi\)
\(354\) −0.941260 −0.0500274
\(355\) 14.5889 + 15.0464i 0.774296 + 0.798582i
\(356\) 38.8746 2.06035
\(357\) 0 0
\(358\) 10.2063i 0.539421i
\(359\) −18.4842 −0.975557 −0.487779 0.872967i \(-0.662193\pi\)
−0.487779 + 0.872967i \(0.662193\pi\)
\(360\) −15.0184 + 14.5617i −0.791540 + 0.767469i
\(361\) −17.9207 −0.943194
\(362\) 13.7523i 0.722805i
\(363\) 0.518598i 0.0272193i
\(364\) 10.2140 0.535358
\(365\) −3.64330 + 3.53251i −0.190699 + 0.184900i
\(366\) 4.67848 0.244548
\(367\) 23.6044i 1.23214i 0.787691 + 0.616070i \(0.211276\pi\)
−0.787691 + 0.616070i \(0.788724\pi\)
\(368\) 2.68736i 0.140088i
\(369\) 18.2020 0.947556
\(370\) 1.11308 + 1.14799i 0.0578663 + 0.0596813i
\(371\) −7.83583 −0.406816
\(372\) 7.44729i 0.386124i
\(373\) 18.0123i 0.932643i 0.884615 + 0.466321i \(0.154421\pi\)
−0.884615 + 0.466321i \(0.845579\pi\)
\(374\) 0 0
\(375\) 1.53022 + 1.67897i 0.0790203 + 0.0867015i
\(376\) 14.0365 0.723878
\(377\) 16.3865i 0.843949i
\(378\) 1.91743i 0.0986221i
\(379\) −5.74523 −0.295112 −0.147556 0.989054i \(-0.547141\pi\)
−0.147556 + 0.989054i \(0.547141\pi\)
\(380\) −5.44165 5.61232i −0.279151 0.287906i
\(381\) −4.29728 −0.220156
\(382\) 22.9255i 1.17297i
\(383\) 35.3281i 1.80518i 0.430499 + 0.902591i \(0.358337\pi\)
−0.430499 + 0.902591i \(0.641663\pi\)
\(384\) −3.94242 −0.201186
\(385\) 4.04080 3.91792i 0.205938 0.199675i
\(386\) 19.6322 0.999251
\(387\) 23.3281i 1.18583i
\(388\) 42.2317i 2.14399i
\(389\) 18.2627 0.925955 0.462977 0.886370i \(-0.346781\pi\)
0.462977 + 0.886370i \(0.346781\pi\)
\(390\) 3.35400 3.25201i 0.169837 0.164672i
\(391\) 0 0
\(392\) 20.6551i 1.04324i
\(393\) 1.77012i 0.0892907i
\(394\) 31.3579 1.57979
\(395\) 11.5604 + 11.9230i 0.581665 + 0.599909i
\(396\) 36.6528 1.84187
\(397\) 4.64092i 0.232921i −0.993195 0.116461i \(-0.962845\pi\)
0.993195 0.116461i \(-0.0371549\pi\)
\(398\) 21.2028i 1.06280i
\(399\) 0.144329 0.00722548
\(400\) −0.0916355 + 2.96674i −0.00458178 + 0.148337i
\(401\) 27.4049 1.36853 0.684267 0.729232i \(-0.260122\pi\)
0.684267 + 0.729232i \(0.260122\pi\)
\(402\) 4.31541i 0.215233i
\(403\) 48.3528i 2.40862i
\(404\) 22.8372 1.13620
\(405\) 13.4332 + 13.8545i 0.667500 + 0.688436i
\(406\) −5.84590 −0.290127
\(407\) 1.13654i 0.0563363i
\(408\) 0 0
\(409\) −1.38254 −0.0683623 −0.0341811 0.999416i \(-0.510882\pi\)
−0.0341811 + 0.999416i \(0.510882\pi\)
\(410\) 22.8758 22.1801i 1.12975 1.09540i
\(411\) −0.0495740 −0.00244531
\(412\) 29.4378i 1.45029i
\(413\) 1.36747i 0.0672888i
\(414\) 31.0242 1.52476
\(415\) 14.3253 13.8897i 0.703203 0.681818i
\(416\) −21.9690 −1.07712
\(417\) 2.57809i 0.126250i
\(418\) 8.85869i 0.433293i
\(419\) −33.2300 −1.62339 −0.811695 0.584081i \(-0.801455\pi\)
−0.811695 + 0.584081i \(0.801455\pi\)
\(420\) −0.727672 0.750495i −0.0355067 0.0366204i
\(421\) 4.61109 0.224731 0.112365 0.993667i \(-0.464157\pi\)
0.112365 + 0.993667i \(0.464157\pi\)
\(422\) 17.8923i 0.870986i
\(423\) 13.1345i 0.638622i
\(424\) −36.2365 −1.75980
\(425\) 0 0
\(426\) −4.41104 −0.213715
\(427\) 6.79693i 0.328927i
\(428\) 27.2598i 1.31765i
\(429\) −3.32055 −0.160318
\(430\) 28.4266 + 29.3182i 1.37085 + 1.41385i
\(431\) −7.33812 −0.353465 −0.176732 0.984259i \(-0.556553\pi\)
−0.176732 + 0.984259i \(0.556553\pi\)
\(432\) 0.718721i 0.0345795i
\(433\) 15.3487i 0.737610i −0.929507 0.368805i \(-0.879767\pi\)
0.929507 0.368805i \(-0.120233\pi\)
\(434\) 17.2499 0.828021
\(435\) −1.20404 + 1.16742i −0.0577292 + 0.0559736i
