Properties

Label 6800.2.a.bt.1.3
Level $6800$
Weight $2$
Character 6800.1
Self dual yes
Analytic conductor $54.298$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Error: no document with id 235638119 found in table mf_hecke_traces.

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6800,2,Mod(1,6800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6800.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,0,-10,0,4,0,2,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2982733745\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.6224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - 2x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.796815\) of defining polynomial
Character \(\chi\) \(=\) 6800.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.203185 q^{3} -0.683735 q^{7} -2.95872 q^{9} -3.68135 q^{11} +4.43927 q^{13} -1.00000 q^{17} +1.03890 q^{19} +0.138925 q^{21} +4.52699 q^{23} +1.21072 q^{27} -3.69127 q^{29} +10.8921 q^{31} +0.747995 q^{33} +0.308729 q^{37} -0.901992 q^{39} -6.15198 q^{41} -7.88454 q^{43} -4.43927 q^{47} -6.53251 q^{49} +0.203185 q^{51} +11.4603 q^{53} -0.211089 q^{57} +2.00000 q^{59} +9.94089 q^{61} +2.02298 q^{63} -9.16944 q^{67} -0.919815 q^{69} +9.37262 q^{71} -2.26946 q^{73} +2.51707 q^{77} -7.42696 q^{79} +8.63015 q^{81} +8.92344 q^{83} +0.750010 q^{87} +11.5523 q^{89} -3.03528 q^{91} -2.21310 q^{93} -12.5500 q^{97} +10.8921 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 10 q^{7} + 4 q^{9} + 2 q^{11} + 6 q^{13} - 4 q^{17} - 4 q^{19} + 12 q^{21} - 4 q^{23} - 10 q^{27} - 4 q^{29} + 12 q^{31} + 2 q^{33} + 12 q^{37} + 22 q^{39} - 6 q^{41} - 18 q^{43} - 6 q^{47}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.203185 −0.117309 −0.0586544 0.998278i \(-0.518681\pi\)
−0.0586544 + 0.998278i \(0.518681\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.683735 −0.258427 −0.129214 0.991617i \(-0.541245\pi\)
−0.129214 + 0.991617i \(0.541245\pi\)
\(8\) 0 0
\(9\) −2.95872 −0.986239
\(10\) 0 0
\(11\) −3.68135 −1.10997 −0.554985 0.831861i \(-0.687276\pi\)
−0.554985 + 0.831861i \(0.687276\pi\)
\(12\) 0 0
\(13\) 4.43927 1.23123 0.615615 0.788047i \(-0.288908\pi\)
0.615615 + 0.788047i \(0.288908\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 1.03890 0.238340 0.119170 0.992874i \(-0.461977\pi\)
0.119170 + 0.992874i \(0.461977\pi\)
\(20\) 0 0
\(21\) 0.138925 0.0303158
\(22\) 0 0
\(23\) 4.52699 0.943942 0.471971 0.881614i \(-0.343543\pi\)
0.471971 + 0.881614i \(0.343543\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.21072 0.233003
\(28\) 0 0
\(29\) −3.69127 −0.685452 −0.342726 0.939435i \(-0.611350\pi\)
−0.342726 + 0.939435i \(0.611350\pi\)
\(30\) 0 0
\(31\) 10.8921 1.95627 0.978137 0.207962i \(-0.0666830\pi\)
0.978137 + 0.207962i \(0.0666830\pi\)
\(32\) 0 0
\(33\) 0.747995 0.130209
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.308729 0.0507548 0.0253774 0.999678i \(-0.491921\pi\)
0.0253774 + 0.999678i \(0.491921\pi\)
\(38\) 0 0
\(39\) −0.901992 −0.144434
\(40\) 0 0
\(41\) −6.15198 −0.960778 −0.480389 0.877056i \(-0.659505\pi\)
−0.480389 + 0.877056i \(0.659505\pi\)
\(42\) 0 0
\(43\) −7.88454 −1.20238 −0.601190 0.799106i \(-0.705307\pi\)
−0.601190 + 0.799106i \(0.705307\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.43927 −0.647533 −0.323767 0.946137i \(-0.604949\pi\)
−0.323767 + 0.946137i \(0.604949\pi\)
\(48\) 0 0
\(49\) −6.53251 −0.933215
\(50\) 0 0
\(51\) 0.203185 0.0284516
\(52\) 0 0
\(53\) 11.4603 1.57420 0.787100 0.616826i \(-0.211582\pi\)
0.787100 + 0.616826i \(0.211582\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.211089 −0.0279594
\(58\) 0 0
\(59\) 2.00000 0.260378 0.130189 0.991489i \(-0.458442\pi\)
0.130189 + 0.991489i \(0.458442\pi\)
\(60\) 0 0
\(61\) 9.94089 1.27280 0.636400 0.771359i \(-0.280423\pi\)
0.636400 + 0.771359i \(0.280423\pi\)
\(62\) 0 0
\(63\) 2.02298 0.254871
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −9.16944 −1.12023 −0.560113 0.828417i \(-0.689242\pi\)
−0.560113 + 0.828417i \(0.689242\pi\)
\(68\) 0 0
\(69\) −0.919815 −0.110733
\(70\) 0 0
\(71\) 9.37262 1.11233 0.556163 0.831073i \(-0.312273\pi\)
0.556163 + 0.831073i \(0.312273\pi\)
\(72\) 0 0
