Properties

Label 1445.2.b
Level $1445$
Weight $2$
Character orbit 1445.b
Rep. character $\chi_{1445}(579,\cdot)$
Character field $\Q$
Dimension $120$
Newform subspaces $9$
Sturm bound $306$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(306\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1445, [\chi])\).

Total New Old
Modular forms 172 150 22
Cusp forms 136 120 16
Eisenstein series 36 30 6

Trace form

\( 120 q - 104 q^{4} + 2 q^{5} - 88 q^{9} - 6 q^{10} + 4 q^{11} - 12 q^{14} - 2 q^{15} + 88 q^{16} + 12 q^{19} + 2 q^{20} - 24 q^{21} - 12 q^{24} + 10 q^{25} - 8 q^{29} + 26 q^{30} + 24 q^{31} - 20 q^{35}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1445, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1445.2.b.a 1445.b 5.b $4$ $11.538$ \(\Q(\zeta_{8})\) None 85.2.j.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\zeta_{8}^{2}q^{2}+(\zeta_{8}+\zeta_{8}^{3})q^{3}+q^{4}+(-2\zeta_{8}+\cdots)q^{5}+\cdots\)
1445.2.b.b 1445.b 5.b $8$ $11.538$ 8.0.\(\cdots\).11 None 85.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}-\beta _{3}q^{3}+(-2-\beta _{4})q^{4}+(\beta _{3}+\cdots)q^{5}+\cdots\)
1445.2.b.c 1445.b 5.b $8$ $11.538$ 8.0.\(\cdots\).1 None 1445.2.b.c \(0\) \(0\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}+\beta _{6}q^{3}+(-1+\beta _{1})q^{4}+\beta _{2}q^{5}+\cdots\)
1445.2.b.d 1445.b 5.b $8$ $11.538$ 8.0.\(\cdots\).1 None 1445.2.b.c \(0\) \(0\) \(1\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}-\beta _{6}q^{3}+(-1+\beta _{1})q^{4}-\beta _{2}q^{5}+\cdots\)
1445.2.b.e 1445.b 5.b $8$ $11.538$ 8.0.619810816.2 None 85.2.b.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{6}q^{2}+(-\beta _{2}-\beta _{3}+\beta _{4}-\beta _{5}+\beta _{6}+\cdots)q^{3}+\cdots\)
1445.2.b.f 1445.b 5.b $12$ $11.538$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 85.2.j.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}-\beta _{10}q^{3}+(-1+\beta _{8})q^{4}+\cdots\)
1445.2.b.g 1445.b 5.b $24$ $11.538$ None 1445.2.b.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
1445.2.b.h 1445.b 5.b $24$ $11.538$ None 1445.2.b.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
1445.2.b.i 1445.b 5.b $24$ $11.538$ None 85.2.m.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1445, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1445, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)