Defining parameters
| Level: | \( N \) | \(=\) | \( 1445 = 5 \cdot 17^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1445.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 9 \) | ||
| Sturm bound: | \(306\) | ||
| Trace bound: | \(6\) | ||
| Distinguishing \(T_p\): | \(2\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1445, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 172 | 150 | 22 |
| Cusp forms | 136 | 120 | 16 |
| Eisenstein series | 36 | 30 | 6 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1445, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1445, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1445, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)