\(73\) −2.26946 −0.265620 −0.132810 0.991141i \(-0.542400\pi\)
−0.132810 + 0.991141i \(0.542400\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.51707 0.286846
\(78\) 0 0
\(79\) −7.42696 −0.835599 −0.417799 0.908539i \(-0.637198\pi\)
−0.417799 + 0.908539i \(0.637198\pi\)
\(80\) 0 0
\(81\) 8.63015 0.958905
\(82\) 0 0
\(83\) 8.92344 0.979474 0.489737 0.871870i \(-0.337093\pi\)
0.489737 + 0.871870i \(0.337093\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.750010 0.0804096
\(88\) 0 0
\(89\) 11.5523 1.22455 0.612273 0.790646i \(-0.290255\pi\)
0.612273 + 0.790646i \(0.290255\pi\)
\(90\) 0 0
\(91\) −3.03528 −0.318184
\(92\) 0 0
\(93\) −2.21310 −0.229488
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −12.5500 −1.27426 −0.637128 0.770758i \(-0.719878\pi\)
−0.637128 + 0.770758i \(0.719878\pi\)
\(98\) 0 0
\(99\) 10.8921 1.09469
\(100\) 0 0
\(101\) −6.78653 −0.675285 −0.337642 0.941274i \(-0.609629\pi\)
−0.337642 + 0.941274i \(0.609629\pi\)
\(102\) 0 0
\(103\) −8.74799 −0.861966 −0.430983 0.902360i \(-0.641833\pi\)
−0.430983 + 0.902360i \(0.641833\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.10078 −0.783132 −0.391566 0.920150i \(-0.628066\pi\)
−0.391566 + 0.920150i \(0.628066\pi\)
\(108\) 0 0
\(109\) −3.11308 −0.298179 −0.149090 0.988824i \(-0.547634\pi\)
−0.149090 + 0.988824i \(0.547634\pi\)
\(110\) 0 0
\(111\) −0.0627291 −0.00595399
\(112\) 0 0
\(113\) −6.93287 −0.652190 −0.326095 0.945337i \(-0.605733\pi\)
−0.326095 + 0.945337i \(0.605733\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −13.1345 −1.21429
\(118\) 0 0
\(119\) 0.683735 0.0626778
\(120\) 0 0
\(121\) 2.55235 0.232031
\(122\) 0 0
\(123\) 1.24999 0.112708
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −21.1496 −1.87672 −0.938362 0.345655i \(-0.887657\pi\)
−0.938362 + 0.345655i \(0.887657\pi\)
\(128\) 0 0
\(129\) 1.60202 0.141050
\(130\) 0 0
\(131\) −8.71186 −0.761159 −0.380580 0.924748i \(-0.624275\pi\)
−0.380580 + 0.924748i \(0.624275\pi\)
\(132\) 0 0
\(133\) −0.710332 −0.0615936
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.243985 0.0208450 0.0104225 0.999946i \(-0.496682\pi\)
0.0104225 + 0.999946i \(0.496682\pi\)
\(138\) 0 0
\(139\) −12.6884 −1.07622 −0.538108 0.842876i \(-0.680861\pi\)
−0.538108 + 0.842876i \(0.680861\pi\)
\(140\) 0 0
\(141\) 0.901992 0.0759614
\(142\) 0 0
\(143\) −16.3425 −1.36663
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.32731 0.109474
\(148\) 0 0
\(149\) 12.0103 0.983923 0.491961 0.870617i \(-0.336280\pi\)
0.491961 + 0.870617i \(0.336280\pi\)
\(150\) 0 0
\(151\) −8.95633 −0.728856 −0.364428 0.931232i \(-0.618735\pi\)
−0.364428 + 0.931232i \(0.618735\pi\)
\(152\) 0 0
\(153\) 2.95872 0.239198
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −19.9127 −1.58920 −0.794602 0.607131i \(-0.792320\pi\)
−0.794602 + 0.607131i \(0.792320\pi\)
\(158\) 0 0
\(159\) −2.32857 −0.184667
\(160\) 0 0
\(161\) −3.09526 −0.243940
\(162\) 0 0
\(163\) −22.4011 −1.75459 −0.877296 0.479951i \(-0.840655\pi\)
−0.877296 + 0.479951i \(0.840655\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.58133 0.354514 0.177257 0.984165i \(-0.443278\pi\)
0.177257 + 0.984165i \(0.443278\pi\)
\(168\) 0 0
\(169\) 6.70708 0.515929
\(170\) 0 0
\(171\) −3.07381 −0.235060
\(172\) 0 0
\(173\) −8.09764 −0.615652 −0.307826 0.951443i \(-0.599601\pi\)
−0.307826 + 0.951443i \(0.599601\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −0.406370 −0.0305446
\(178\) 0 0
\(179\) −4.40637 −0.329348 −0.164674 0.986348i \(-0.552657\pi\)
−0.164674 + 0.986348i \(0.552657\pi\)
\(180\) 0 0
\(181\) −5.93727 −0.441314 −0.220657 0.975351i \(-0.570820\pi\)
−0.220657 + 0.975351i \(0.570820\pi\)
\(182\) 0 0
\(183\) −2.01984 −0.149311
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.68135 0.269207
\(188\) 0 0
\(189\) −0.827812 −0.0602144
\(190\) 0 0
\(191\) 9.89759 0.716165 0.358082 0.933690i \(-0.383431\pi\)
0.358082 + 0.933690i \(0.383431\pi\)
\(192\) 0 0
\(193\) −8.47578 −0.610100 −0.305050 0.952336i \(-0.598673\pi\)
−0.305050 + 0.952336i \(0.598673\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.5381 0.964553 0.482276 0.876019i \(-0.339810\pi\)
0.482276 + 0.876019i \(0.339810\pi\)
\(198\) 0 0