\(436\) 10.4758 0.501699
\(437\) 4.70309i 0.224979i
\(438\) 1.06808i 0.0510347i
\(439\) −5.60355 −0.267443 −0.133721 0.991019i \(-0.542693\pi\)
−0.133721 + 0.991019i \(0.542693\pi\)
\(440\) 18.6865 18.1182i 0.890844 0.863753i
\(441\) 19.3278 0.920373
\(442\) 0 0
\(443\) 29.6338i 1.40794i −0.710228 0.703971i \(-0.751408\pi\)
0.710228 0.703971i \(-0.248592\pi\)
\(444\) −0.211089 −0.0100178
\(445\) −17.9817 18.5457i −0.852414 0.879150i
\(446\) −31.7778 −1.50472
\(447\) 2.44031i 0.115423i
\(448\) 8.64923i 0.408638i
\(449\) −34.4203 −1.62439 −0.812197 0.583383i \(-0.801729\pi\)
−0.812197 + 0.583383i \(0.801729\pi\)
\(450\) 34.2495 + 1.05789i 1.61454 + 0.0498693i
\(451\) −22.6476 −1.06643
\(452\) 23.3297i 1.09734i
\(453\) 1.81979i 0.0855013i
\(454\) −4.17029 −0.195721
\(455\) −4.72453 4.87272i −0.221490 0.228437i
\(456\) 0.667442 0.0312558
\(457\) 9.32504i 0.436207i −0.975926 0.218103i \(-0.930013\pi\)
0.975926 0.218103i \(-0.0699870\pi\)
\(458\) 7.52412i 0.351579i
\(459\) 0 0
\(460\) 24.4556 23.7119i 1.14025 1.10557i
\(461\) 19.1715 0.892904 0.446452 0.894808i \(-0.352687\pi\)
0.446452 + 0.894808i \(0.352687\pi\)
\(462\) 1.18461i 0.0551129i
\(463\) 19.6385i 0.912680i 0.889805 + 0.456340i \(0.150840\pi\)
−0.889805 + 0.456340i \(0.849160\pi\)
\(464\) −2.19125 −0.101726
\(465\) 3.55283 3.44479i 0.164759 0.159748i
\(466\) −12.4674 −0.577541
\(467\) 21.1027i 0.976515i 0.872699 + 0.488258i \(0.162367\pi\)
−0.872699 + 0.488258i \(0.837633\pi\)
\(468\) 44.1988i 2.04309i
\(469\) 6.26946 0.289497
\(470\) −16.0052 16.5071i −0.738263 0.761418i
\(471\) 4.04595 0.186428
\(472\) 6.32380i 0.291077i
\(473\) 29.0257i 1.33461i
\(474\) −3.49535 −0.160547
\(475\) −0.160370 + 5.19203i −0.00735826 + 0.238227i
\(476\) 0 0
\(477\) 33.9079i 1.55254i
\(478\) 8.38653i 0.383591i
\(479\) −28.6762 −1.31025 −0.655125 0.755521i \(-0.727384\pi\)
−0.655125 + 0.755521i \(0.727384\pi\)
\(480\) 1.56513 + 1.61422i 0.0714382 + 0.0736789i
\(481\) −1.37053 −0.0624909
\(482\) 17.7607i 0.808977i
\(483\) 0.628909i 0.0286164i
\(484\) −8.58886 −0.390403
\(485\) 20.1472 19.5345i 0.914838 0.887017i
\(486\) −12.4747 −0.565862
\(487\) 39.2139i 1.77695i 0.458925 + 0.888475i \(0.348234\pi\)
−0.458925 + 0.888475i \(0.651766\pi\)
\(488\) 31.4321i 1.42287i
\(489\) −4.55157 −0.205829
\(490\) 24.2907 23.5520i 1.09734 1.06397i
\(491\) −36.3499 −1.64045 −0.820224 0.572042i \(-0.806151\pi\)
−0.820224 + 0.572042i \(0.806151\pi\)
\(492\) 4.20632i 0.189636i
\(493\) 0 0
\(494\) 10.6825 0.480629
\(495\) −16.9539 17.4857i −0.762023 0.785924i
\(496\) 6.46586 0.290326
\(497\) 6.40839i 0.287455i
\(498\) 4.19964i 0.188190i
\(499\) −8.52061 −0.381435 −0.190718 0.981645i \(-0.561081\pi\)
−0.190718 + 0.981645i \(0.561081\pi\)
\(500\) 27.8065 25.3431i 1.24355 1.13338i
\(501\) −0.930856 −0.0415876
\(502\) 14.0040i 0.625030i
\(503\) 18.6790i 0.832854i −0.909169 0.416427i \(-0.863282\pi\)
0.909169 0.416427i \(-0.136718\pi\)
\(504\) −6.39645 −0.284921
\(505\) −10.5635 10.8948i −0.470070 0.484813i
\(506\) −38.6016 −1.71605
\(507\) 1.36278i 0.0605231i
\(508\) 71.1702i 3.15767i
\(509\) −3.53567 −0.156716 −0.0783579 0.996925i \(-0.524968\pi\)
−0.0783579 + 0.996925i \(0.524968\pi\)
\(510\) 0 0
\(511\) −1.55171 −0.0686436
\(512\) 6.69175i 0.295737i
\(513\) 1.25782i 0.0555341i
\(514\) 14.1999 0.626333
\(515\) −14.0437 + 13.6166i −0.618839 + 0.600019i
\(516\) −5.39093 −0.237322
\(517\) 16.3425i 0.718742i
\(518\) 0.488938i 0.0214827i
\(519\) 1.64532 0.0722215
\(520\) −21.8484 22.5337i −0.958116 0.988167i
\(521\) 4.64206 0.203373 0.101686 0.994817i \(-0.467576\pi\)
0.101686 + 0.994817i \(0.467576\pi\)
\(522\) 25.2969i 1.10722i
\(523\) 18.3331i 0.801649i 0.916155 + 0.400824i \(0.131276\pi\)
−0.916155 + 0.400824i \(0.868724\pi\)
\(524\) 29.3162 1.28068
\(525\) −0.0214450 + 0.694292i −0.000935938 + 0.0303014i
\(526\) −28.4929 −1.24235
\(527\) 0 0
\(528\) 0.444032i 0.0193240i
\(529\) 2.50639 0.108974
\(530\) 41.3187 + 42.6146i 1.79477 + 1.85106i
\(531\) 5.91743 0.256795
\(532\) 2.39033i 0.103634i
\(533\) 27.3103i 1.18294i
\(534\) 5.43688 0.235277
\(535\) −13.0047 + 12.6092i −0.562241 + 0.545143i
\(536\) 28.9928 1.25230
\(537\) 0.895308i 0.0386354i
\(538\) 22.9891i 0.991132i
\(539\) −24.0485 −1.03584
\(540\) −6.54053 + 6.34163i −0.281459 + 0.272900i
\(541\) −22.4428 −0.964891 −0.482445 0.875926i \(-0.660251\pi\)
−0.482445 + 0.875926i \(0.660251\pi\)
\(542\) 47.0294i 2.02008i
\(543\) 1.20636i 0.0517700i
\(544\) 0 0
\(545\) −4.84564 4.99762i −0.207564 0.214074i
\(546\) 1.42849 0.0611339
\(547\) 25.9778i 1.11073i −0.831607 0.555365i \(-0.812578\pi\)
0.831607 0.555365i \(-0.187422\pi\)
\(548\) 0.821029i 0.0350726i
\(549\) −29.4123 −1.25529
\(550\) −42.6146 1.31627i −1.81709 0.0561257i
\(551\) −3.83486 −0.163371
\(552\) 2.90836i 0.123788i
\(553\) 5.07807i 0.215942i
\(554\) 42.0797 1.78780
\(555\) 0.0976404 + 0.100703i 0.00414461 + 0.00427460i
\(556\) −42.6976 −1.81078
\(557\) 4.86144i 0.205986i 0.994682 + 0.102993i \(0.0328419\pi\)
−0.994682 + 0.102993i \(0.967158\pi\)
\(558\) 74.6452i 3.15998i
\(559\) −35.0015 −1.48041
\(560\) −0.651593 + 0.631777i −0.0275348 + 0.0266975i
\(561\) 0 0
\(562\) 24.7802i 1.04529i
\(563\) 1.53365i 0.0646357i −0.999478 0.0323179i \(-0.989711\pi\)
0.999478 0.0323179i \(-0.0102889\pi\)
\(564\) 3.03528 0.127808
\(565\) −11.1298 + 10.7913i −0.468232 + 0.453993i
\(566\) −23.3417 −0.981127
\(567\) 5.90073i 0.247807i
\(568\) 29.6353i 1.24347i
\(569\) 16.5770 0.694946 0.347473 0.937690i \(-0.387040\pi\)
0.347473 + 0.937690i \(0.387040\pi\)
\(570\) −0.761052 0.784922i −0.0318769 0.0328768i
\(571\) 14.2904 0.598036 0.299018 0.954248i \(-0.403341\pi\)
0.299018 + 0.954248i \(0.403341\pi\)
\(572\) 54.9939i 2.29941i
\(573\) 2.01104i 0.0840125i
\(574\) 9.74296 0.406663
\(575\) −22.6241 0.698807i −0.943492 0.0291423i
\(576\) 37.4277 1.55949
\(577\) 28.5424i 1.18824i 0.804377 + 0.594119i \(0.202499\pi\)
−0.804377 + 0.594119i \(0.797501\pi\)
\(578\) 0 0
\(579\) 1.72215 0.0715702
\(580\) 19.3345 + 19.9409i 0.802820 + 0.828000i
\(581\) 6.10126 0.253123
\(582\) 5.90639i 0.244828i
\(583\) 42.1895i 1.74731i
\(584\) −7.17581 −0.296937
\(585\) −21.0856 + 20.4444i −0.871784 + 0.845273i
\(586\) −47.5643 −1.96486
\(587\) 33.5281i 1.38385i −0.721967 0.691927i \(-0.756762\pi\)
0.721967 0.691927i \(-0.243238\pi\)
\(588\) 4.46650i 0.184195i
\(589\) 11.3158 0.466259
\(590\) 7.43688 7.21072i 0.306172 0.296861i
\(591\) 2.75075 0.113151
\(592\) 0.183271i 0.00753239i
\(593\) 42.4729i 1.74415i −0.489368 0.872077i \(-0.662773\pi\)
0.489368 0.872077i \(-0.337227\pi\)
\(594\) 10.3238 0.423591
\(595\) 0 0
\(596\) 40.4157 1.65549
\(597\) 1.85993i 0.0761219i
\(598\) 46.5488i 1.90352i
\(599\) 7.00705 0.286300 0.143150 0.989701i \(-0.454277\pi\)
0.143150 + 0.989701i \(0.454277\pi\)
\(600\) −0.0991717 + 3.21072i −0.00404867 + 0.131077i
\(601\) −39.3146 −1.60368 −0.801839 0.597541i \(-0.796145\pi\)
−0.801839 + 0.597541i \(0.796145\pi\)