\(199\) 9.15388 0.648901 0.324451 0.945903i \(-0.394821\pi\)
0.324451 + 0.945903i \(0.394821\pi\)
\(200\) 0 0
\(201\) 1.86309 0.131412
\(202\) 0 0
\(203\) 2.52385 0.177139
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −13.3941 −0.930952
\(208\) 0 0
\(209\) −3.82456 −0.264550
\(210\) 0 0
\(211\) −7.72465 −0.531787 −0.265893 0.964002i \(-0.585667\pi\)
−0.265893 + 0.964002i \(0.585667\pi\)
\(212\) 0 0
\(213\) −1.90438 −0.130486
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −7.44729 −0.505555
\(218\) 0 0
\(219\) 0.461120 0.0311596
\(220\) 0 0
\(221\) −4.43927 −0.298617
\(222\) 0 0
\(223\) 13.7194 0.918719 0.459359 0.888250i \(-0.348079\pi\)
0.459359 + 0.888250i \(0.348079\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.80044 0.119499 0.0597496 0.998213i \(-0.480970\pi\)
0.0597496 + 0.998213i \(0.480970\pi\)
\(228\) 0 0
\(229\) −3.24838 −0.214659 −0.107330 0.994223i \(-0.534230\pi\)
−0.107330 + 0.994223i \(0.534230\pi\)
\(230\) 0 0
\(231\) −0.511430 −0.0336496
\(232\) 0 0
\(233\) 5.38254 0.352622 0.176311 0.984335i \(-0.443584\pi\)
0.176311 + 0.984335i \(0.443584\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.50905 0.0980231
\(238\) 0 0
\(239\) 3.62071 0.234204 0.117102 0.993120i \(-0.462639\pi\)
0.117102 + 0.993120i \(0.462639\pi\)
\(240\) 0 0
\(241\) −7.66781 −0.493927 −0.246964 0.969025i \(-0.579433\pi\)
−0.246964 + 0.969025i \(0.579433\pi\)
\(242\) 0 0
\(243\) −5.38568 −0.345491
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.61196 0.293452
\(248\) 0 0
\(249\) −1.81311 −0.114901
\(250\) 0 0
\(251\) 6.04595 0.381617 0.190809 0.981627i \(-0.438889\pi\)
0.190809 + 0.981627i \(0.438889\pi\)
\(252\) 0 0
\(253\) −16.6654 −1.04775
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.13054 −0.382412 −0.191206 0.981550i \(-0.561240\pi\)
−0.191206 + 0.981550i \(0.561240\pi\)
\(258\) 0 0
\(259\) −0.211089 −0.0131164
\(260\) 0 0
\(261\) 10.9214 0.676019
\(262\) 0 0
\(263\) 12.3012 0.758525 0.379263 0.925289i \(-0.376178\pi\)
0.379263 + 0.925289i \(0.376178\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2.34726 −0.143650
\(268\) 0 0
\(269\) 9.92508 0.605143 0.302572 0.953127i \(-0.402155\pi\)
0.302572 + 0.953127i \(0.402155\pi\)
\(270\) 0 0
\(271\) −20.3040 −1.23338 −0.616689 0.787207i \(-0.711526\pi\)
−0.616689 + 0.787207i \(0.711526\pi\)
\(272\) 0 0
\(273\) 0.616723 0.0373258
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 18.1671 1.09155 0.545776 0.837931i \(-0.316235\pi\)
0.545776 + 0.837931i \(0.316235\pi\)
\(278\) 0 0
\(279\) −32.2265 −1.92935
\(280\) 0 0
\(281\) 10.6983 0.638208 0.319104 0.947720i \(-0.396618\pi\)
0.319104 + 0.947720i \(0.396618\pi\)
\(282\) 0 0
\(283\) −10.0773 −0.599034 −0.299517 0.954091i \(-0.596826\pi\)
−0.299517 + 0.954091i \(0.596826\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.20632 0.248291
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 2.54996 0.149481
\(292\) 0 0
\(293\) −20.5349 −1.19966 −0.599831 0.800127i \(-0.704765\pi\)
−0.599831 + 0.800127i \(0.704765\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −4.45709 −0.258627
\(298\) 0 0
\(299\) 20.0965 1.16221
\(300\) 0 0
\(301\) 5.39093 0.310728
\(302\) 0 0
\(303\) 1.37892 0.0792169
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −13.1177 −0.748669 −0.374335 0.927294i \(-0.622129\pi\)
−0.374335 + 0.927294i \(0.622129\pi\)
\(308\) 0 0
\(309\) 1.77746 0.101116
\(310\) 0 0
\(311\) 12.3646 0.701132 0.350566 0.936538i \(-0.385989\pi\)
0.350566 + 0.936538i \(0.385989\pi\)
\(312\) 0 0
\(313\) −5.16000 −0.291661 −0.145830 0.989310i \(-0.546585\pi\)
−0.145830 + 0.989310i \(0.546585\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −23.7655 −1.33480 −0.667400 0.744699i \(-0.732593\pi\)
−0.667400 + 0.744699i \(0.732593\pi\)
\(318\) 0 0
\(319\) 13.5889 0.760830
\(320\) 0 0
\(321\) 1.64596 0.0918683
\(322\) 0 0
\(323\) −1.03890 −0.0578060
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.632531 0.0349790
\(328\) 0 0
\(329\) 3.03528 0.167340
\(330\) 0 0
\(331\) −20.8341 −1.14514 −0.572572 0.819854i \(-0.694054\pi\)
−0.572572 + 0.819854i \(0.694054\pi\)
\(332\) 0 0
\(333\) −0.913442 −0.0500563
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 14.3080 0.779406 0.389703 0.920941i \(-0.372578\pi\)
0.389703 + 0.920941i \(0.372578\pi\)
\(338\) 0 0
\(339\) 1.40865 0.0765076
\(340\) 0 0
\(341\) −40.0975 −2.17140
\(342\) 0 0
\(343\) 9.25264 0.499596
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 21.9988 1.18096 0.590478 0.807054i \(-0.298939\pi\)
0.590478 + 0.807054i \(0.298939\pi\)
\(348\) 0 0
\(349\) −6.06199 −0.324491 −0.162246 0.986750i \(-0.551874\pi\)
−0.162246 + 0.986750i \(0.551874\pi\)
\(350\) 0 0
\(351\) 5.37471 0.286881
\(352\) 0 0
\(353\) −20.8785 −1.11125 −0.555626 0.831432i \(-0.687521\pi\)
−0.555626 + 0.831432i \(0.687521\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −0.138925 −0.00735267
\(358\) 0 0
\(359\) −18.4842 −0.975557 −0.487779 0.872967i \(-0.662193\pi\)
−0.487779 + 0.872967i \(0.662193\pi\)
\(360\) 0 0
\(361\) −17.9207 −0.943194
\(362\) 0 0
\(363\) −0.518598 −0.0272193
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −23.6044 −1.23214 −0.616070 0.787691i \(-0.711276\pi\)
−0.616070 + 0.787691i \(0.711276\pi\)
\(368\) 0 0
\(369\) 18.2020 0.947556
\(370\) 0 0
\(371\) −7.83583 −0.406816
\(372\) 0 0
\(373\) 18.0123 0.932643 0.466321 0.884615i \(-0.345579\pi\)
0.466321 + 0.884615i \(0.345579\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −16.3865 −0.843949
\(378\) 0 0
\(379\) 5.74523 0.295112 0.147556 0.989054i \(-0.452859\pi\)
0.147556 + 0.989054i \(0.452859\pi\)
\(380\) 0 0
\(381\) 4.29728 0.220156
\(382\) 0 0
\(383\) −35.3281 −1.80518 −0.902591 0.430499i \(-0.858337\pi\)
−0.902591 + 0.430499i \(0.858337\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 23.3281 1.18583
\(388\) 0 0
\(389\) −18.2627 −0.925955 −0.462977 0.886370i \(-0.653219\pi\)
−0.462977 + 0.886370i \(0.653219\pi\)
\(390\) 0 0
\(391\) −4.52699 −0.228940
\(392\) 0 0
\(393\) 1.77012 0.0892907
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −4.64092 −0.232921 −0.116461 0.993195i \(-0.537155\pi\)
−0.116461 + 0.993195i \(0.537155\pi\)
\(398\) 0 0
\(399\) 0.144329 0.00722548
\(400\) 0 0
\(401\) −27.4049 −1.36853 −0.684267 0.729232i \(-0.739878\pi\)
−0.684267 + 0.729232i \(0.739878\pi\)
\(402\) 0 0
\(403\) 48.3528 2.40862
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.13654 −0.0563363
\(408\) 0 0
\(409\) 1.38254 0.0683623 0.0341811 0.999416i \(-0.489118\pi\)
0.0341811 + 0.999416i \(0.489118\pi\)
\(410\) 0 0
\(411\) −0.0495740 −0.00244531
\(412\) 0 0
\(413\) −1.36747 −0.0672888
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2.57809 0.126250
\(418\) 0 0
\(419\) 33.2300 1.62339 0.811695 0.584081i \(-0.198545\pi\)
0.811695 + 0.584081i \(0.198545\pi\)
\(420\) 0 0
\(421\) 4.61109 0.224731 0.112365 0.993667i \(-0.464157\pi\)
0.112365 + 0.993667i \(0.464157\pi\)
\(422\) 0 0
\(423\) 13.1345 0.638622
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −6.79693 −0.328927
\(428\) 0 0
\(429\) 3.32055 0.160318
\(430\) 0 0
\(431\) −7.33812 −0.353465 −0.176732 0.984259i \(-0.556553\pi\)
−0.176732 + 0.984259i \(0.556553\pi\)
\(432\) 0 0
\(433\) −15.3487 −0.737610 −0.368805 0.929507i \(-0.620233\pi\)
−0.368805 + 0.929507i \(0.620233\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.70309 0.224979
\(438\) 0 0
\(439\) 5.60355 0.267443 0.133721 0.991019i \(-0.457307\pi\)
0.133721 + 0.991019i \(0.457307\pi\)
\(440\) 0 0
\(441\) 19.3278 0.920373
\(442\) 0 0
\(443\) 29.6338 1.40794 0.703971 0.710228i \(-0.251408\pi\)
0.703971 + 0.710228i \(0.251408\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −2.44031 −0.115423
\(448\) 0 0
\(449\) −34.4203 −1.62439 −0.812197 0.583383i \(-0.801729\pi\)
−0.812197 + 0.583383i \(0.801729\pi\)
\(450\) 0 0
\(451\) 22.6476 1.06643
\(452\) 0 0
\(453\) 1.81979 0.0855013
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9.32504 0.436207 0.218103 0.975926i \(-0.430013\pi\)
0.218103 + 0.975926i \(0.430013\pi\)
\(458\) 0 0
\(459\) −1.21072 −0.0565116
\(460\) 0 0
\(461\) 19.1715 0.892904 0.446452 0.894808i \(-0.352687\pi\)
0.446452 + 0.894808i \(0.352687\pi\)
\(462\) 0 0
\(463\) −19.6385 −0.912680 −0.456340 0.889805i \(-0.650840\pi\)
−0.456340 + 0.889805i \(0.650840\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.1027 0.976515 0.488258 0.872699i \(-0.337633\pi\)