\(602\) 12.4868i 0.508925i
\(603\) 27.1298i 1.10481i
\(604\) −30.1388 −1.22633
\(605\) 3.97283 + 4.09744i 0.161518 + 0.166584i
\(606\) 3.19394 0.129745
\(607\) 18.7928i 0.762777i 0.924415 + 0.381389i \(0.124554\pi\)
−0.924415 + 0.381389i \(0.875446\pi\)
\(608\) 5.14131i 0.208508i
\(609\) −0.512808 −0.0207800
\(610\) −36.9646 + 35.8405i −1.49665 + 1.45114i
\(611\) 19.7071 0.797263
\(612\) 0 0
\(613\) 1.83560i 0.0741392i 0.999313 + 0.0370696i \(0.0118023\pi\)
−0.999313 + 0.0370696i \(0.988198\pi\)
\(614\) −30.3842 −1.22621
\(615\) 2.00668 1.94566i 0.0809173 0.0784566i
\(616\) 7.95872 0.320666
\(617\) 29.0011i 1.16754i −0.811918 0.583771i \(-0.801577\pi\)
0.811918 0.583771i \(-0.198423\pi\)
\(618\) 4.11707i 0.165613i
\(619\) 27.7941 1.11714 0.558569 0.829458i \(-0.311351\pi\)
0.558569 + 0.829458i \(0.311351\pi\)
\(620\) −57.0515 58.8409i −2.29124 2.36311i
\(621\) 5.48092 0.219942
\(622\) 28.6397i 1.14835i
\(623\) 7.89874i 0.316456i
\(624\) 0.535450 0.0214351
\(625\) −24.9523 1.54291i −0.998094 0.0617164i
\(626\) 11.9519 0.477695
\(627\) 0.777092i 0.0310341i
\(628\) 67.0078i 2.67390i
\(629\) 0 0
\(630\) 7.29356 + 7.52232i 0.290582 + 0.299696i
\(631\) −14.1785 −0.564437 −0.282219 0.959350i \(-0.591070\pi\)
−0.282219 + 0.959350i \(0.591070\pi\)
\(632\) 23.4833i 0.934116i
\(633\) 1.56953i 0.0623833i
\(634\) −55.0471 −2.18620
\(635\) 33.9527 32.9202i 1.34737 1.30640i
\(636\) −7.83583 −0.310711
\(637\) 28.9995i 1.14900i
\(638\) 31.4754i 1.24612i
\(639\) 27.7309 1.09702
\(640\) 31.1490 30.2018i 1.23127 1.19383i
\(641\) 27.8734 1.10093 0.550466 0.834857i \(-0.314450\pi\)
0.550466 + 0.834857i \(0.314450\pi\)
\(642\) 3.81247i 0.150466i
\(643\) 25.8277i 1.01854i 0.860605 + 0.509272i \(0.170085\pi\)
−0.860605 + 0.509272i \(0.829915\pi\)
\(644\) 10.4158 0.410440
\(645\) 2.49361 + 2.57182i 0.0981857 + 0.101265i
\(646\) 0 0
\(647\) 4.40912i 0.173340i 0.996237 + 0.0866702i \(0.0276226\pi\)
−0.996237 + 0.0866702i \(0.972377\pi\)
\(648\) 27.2877i 1.07196i
\(649\) −7.36270 −0.289011
\(650\) −1.58726 + 51.3881i −0.0622574 + 2.01561i
\(651\) 1.51318 0.0593060
\(652\) 75.3817i 2.95217i
\(653\) 30.9245i 1.21017i −0.796161 0.605084i \(-0.793139\pi\)
0.796161 0.605084i \(-0.206861\pi\)
\(654\) 1.46511 0.0572903
\(655\) −13.5604 13.9857i −0.529847 0.546466i
\(656\) 3.65200 0.142587
\(657\) 6.71469i 0.261965i
\(658\) 7.03051i 0.274078i
\(659\) −39.7992 −1.55036 −0.775179 0.631742i \(-0.782340\pi\)
−0.775179 + 0.631742i \(0.782340\pi\)
\(660\) 4.04080 3.91792i 0.157288 0.152505i
\(661\) −13.0969 −0.509409 −0.254704 0.967019i \(-0.581978\pi\)
−0.254704 + 0.967019i \(0.581978\pi\)
\(662\) 48.2573i 1.87557i
\(663\) 0 0
\(664\) 28.2150 1.09496
\(665\) −1.14034 + 1.10566i −0.0442205 + 0.0428757i
\(666\) 2.11578 0.0819846
\(667\) 16.7103i 0.647027i
\(668\) 15.4166i 0.596485i
\(669\) −2.78757 −0.107774
\(670\) −33.0591 34.0960i −1.27719 1.31724i
\(671\) 36.5959 1.41277
\(672\) 0.687509i 0.0265212i
\(673\) 22.2830i 0.858946i −0.903080 0.429473i \(-0.858699\pi\)
0.903080 0.429473i \(-0.141301\pi\)
\(674\) 33.1411 1.27655
\(675\) 6.05072 + 0.186893i 0.232892 + 0.00719350i
\(676\) 22.5699 0.868073
\(677\) 10.5576i 0.405762i −0.979203 0.202881i \(-0.934970\pi\)
0.979203 0.202881i \(-0.0650305\pi\)
\(678\) 3.26282i 0.125308i
\(679\) 8.58084 0.329303
\(680\) 0 0
\(681\) −0.365822 −0.0140183
\(682\) 92.8766i 3.55643i
\(683\) 1.80882i 0.0692128i −0.999401 0.0346064i \(-0.988982\pi\)
0.999401 0.0346064i \(-0.0110178\pi\)