0.488258 + 0.872699i \(0.337633\pi\)
\(468\) 0 0
\(469\) 6.26946 0.289497
\(470\) 0 0
\(471\) 4.04595 0.186428
\(472\) 0 0
\(473\) 29.0257 1.33461
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −33.9079 −1.55254
\(478\) 0 0
\(479\) 28.6762 1.31025 0.655125 0.755521i \(-0.272616\pi\)
0.655125 + 0.755521i \(0.272616\pi\)
\(480\) 0 0
\(481\) 1.37053 0.0624909
\(482\) 0 0
\(483\) 0.628909 0.0286164
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −39.2139 −1.77695 −0.888475 0.458925i \(-0.848234\pi\)
−0.888475 + 0.458925i \(0.848234\pi\)
\(488\) 0 0
\(489\) 4.55157 0.205829
\(490\) 0 0
\(491\) 36.3499 1.64045 0.820224 0.572042i \(-0.193849\pi\)
0.820224 + 0.572042i \(0.193849\pi\)
\(492\) 0 0
\(493\) 3.69127 0.166246
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.40839 −0.287455
\(498\) 0 0
\(499\) 8.52061 0.381435 0.190718 0.981645i \(-0.438919\pi\)
0.190718 + 0.981645i \(0.438919\pi\)
\(500\) 0 0
\(501\) −0.930856 −0.0415876
\(502\) 0 0
\(503\) −18.6790 −0.832854 −0.416427 0.909169i \(-0.636718\pi\)
−0.416427 + 0.909169i \(0.636718\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.36278 −0.0605231
\(508\) 0 0
\(509\) 3.53567 0.156716 0.0783579 0.996925i \(-0.475032\pi\)
0.0783579 + 0.996925i \(0.475032\pi\)
\(510\) 0 0
\(511\) 1.55171 0.0686436
\(512\) 0 0
\(513\) 1.25782 0.0555341
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 16.3425 0.718742
\(518\) 0 0
\(519\) 1.64532 0.0722215
\(520\) 0 0
\(521\) −4.64206 −0.203373 −0.101686 0.994817i \(-0.532424\pi\)
−0.101686 + 0.994817i \(0.532424\pi\)
\(522\) 0 0
\(523\) −18.3331 −0.801649 −0.400824 0.916155i \(-0.631276\pi\)
−0.400824 + 0.916155i \(0.631276\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.8921 −0.474466
\(528\) 0 0
\(529\) −2.50639 −0.108974
\(530\) 0 0
\(531\) −5.91743 −0.256795
\(532\) 0 0
\(533\) −27.3103 −1.18294
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0.895308 0.0386354
\(538\) 0 0
\(539\) 24.0485 1.03584
\(540\) 0 0
\(541\) 22.4428 0.964891 0.482445 0.875926i \(-0.339749\pi\)
0.482445 + 0.875926i \(0.339749\pi\)
\(542\) 0 0
\(543\) 1.20636 0.0517700
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 25.9778 1.11073 0.555365 0.831607i \(-0.312578\pi\)
0.555365 + 0.831607i \(0.312578\pi\)
\(548\) 0 0
\(549\) −29.4123 −1.25529
\(550\) 0 0
\(551\) −3.83486 −0.163371
\(552\) 0 0
\(553\) 5.07807 0.215942
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4.86144 −0.205986 −0.102993 0.994682i \(-0.532842\pi\)
−0.102993 + 0.994682i \(0.532842\pi\)
\(558\) 0 0
\(559\) −35.0015 −1.48041
\(560\) 0 0
\(561\) −0.747995 −0.0315804
\(562\) 0 0
\(563\) 1.53365 0.0646357 0.0323179 0.999478i \(-0.489711\pi\)
0.0323179 + 0.999478i \(0.489711\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −5.90073 −0.247807
\(568\) 0 0
\(569\) −16.5770 −0.694946 −0.347473 0.937690i \(-0.612960\pi\)
−0.347473 + 0.937690i \(0.612960\pi\)
\(570\) 0 0
\(571\) 14.2904 0.598036 0.299018 0.954248i \(-0.403341\pi\)
0.299018 + 0.954248i \(0.403341\pi\)
\(572\) 0 0
\(573\) −2.01104 −0.0840125
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −28.5424 −1.18824 −0.594119 0.804377i \(-0.702499\pi\)
−0.594119 + 0.804377i \(0.702499\pi\)
\(578\) 0 0
\(579\) 1.72215 0.0715702
\(580\) 0 0
\(581\) −6.10126 −0.253123
\(582\) 0 0
\(583\) −42.1895 −1.74731
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −33.5281 −1.38385 −0.691927 0.721967i \(-0.743238\pi\)
−0.691927 + 0.721967i \(0.743238\pi\)
\(588\) 0 0
\(589\) 11.3158 0.466259
\(590\) 0 0
\(591\) −2.75075 −0.113151
\(592\) 0 0
\(593\) −42.4729 −1.74415 −0.872077 0.489368i \(-0.837227\pi\)
−0.872077 + 0.489368i \(0.837227\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.85993 −0.0761219
\(598\) 0 0
\(599\) 7.00705 0.286300 0.143150 0.989701i \(-0.454277\pi\)
0.143150 + 0.989701i \(0.454277\pi\)
\(600\) 0 0
\(601\) 39.3146 1.60368 0.801839 0.597541i \(-0.203855\pi\)
0.801839 + 0.597541i \(0.203855\pi\)
\(602\) 0 0
\(603\) 27.1298 1.10481
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −18.7928 −0.762777 −0.381389 0.924415i \(-0.624554\pi\)
−0.381389 + 0.924415i \(0.624554\pi\)
\(608\) 0 0
\(609\) −0.512808 −0.0207800
\(610\) 0 0
\(611\) −19.7071 −0.797263
\(612\) 0 0
\(613\) 1.83560 0.0741392 0.0370696 0.999313i \(-0.488198\pi\)
0.0370696 + 0.999313i \(0.488198\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −29.0011 −1.16754 −0.583771 0.811918i \(-0.698423\pi\)
−0.583771 + 0.811918i \(0.698423\pi\)
\(618\) 0 0
\(619\) −27.7941 −1.11714 −0.558569 0.829458i \(-0.688649\pi\)
−0.558569 + 0.829458i \(0.688649\pi\)
\(620\) 0 0
\(621\) 5.48092 0.219942
\(622\) 0 0
\(623\) −7.89874 −0.316456
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.777092 0.0310341
\(628\) 0 0
\(629\) −0.308729 −0.0123098
\(630\) 0 0
\(631\) 14.1785 0.564437 0.282219 0.959350i \(-0.408930\pi\)
0.282219 + 0.959350i \(0.408930\pi\)
\(632\) 0 0
\(633\) 1.56953 0.0623833
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −28.9995 −1.14900
\(638\) 0 0
\(639\) −27.7309 −1.09702
\(640\) 0 0
\(641\) −27.8734 −1.10093 −0.550466 0.834857i \(-0.685550\pi\)
−0.550466 + 0.834857i \(0.685550\pi\)
\(642\) 0 0
\(643\) 25.8277 1.01854 0.509272 0.860605i \(-0.329915\pi\)
0.509272 + 0.860605i \(0.329915\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.40912 0.173340 0.0866702 0.996237i \(-0.472377\pi\)
0.0866702 + 0.996237i \(0.472377\pi\)
\(648\) 0 0
\(649\) −7.36270 −0.289011
\(650\) 0 0
\(651\) 1.51318 0.0593060
\(652\) 0 0
\(653\) 30.9245 1.21017 0.605084 0.796161i \(-0.293139\pi\)
0.605084 + 0.796161i \(0.293139\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.71469 0.261965
\(658\) 0 0
\(659\) −39.7992 −1.55036 −0.775179 0.631742i \(-0.782340\pi\)
−0.775179 + 0.631742i \(0.782340\pi\)
\(660\) 0 0
\(661\) −13.0969 −0.509409 −0.254704 0.967019i \(-0.581978\pi\)
−0.254704 + 0.967019i \(0.581978\pi\)
\(662\) 0 0
\(663\) 0.901992 0.0350305
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −16.7103 −0.647027
\(668\) 0 0
\(669\) −2.78757 −0.107774
\(670\) 0 0
\(671\) −36.5959 −1.41277
\(672\) 0 0
\(673\) 22.2830 0.858946 0.429473 0.903080i \(-0.358699\pi\)
0.429473 + 0.903080i \(0.358699\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10.5576 −0.405762 −0.202881 0.979203i \(-0.565030\pi\)
−0.202881 + 0.979203i \(0.565030\pi\)
\(678\) 0 0
\(679\) 8.58084 0.329303
\(680\) 0 0
\(681\) −0.365822 −0.0140183
\(682\) 0 0
\(683\) −1.80882 −0.0692128 −0.0346064 0.999401i \(-0.511018\pi\)
−0.0346064 + 0.999401i \(0.511018\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0.660022 0.0251814
\(688\) 0 0
\(689\) 50.8755 1.93820
\(690\) 0 0
\(691\) −3.84649 −0.146327 −0.0731636 0.997320i \(-0.523310\pi\)
−0.0731636 + 0.997320i \(0.523310\pi\)
\(692\) 0 0
\(693\) −7.44729 −0.282899
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 6.15198 0.233023
\(698\) 0 0
\(699\) −1.09365 −0.0413657
\(700\) 0 0
\(701\) 43.9484 1.65991 0.829955 0.557830i \(-0.188366\pi\)
0.829955 + 0.557830i \(0.188366\pi\)
\(702\) 0 0
\(703\) 0.320739 0.0120969
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.64018 0.174512
\(708\) 0 0
\(709\) 45.9706 1.72646 0.863232 0.504808i \(-0.168437\pi\)
0.863232 + 0.504808i \(0.168437\pi\)
\(710\) 0 0
\(711\) 21.9743 0.824100
\(712\) 0 0
\(713\) 49.3083 1.84661
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.735674 −0.0274742
\(718\) 0 0
\(719\) −6.24809 −0.233014 −0.116507 0.993190i \(-0.537170\pi\)
−0.116507 + 0.993190i \(0.537170\pi\)
\(720\) 0 0
\(721\) 5.98131 0.222755
\(722\) 0 0
\(723\) 1.55798 0.0579420
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −49.9606 −1.85294 −0.926469 0.376372i \(-0.877171\pi\)
−0.926469 + 0.376372i \(0.877171\pi\)
\(728\) 0 0
\(729\) −24.7962 −0.918376
\(730\) 0 0
\(731\) 7.88454 0.291620
\(732\) 0 0
\(733\) −37.4111 −1.38181 −0.690906 0.722945i \(-0.742788\pi\)
−0.690906 + 0.722945i \(0.742788\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 33.7559 1.24342
\(738\) 0 0
\(739\) −38.9348 −1.43224 −0.716120 0.697978i \(-0.754084\pi\)
−0.716120 + 0.697978i \(0.754084\pi\)
\(740\) 0 0
\(741\) −0.937080 −0.0344245
\(742\) 0 0
\(743\) −13.0253 −0.477850 −0.238925 0.971038i \(-0.576795\pi\)
−0.238925 + 0.971038i \(0.576795\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −26.4019 −0.965996
\(748\) 0 0
\(749\) 5.53878 0.202383
\(750\) 0 0