\(684\) −10.3436 −0.395499
\(685\) 0.391683 0.379772i 0.0149655 0.0145103i
\(686\) 21.4316 0.818261
\(687\) 0.660022i 0.0251814i
\(688\) 4.68050i 0.178442i
\(689\) −50.8755 −1.93820
\(690\) 3.42028 3.31627i 0.130208 0.126248i
\(691\) −3.84649 −0.146327 −0.0731636 0.997320i \(-0.523310\pi\)
−0.0731636 + 0.997320i \(0.523310\pi\)
\(692\) 27.2493i 1.03586i
\(693\) 7.44729i 0.282899i
\(694\) −50.9550 −1.93423
\(695\) 19.7500 + 20.3695i 0.749161 + 0.772658i
\(696\) −2.37146 −0.0898899
\(697\) 0 0
\(698\) 14.0412i 0.531467i
\(699\) −1.09365 −0.0413657
\(700\) 11.4986 + 0.355166i 0.434608 + 0.0134240i
\(701\) 43.9484 1.65991 0.829955 0.557830i \(-0.188366\pi\)
0.829955 + 0.557830i \(0.188366\pi\)
\(702\) 12.4493i 0.469867i
\(703\) 0.320739i 0.0120969i
\(704\) −46.5690 −1.75514
\(705\) −1.40399 1.44802i −0.0528772 0.0545357i
\(706\) −48.3602 −1.82006
\(707\) 4.64018i 0.174512i
\(708\) 1.36747i 0.0513926i
\(709\) 45.9706 1.72646 0.863232 0.504808i \(-0.168437\pi\)
0.863232 + 0.504808i \(0.168437\pi\)
\(710\) 34.8515 33.7917i 1.30796 1.26818i
\(711\) 21.9743 0.824100
\(712\) 36.5274i 1.36892i
\(713\) 49.3083i 1.84661i
\(714\) 0 0
\(715\) 26.2356 25.4378i 0.981156 0.951318i
\(716\) 14.8278 0.554141
\(717\) 0.735674i 0.0274742i
\(718\) 42.8142i 1.59781i
\(719\) 6.24809 0.233014 0.116507 0.993190i \(-0.462830\pi\)
0.116507 + 0.993190i \(0.462830\pi\)
\(720\) 2.73388 + 2.81963i 0.101886 + 0.105081i
\(721\) −5.98131 −0.222755
\(722\) 41.5091i 1.54481i
\(723\) 1.55798i 0.0579420i
\(724\) −19.9794 −0.742529
\(725\) 0.569802 18.4476i 0.0211619 0.685125i
\(726\) −1.20121 −0.0445811
\(727\) 49.9606i 1.85294i −0.376372 0.926469i \(-0.622829\pi\)
0.376372 0.926469i \(-0.377171\pi\)
\(728\) 9.59725i 0.355698i
\(729\) 24.7962 0.918376
\(730\) 8.18222 + 8.43886i 0.302838 + 0.312336i
\(731\) 0 0
\(732\) 6.79693i 0.251222i
\(733\) 37.4111i 1.38181i −0.722945 0.690906i \(-0.757212\pi\)
0.722945 0.690906i \(-0.242788\pi\)
\(734\) 54.6741 2.01806
\(735\) 2.13081 2.06601i 0.0785960 0.0762058i
\(736\) −22.4031 −0.825790
\(737\) 33.7559i 1.24342i
\(738\) 42.1606i 1.55195i
\(739\) −38.9348 −1.43224 −0.716120 0.697978i \(-0.754084\pi\)
−0.716120 + 0.697978i \(0.754084\pi\)
\(740\) 1.66781 1.61709i 0.0613099 0.0594454i
\(741\) 0.937080 0.0344245
\(742\) 18.1499i 0.666303i
\(743\) 13.0253i 0.477850i −0.971038 0.238925i \(-0.923205\pi\)
0.971038 0.238925i \(-0.0767951\pi\)
\(744\) 6.99762 0.256545
\(745\) −18.6945 19.2809i −0.684914 0.706396i
\(746\) 41.7213 1.52753
\(747\) 26.4019i 0.965996i
\(748\) 0 0
\(749\) −5.53878 −0.202383
\(750\) 3.88893 3.54440i 0.142004 0.129423i
\(751\) 42.3558 1.54559 0.772793 0.634659i \(-0.218859\pi\)
0.772793 + 0.634659i \(0.218859\pi\)
\(752\) 2.63528i 0.0960989i
\(753\) 1.22845i 0.0447671i
\(754\) −37.9556 −1.38226
\(755\) 13.9409 + 14.3781i 0.507361 + 0.523274i
\(756\) −2.78566 −0.101313
\(757\) 4.20834i 0.152955i −0.997071 0.0764773i \(-0.975633\pi\)
0.997071 0.0764773i \(-0.0243673\pi\)
\(758\) 13.3075i 0.483349i
\(759\) −3.38616 −0.122910
\(760\) −5.27345 + 5.11308i −0.191288 + 0.185471i
\(761\) 31.8563 1.15479 0.577395 0.816465i \(-0.304069\pi\)
0.577395 + 0.816465i \(0.304069\pi\)
\(762\) 9.95364i 0.360582i
\(763\) 2.12852i 0.0770576i
\(764\) 33.3062 1.20498
\(765\) 0 0
\(766\) 81.8293 2.95661
\(767\) 8.87853i 0.320585i
\(768\) 3.99113i 0.144017i
\(769\) 7.43010 0.267936 0.133968 0.990986i \(-0.457228\pi\)
0.133968 + 0.990986i \(0.457228\pi\)
\(770\) −9.07493 9.35957i −0.327038 0.337295i
\(771\) 1.24563 0.0448604
\(772\) 28.5217i 1.02652i
\(773\) 7.33384i 0.263780i 0.991264 + 0.131890i \(0.0421045\pi\)
−0.991264 + 0.131890i \(0.957895\pi\)
\(774\) 54.0341 1.94221
\(775\) −1.68135 + 54.4344i −0.0603959 + 1.95534i
\(776\) 39.6817 1.42449
\(777\) 0.0428901i 0.00153867i
\(778\) 42.3012i 1.51657i
\(779\) 6.39130 0.228992
\(780\) −4.72453 4.87272i −0.169165 0.174471i
\(781\) −34.5039 −1.23465
\(782\) 0 0
\(783\) 4.46910i 0.159713i
\(784\) 3.87789 0.138496
\(785\) −31.9670 + 30.9949i −1.14095 + 1.10625i
\(786\) 4.10007 0.146244
\(787\) 35.7257i 1.27348i −0.771077 0.636742i \(-0.780282\pi\)
0.771077 0.636742i \(-0.219718\pi\)
\(788\) 45.5570i 1.62290i
\(789\) −2.49942 −0.0889817
\(790\) 27.6167 26.7769i 0.982559 0.952679i
\(791\) −4.74024 −0.168544
\(792\) 34.4397i 1.22376i
\(793\) 44.1303i 1.56711i
\(794\) −10.7496 −0.381489
\(795\) 3.62451 + 3.73819i 0.128548 + 0.132580i
\(796\) 30.8036 1.09180
\(797\) 28.2025i 0.998985i −0.866318 0.499492i \(-0.833520\pi\)
0.866318 0.499492i \(-0.166480\pi\)
\(798\) 0.334304i 0.0118342i
\(799\) 0 0
\(800\) −24.7322 0.763919i −0.874415 0.0270086i
\(801\) −34.1801 −1.20769
\(802\) 63.4769i 2.24145i
\(803\) 8.35468i 0.294830i
\(804\) 6.26946 0.221107
\(805\) −4.81789 4.96900i −0.169808 0.175134i
\(806\) 111.998 3.94496
\(807\) 2.01663i 0.0709886i
\(808\) 21.4583i 0.754901i
\(809\) −41.9318 −1.47424 −0.737121 0.675761i \(-0.763815\pi\)
−0.737121 + 0.675761i \(0.763815\pi\)
\(810\) 32.0907 31.1148i 1.12755 1.09326i
\(811\) −4.46604 −0.156824 −0.0784119 0.996921i \(-0.524985\pi\)
−0.0784119 + 0.996921i \(0.524985\pi\)
\(812\) 8.49297i 0.298045i
\(813\) 4.12546i 0.144686i
\(814\) −2.63253 −0.0922702
\(815\) 35.9619 34.8682i 1.25969 1.22138i
\(816\) 0 0
\(817\) 8.19125i 0.286576i
\(818\) 3.20233i 0.111967i
\(819\) −8.98053 −0.313805
\(820\) −32.2234 33.2341i −1.12529 1.16058i
\(821\) −19.6083 −0.684334 −0.342167 0.939639i \(-0.611161\pi\)
−0.342167 + 0.939639i \(0.611161\pi\)
\(822\) 0.114827i 0.00400504i
\(823\) 46.9128i 1.63528i −0.575732 0.817638i \(-0.695283\pi\)
0.575732 0.817638i \(-0.304717\pi\)
\(824\) −27.6603 −0.963592
\(825\) −3.73819 0.115464i −0.130147 0.00401994i
\(826\) 3.16742 0.110209
\(827\) 14.0134i 0.487295i 0.969864 + 0.243648i \(0.0783440\pi\)
−0.969864 + 0.243648i \(0.921656\pi\)
\(828\) 45.0722i 1.56637i
\(829\) 40.5206 1.40734 0.703669 0.710528i \(-0.251544\pi\)
0.703669 + 0.710528i \(0.251544\pi\)
\(830\) −32.1722 33.1813i −1.11671 1.15174i
\(831\) 3.69127 0.128049
\(832\) 56.1566i 1.94688i
\(833\) 0 0
\(834\) −5.97154 −0.206778
\(835\) 7.35468 7.13102i 0.254519 0.246779i
\(836\) 12.8700 0.445117
\(837\) 13.1873i 0.455818i
\(838\) 76.9694i 2.65887i
\(839\) 8.68840 0.299957 0.149978 0.988689i \(-0.452080\pi\)
0.149978 + 0.988689i \(0.452080\pi\)
\(840\) −0.705180 + 0.683735i −0.0243310 + 0.0235911i
\(841\) −15.3745 −0.530156
\(842\) 10.6805i 0.368074i
\(843\) 2.17374i 0.0748675i
\(844\) 25.9941 0.894754
\(845\) −10.4398 10.7673i −0.359141 0.370406i
\(846\) −30.4230 −1.04597
\(847\) 1.74513i 0.0599633i
\(848\) 6.80321i 0.233623i
\(849\) −2.04756 −0.0702720
\(850\) 0 0
\(851\) −1.39761 −0.0479096
\(852\) 6.40839i 0.219548i
\(853\) 23.1523i 0.792721i 0.918095 + 0.396361i \(0.129727\pi\)
−0.918095 + 0.396361i \(0.870273\pi\)
\(854\) −15.7435 −0.538731
\(855\) 4.78451 + 4.93458i 0.163627 + 0.168759i
\(856\) −25.6139 −0.875464