\(751\) 42.3558 1.54559 0.772793 0.634659i \(-0.218859\pi\)
0.772793 + 0.634659i \(0.218859\pi\)
\(752\) 0 0
\(753\) −1.22845 −0.0447671
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 4.20834 0.152955 0.0764773 0.997071i \(-0.475633\pi\)
0.0764773 + 0.997071i \(0.475633\pi\)
\(758\) 0 0
\(759\) 3.38616 0.122910
\(760\) 0 0
\(761\) 31.8563 1.15479 0.577395 0.816465i \(-0.304069\pi\)
0.577395 + 0.816465i \(0.304069\pi\)
\(762\) 0 0
\(763\) 2.12852 0.0770576
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.87853 0.320585
\(768\) 0 0
\(769\) −7.43010 −0.267936 −0.133968 0.990986i \(-0.542772\pi\)
−0.133968 + 0.990986i \(0.542772\pi\)
\(770\) 0 0
\(771\) 1.24563 0.0448604
\(772\) 0 0
\(773\) 7.33384 0.263780 0.131890 0.991264i \(-0.457895\pi\)
0.131890 + 0.991264i \(0.457895\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0.0428901 0.00153867
\(778\) 0 0
\(779\) −6.39130 −0.228992
\(780\) 0 0
\(781\) −34.5039 −1.23465
\(782\) 0 0
\(783\) −4.46910 −0.159713
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 35.7257 1.27348 0.636742 0.771077i \(-0.280282\pi\)
0.636742 + 0.771077i \(0.280282\pi\)
\(788\) 0 0
\(789\) −2.49942 −0.0889817
\(790\) 0 0
\(791\) 4.74024 0.168544
\(792\) 0 0
\(793\) 44.1303 1.56711
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.2025 0.998985 0.499492 0.866318i \(-0.333520\pi\)
0.499492 + 0.866318i \(0.333520\pi\)
\(798\) 0 0
\(799\) 4.43927 0.157050
\(800\) 0 0
\(801\) −34.1801 −1.20769
\(802\) 0 0
\(803\) 8.35468 0.294830
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −2.01663 −0.0709886
\(808\) 0 0
\(809\) −41.9318 −1.47424 −0.737121 0.675761i \(-0.763815\pi\)
−0.737121 + 0.675761i \(0.763815\pi\)
\(810\) 0 0
\(811\) −4.46604 −0.156824 −0.0784119 0.996921i \(-0.524985\pi\)
−0.0784119 + 0.996921i \(0.524985\pi\)
\(812\) 0 0
\(813\) 4.12546 0.144686
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −8.19125 −0.286576
\(818\) 0 0
\(819\) 8.98053 0.313805
\(820\) 0 0
\(821\) 19.6083 0.684334 0.342167 0.939639i \(-0.388839\pi\)
0.342167 + 0.939639i \(0.388839\pi\)
\(822\) 0 0
\(823\) −46.9128 −1.63528 −0.817638 0.575732i \(-0.804717\pi\)
−0.817638 + 0.575732i \(0.804717\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14.0134 −0.487295 −0.243648 0.969864i \(-0.578344\pi\)
−0.243648 + 0.969864i \(0.578344\pi\)
\(828\) 0 0
\(829\) −40.5206 −1.40734 −0.703669 0.710528i \(-0.748456\pi\)
−0.703669 + 0.710528i \(0.748456\pi\)
\(830\) 0 0
\(831\) −3.69127 −0.128049
\(832\) 0 0
\(833\) 6.53251 0.226338
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 13.1873 0.455818
\(838\) 0 0
\(839\) −8.68840 −0.299957 −0.149978 0.988689i \(-0.547920\pi\)
−0.149978 + 0.988689i \(0.547920\pi\)
\(840\) 0 0
\(841\) −15.3745 −0.530156
\(842\) 0 0
\(843\) −2.17374 −0.0748675
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1.74513 −0.0599633
\(848\) 0 0
\(849\) 2.04756 0.0702720
\(850\) 0 0
\(851\) 1.39761 0.0479096
\(852\) 0 0
\(853\) −23.1523 −0.792721 −0.396361 0.918095i \(-0.629727\pi\)
−0.396361 + 0.918095i \(0.629727\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 43.6043 1.48950 0.744748 0.667346i \(-0.232570\pi\)
0.744748 + 0.667346i \(0.232570\pi\)
\(858\) 0 0
\(859\) 14.2532 0.486314 0.243157 0.969987i \(-0.421817\pi\)
0.243157 + 0.969987i \(0.421817\pi\)
\(860\) 0 0
\(861\) −0.854661 −0.0291268
\(862\) 0 0
\(863\) 24.1162 0.820926 0.410463 0.911877i \(-0.365367\pi\)
0.410463 + 0.911877i \(0.365367\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −0.203185 −0.00690052
\(868\) 0 0
\(869\) 27.3413 0.927489
\(870\) 0 0
\(871\) −40.7056 −1.37926
\(872\) 0 0
\(873\) 37.1318 1.25672
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.56540 −0.0528599 −0.0264299 0.999651i \(-0.508414\pi\)
−0.0264299 + 0.999651i \(0.508414\pi\)
\(878\) 0 0
\(879\) 4.17238 0.140731
\(880\) 0 0
\(881\) −39.0973 −1.31722 −0.658610 0.752484i \(-0.728855\pi\)
−0.658610 + 0.752484i \(0.728855\pi\)
\(882\) 0 0
\(883\) 30.9249 1.04071 0.520354 0.853951i \(-0.325800\pi\)
0.520354 + 0.853951i \(0.325800\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 45.1839 1.51713 0.758564 0.651599i \(-0.225901\pi\)
0.758564 + 0.651599i \(0.225901\pi\)
\(888\) 0 0