\(857\) 43.6043i 1.48950i 0.667346 + 0.744748i \(0.267430\pi\)
−0.667346 + 0.744748i \(0.732570\pi\)
\(858\) 7.69127i 0.262576i
\(859\) 14.2532 0.486314 0.243157 0.969987i \(-0.421817\pi\)
0.243157 + 0.969987i \(0.421817\pi\)
\(860\) 42.5936 41.2983i 1.45243 1.40826i
\(861\) 0.854661 0.0291268
\(862\) 16.9970i 0.578921i
\(863\) 24.1162i 0.820926i −0.911877 0.410463i \(-0.865367\pi\)
0.911877 0.410463i \(-0.134633\pi\)
\(864\) 5.99161 0.203839
\(865\) −12.9996 + 12.6043i −0.442001 + 0.428559i
\(866\) −35.5516 −1.20809
\(867\) 0 0
\(868\) 25.0608i 0.850617i
\(869\) −27.3413 −0.927489
\(870\) 2.70406 + 2.78887i 0.0916761 + 0.0945515i
\(871\) 40.7056 1.37926
\(872\) 9.84325i 0.333335i
\(873\) 37.1318i 1.25672i
\(874\) 10.8936 0.368482
\(875\) −5.14933 5.64987i −0.174079 0.191000i
\(876\) −1.55171 −0.0524274
\(877\) 1.56540i 0.0528599i −0.999651 0.0264299i \(-0.991586\pi\)
0.999651 0.0264299i \(-0.00841389\pi\)
\(878\) 12.9793i 0.438030i
\(879\) −4.17238 −0.140731
\(880\) −3.40160 3.50829i −0.114668 0.118265i
\(881\) 39.0973 1.31722 0.658610 0.752484i \(-0.271145\pi\)
0.658610 + 0.752484i \(0.271145\pi\)
\(882\) 44.7684i 1.50743i
\(883\) 30.9249i 1.04071i −0.853951 0.520354i \(-0.825800\pi\)
0.853951 0.520354i \(-0.174200\pi\)
\(884\) 0 0
\(885\) 0.652370 0.632531i 0.0219292 0.0212623i
\(886\) −68.6397 −2.30599
\(887\) 45.1839i 1.51713i −0.651599 0.758564i \(-0.725901\pi\)
0.651599 0.758564i \(-0.274099\pi\)
\(888\) 0.198343i 0.00665597i
\(889\) 14.4607 0.484997
\(890\) −42.9567 + 41.6504i −1.43991 + 1.39612i
\(891\) −31.7706 −1.06436
\(892\) 46.1670i 1.54578i
\(893\) 4.61196i 0.154333i
\(894\) 5.65241 0.189045
\(895\) −6.85869 7.07381i −0.229261 0.236451i
\(896\) 13.2666 0.443206
\(897\) 4.08330i 0.136338i
\(898\) 79.7265i 2.66051i
\(899\) −40.2056 −1.34093
\(900\) 1.53691 49.7579i 0.0512302 1.65860i
\(901\) 0 0
\(902\) 52.4579i 1.74666i
\(903\) 1.09536i 0.0364511i
\(904\) −21.9211 −0.729083
\(905\) 9.24160 + 9.53146i 0.307201 + 0.316836i
\(906\) −4.21512 −0.140038
\(907\) 33.9862i 1.12849i −0.825606 0.564246i \(-0.809167\pi\)
0.825606 0.564246i \(-0.190833\pi\)
\(908\) 6.05862i 0.201062i
\(909\) −20.0794 −0.665992
\(910\) −11.2865 + 10.9433i −0.374144 + 0.362766i
\(911\) −22.1997 −0.735509 −0.367754 0.929923i \(-0.619873\pi\)
−0.367754 + 0.929923i \(0.619873\pi\)
\(912\) 0.125309i 0.00414939i
\(913\) 32.8503i 1.08719i
\(914\) −21.5993 −0.714440
\(915\) −3.24257 + 3.14396i −0.107196 + 0.103936i
\(916\) −10.9311 −0.361173
\(917\) 5.95660i 0.196704i
\(918\) 0 0
\(919\) 8.84668 0.291825 0.145913 0.989297i \(-0.453388\pi\)
0.145913 + 0.989297i \(0.453388\pi\)
\(920\) −22.2801 22.9789i −0.734554 0.757593i
\(921\) −2.66533 −0.0878256
\(922\) 44.4062i 1.46244i
\(923\) 41.6076i 1.36953i
\(924\) 1.72101 0.0566169
\(925\) −1.54291 0.0476569i −0.0507306 0.00156695i
\(926\) 45.4881 1.49483
\(927\) 25.8828i 0.850104i
\(928\) 18.2673i 0.599655i
\(929\) 13.9941 0.459131 0.229566 0.973293i \(-0.426269\pi\)
0.229566 + 0.973293i \(0.426269\pi\)
\(930\) −7.97904 8.22930i −0.261643 0.269849i
\(931\) 6.78663 0.222423
\(932\) 18.1127i 0.593302i
\(933\) 2.51230i 0.0822490i
\(934\) 48.8794 1.59938
\(935\) 0 0
\(936\) −41.5301 −1.35745
\(937\) 5.19129i 0.169592i −0.996398 0.0847960i \(-0.972976\pi\)
0.996398 0.0847960i \(-0.0270239\pi\)
\(938\) 14.5217i 0.474151i
\(939\) 1.04843 0.0342144
\(940\) −23.9817 + 23.2524i −0.782197 + 0.758409i
\(941\) 26.2746 0.856527 0.428264 0.903654i \(-0.359125\pi\)