\(889\) 14.4607 0.484997
\(890\) 0 0
\(891\) −31.7706 −1.06436
\(892\) 0 0
\(893\) −4.61196 −0.154333
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −4.08330 −0.136338
\(898\) 0 0
\(899\) −40.2056 −1.34093
\(900\) 0 0
\(901\) −11.4603 −0.381799
\(902\) 0 0
\(903\) −1.09536 −0.0364511
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 33.9862 1.12849 0.564246 0.825606i \(-0.309167\pi\)
0.564246 + 0.825606i \(0.309167\pi\)
\(908\) 0 0
\(909\) 20.0794 0.665992
\(910\) 0 0
\(911\) −22.1997 −0.735509 −0.367754 0.929923i \(-0.619873\pi\)
−0.367754 + 0.929923i \(0.619873\pi\)
\(912\) 0 0
\(913\) −32.8503 −1.08719
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.95660 0.196704
\(918\) 0 0
\(919\) 8.84668 0.291825 0.145913 0.989297i \(-0.453388\pi\)
0.145913 + 0.989297i \(0.453388\pi\)
\(920\) 0 0
\(921\) 2.66533 0.0878256
\(922\) 0 0
\(923\) 41.6076 1.36953
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 25.8828 0.850104
\(928\) 0 0
\(929\) 13.9941 0.459131 0.229566 0.973293i \(-0.426269\pi\)
0.229566 + 0.973293i \(0.426269\pi\)
\(930\) 0 0
\(931\) −6.78663 −0.222423
\(932\) 0 0
\(933\) −2.51230 −0.0822490
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5.19129 0.169592 0.0847960 0.996398i \(-0.472976\pi\)
0.0847960 + 0.996398i \(0.472976\pi\)
\(938\) 0 0
\(939\) 1.04843 0.0342144
\(940\) 0 0
\(941\) −26.2746 −0.856527 −0.428264 0.903654i \(-0.640875\pi\)
−0.428264 + 0.903654i \(0.640875\pi\)
\(942\) 0 0
\(943\) −27.8499 −0.906919
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13.9416 0.453040 0.226520 0.974007i \(-0.427265\pi\)
0.226520 + 0.974007i \(0.427265\pi\)
\(948\) 0 0
\(949\) −10.0747 −0.327040
\(950\) 0 0
\(951\) 4.82878 0.156584
\(952\) 0 0
\(953\) −19.3298 −0.626154 −0.313077 0.949728i \(-0.601360\pi\)
−0.313077 + 0.949728i \(0.601360\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −2.76105 −0.0892521
\(958\) 0 0
\(959\) −0.166821 −0.00538692
\(960\) 0 0
\(961\) 87.6372 2.82701
\(962\) 0 0
\(963\) 23.9679 0.772355
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 27.0663 0.870393 0.435197 0.900335i \(-0.356679\pi\)
0.435197 + 0.900335i \(0.356679\pi\)
\(968\) 0 0
\(969\) 0.211089 0.00678115
\(970\) 0 0
\(971\) −9.36344 −0.300487 −0.150244 0.988649i \(-0.548006\pi\)
−0.150244 + 0.988649i \(0.548006\pi\)
\(972\) 0 0
\(973\) 8.67550 0.278124
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −14.1127 −0.451506 −0.225753 0.974185i \(-0.572484\pi\)
−0.225753 + 0.974185i \(0.572484\pi\)
\(978\) 0 0
\(979\) −42.5282 −1.35921
\(980\) 0 0
\(981\) 9.21072 0.294076
\(982\) 0 0
\(983\) −48.9970 −1.56276 −0.781381 0.624054i \(-0.785485\pi\)
−0.781381 + 0.624054i \(0.785485\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −0.616723 −0.0196305
\(988\) 0 0
\(989\) −35.6932 −1.13498
\(990\) 0 0
\(991\) 20.7542 0.659279 0.329639 0.944107i \(-0.393073\pi\)
0.329639 + 0.944107i \(0.393073\pi\)
\(992\) 0 0
\(993\) 4.23317 0.134336
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 9.54268 0.302220 0.151110 0.988517i \(-0.451715\pi\)
0.151110 + 0.988517i \(0.451715\pi\)
\(998\) 0 0
\(999\) 0.373785 0.0118260
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6800.2.a.bt.1.3 4
4.3 odd 2 425.2.a.h.1.4 4
5.2 odd 4 1360.2.e.d.1089.5 8
5.3 odd 4 1360.2.e.d.1089.4 8
5.4 even 2 6800.2.a.bw.1.2 4
12.11 even 2 3825.2.a.bh.1.1 4
20.3 even 4 85.2.b.a.69.1 8
20.7 even 4 85.2.b.a.69.8 yes 8
20.19 odd 2 425.2.a.g.1.1 4
60.23 odd 4 765.2.b.c.154.8 8
60.47 odd 4 765.2.b.c.154.1 8
60.59 even 2 3825.2.a.bj.1.4 4
68.67 odd 2 7225.2.a.w.1.4 4
340.67 even 4 1445.2.b.e.579.8 8
340.203 even 4 1445.2.b.e.579.1 8
340.339 odd 2 7225.2.a.v.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.b.a.69.1 8 20.3 even 4
85.2.b.a.69.8 yes 8 20.7 even 4
425.2.a.g.1.1 4 20.19 odd 2
425.2.a.h.1.4 4 4.3 odd 2
765.2.b.c.154.1 8 60.47 odd 4
765.2.b.c.154.8 8 60.23 odd 4
1360.2.e.d.1089.4 8 5.3 odd 4
1360.2.e.d.1089.5 8 5.2 odd 4
1445.2.b.e.579.1 8 340.203 even 4
1445.2.b.e.579.8 8 340.67 even 4
3825.2.a.bh.1.1 4 12.11 even 2
3825.2.a.bj.1.4 4 60.59 even 2
6800.2.a.bt.1.3 4 1.1 even 1 trivial
6800.2.a.bw.1.2 4 5.4 even 2
7225.2.a.v.1.1 4 340.339 odd 2
7225.2.a.w.1.4 4 68.67 odd 2