0.428264 + 0.903654i \(0.359125\pi\)
\(942\) 9.37150i 0.305340i
\(943\) 27.8499i 0.906919i
\(944\) 1.18726 0.0386420
\(945\) 1.28852 + 1.32894i 0.0419156 + 0.0432303i
\(946\) −67.2313 −2.18588
\(947\) 13.9416i 0.453040i −0.974007 0.226520i \(-0.927265\pi\)
0.974007 0.226520i \(-0.0727348\pi\)
\(948\) 5.07807i 0.164928i
\(949\) −10.0747 −0.327040
\(950\) 12.0261 + 0.371458i 0.390179 + 0.0120517i
\(951\) −4.82878 −0.156584
\(952\) 0 0
\(953\) 19.3298i 0.626154i −0.949728 0.313077i \(-0.898640\pi\)
0.949728 0.313077i \(-0.101360\pi\)
\(954\) 78.5397 2.54282
\(955\) −15.4060 15.8892i −0.498527 0.514163i
\(956\) −12.1840 −0.394059
\(957\) 2.76105i 0.0892521i
\(958\) 66.4217i 2.14599i
\(959\) 0.166821 0.00538692
\(960\) 4.12624 4.00075i 0.133174 0.129124i
\(961\) 87.6372 2.82701
\(962\) 3.17451i 0.102350i
\(963\) 23.9679i 0.772355i
\(964\) −25.8028 −0.831053
\(965\) −13.6067 + 13.1929i −0.438015 + 0.424694i
\(966\) 1.45672 0.0468692
\(967\) 27.0663i 0.870393i 0.900335 + 0.435197i \(0.143321\pi\)
−0.900335 + 0.435197i \(0.856679\pi\)
\(968\) 8.07027i 0.259388i
\(969\) 0 0
\(970\) −45.2471 46.6663i −1.45280 1.49836i
\(971\) 9.36344 0.300487 0.150244 0.988649i \(-0.451994\pi\)
0.150244 + 0.988649i \(0.451994\pi\)
\(972\) 18.1233i 0.581304i
\(973\) 8.67550i 0.278124i
\(974\) 90.8297 2.91037
\(975\) −0.139236 + 4.50781i −0.00445911 + 0.144365i
\(976\) −5.90121 −0.188893
\(977\) 14.1127i 0.451506i 0.974185 + 0.225753i \(0.0724842\pi\)
−0.974185 + 0.225753i \(0.927516\pi\)
\(978\) 10.5426i 0.337116i
\(979\) 42.5282 1.35921
\(980\) −34.2166 35.2898i −1.09301 1.12729i
\(981\) −9.21072 −0.294076
\(982\) 84.1961i 2.68680i
\(983\) 48.9970i 1.56276i −0.624054 0.781381i \(-0.714515\pi\)
0.624054 0.781381i \(-0.285485\pi\)
\(984\) 3.95234 0.125996
\(985\) −21.7336 + 21.0727i −0.692490 + 0.671431i
\(986\) 0 0
\(987\) 0.616723i 0.0196305i
\(988\) 15.5196i 0.493745i
\(989\) −35.6932 −1.13498
\(990\) −40.5015 + 39.2698i −1.28722 + 1.24808i
\(991\) 20.7542 0.659279 0.329639 0.944107i \(-0.393073\pi\)
0.329639 + 0.944107i \(0.393073\pi\)
\(992\) 53.9026i 1.71141i
\(993\) 4.23317i 0.134336i
\(994\) 14.8435 0.470808
\(995\) −14.2484 14.6953i −0.451704 0.465872i
\(996\) 6.10126 0.193326
\(997\) 9.54268i 0.302220i 0.988517 + 0.151110i \(0.0482847\pi\)
−0.988517 + 0.151110i \(0.951715\pi\)
\(998\) 19.7360i 0.624732i
\(999\) 0.373785 0.0118260
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.b.e.579.1 8
5.2 odd 4 7225.2.a.w.1.4 4
5.3 odd 4 7225.2.a.v.1.1 4
5.4 even 2 inner 1445.2.b.e.579.8 8
17.16 even 2 85.2.b.a.69.1 8
51.50 odd 2 765.2.b.c.154.8 8
68.67 odd 2 1360.2.e.d.1089.4 8
85.33 odd 4 425.2.a.g.1.1 4
85.67 odd 4 425.2.a.h.1.4 4
85.84 even 2 85.2.b.a.69.8 yes 8
255.152 even 4 3825.2.a.bh.1.1 4
255.203 even 4 3825.2.a.bj.1.4 4
255.254 odd 2 765.2.b.c.154.1 8
340.67 even 4 6800.2.a.bt.1.3 4
340.203 even 4 6800.2.a.bw.1.2 4
340.339 odd 2 1360.2.e.d.1089.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.b.a.69.1 8 17.16 even 2
85.2.b.a.69.8 yes 8 85.84 even 2
425.2.a.g.1.1 4 85.33 odd 4
425.2.a.h.1.4 4 85.67 odd 4
765.2.b.c.154.1 8 255.254 odd 2
765.2.b.c.154.8 8 51.50 odd 2
1360.2.e.d.1089.4 8 68.67 odd 2
1360.2.e.d.1089.5 8 340.339 odd 2
1445.2.b.e.579.1 8 1.1 even 1 trivial
1445.2.b.e.579.8 8 5.4 even 2 inner
3825.2.a.bh.1.1 4 255.152 even 4
3825.2.a.bj.1.4 4 255.203 even 4
6800.2.a.bt.1.3 4 340.67 even 4
6800.2.a.bw.1.2 4 340.203 even 4
7225.2.a.v.1.1 4 5.3 odd 4
7225.2.a.w.1.4 4 5.2 odd 4