Properties

Label 7225.2.a.w.1.4
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,-4,4,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.6224.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - 2x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.796815\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.31627 q^{2} -0.203185 q^{3} +3.36509 q^{4} -0.470630 q^{6} -0.683735 q^{7} +3.16190 q^{8} -2.95872 q^{9} -3.68135 q^{11} -0.683735 q^{12} +4.43927 q^{13} -1.58371 q^{14} +0.593630 q^{16} -6.85317 q^{18} -1.03890 q^{19} +0.138925 q^{21} -8.52699 q^{22} +4.52699 q^{23} -0.642450 q^{24} +10.2825 q^{26} +1.21072 q^{27} -2.30083 q^{28} +3.69127 q^{29} +10.8921 q^{31} -4.94880 q^{32} +0.747995 q^{33} -9.95633 q^{36} -0.308729 q^{37} -2.40637 q^{38} -0.901992 q^{39} +6.15198 q^{41} +0.321786 q^{42} +7.88454 q^{43} -12.3881 q^{44} +10.4857 q^{46} +4.43927 q^{47} -0.120617 q^{48} -6.53251 q^{49} +14.9385 q^{52} +11.4603 q^{53} +2.80435 q^{54} -2.16190 q^{56} +0.211089 q^{57} +8.54996 q^{58} -2.00000 q^{59} -9.94089 q^{61} +25.2289 q^{62} +2.02298 q^{63} -12.6500 q^{64} +1.73255 q^{66} +9.16944 q^{67} -0.919815 q^{69} +9.37262 q^{71} -9.35517 q^{72} +2.26946 q^{73} -0.715099 q^{74} -3.49599 q^{76} +2.51707 q^{77} -2.08925 q^{78} -7.42696 q^{79} +8.63015 q^{81} +14.2496 q^{82} -8.92344 q^{83} +0.467493 q^{84} +18.2627 q^{86} -0.750010 q^{87} -11.6401 q^{88} +11.5523 q^{89} -3.03528 q^{91} +15.2337 q^{92} -2.21310 q^{93} +10.2825 q^{94} +1.00552 q^{96} +12.5500 q^{97} -15.1310 q^{98} +10.8921 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 4 q^{3} + 4 q^{4} - 10 q^{7} + 4 q^{9} + 2 q^{11} - 10 q^{12} + 6 q^{13} + 6 q^{14} - 4 q^{16} - 4 q^{18} + 4 q^{19} + 12 q^{21} - 12 q^{22} - 4 q^{23} + 6 q^{24} - 10 q^{27} - 8 q^{28}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.31627 1.63785 0.818924 0.573903i \(-0.194571\pi\)
0.818924 + 0.573903i \(0.194571\pi\)
\(3\) −0.203185 −0.117309 −0.0586544 0.998278i \(-0.518681\pi\)
−0.0586544 + 0.998278i \(0.518681\pi\)
\(4\) 3.36509 1.68254
\(5\) 0 0
\(6\) −0.470630 −0.192134
\(7\) −0.683735 −0.258427 −0.129214 0.991617i \(-0.541245\pi\)
−0.129214 + 0.991617i \(0.541245\pi\)
\(8\) 3.16190 1.11790
\(9\) −2.95872 −0.986239
\(10\) 0 0
\(11\) −3.68135 −1.10997 −0.554985 0.831861i \(-0.687276\pi\)
−0.554985 + 0.831861i \(0.687276\pi\)
\(12\) −0.683735 −0.197377
\(13\) 4.43927 1.23123 0.615615 0.788047i \(-0.288908\pi\)
0.615615 + 0.788047i \(0.288908\pi\)
\(14\) −1.58371 −0.423264
\(15\) 0 0
\(16\) 0.593630 0.148408
\(17\) 0 0
\(18\) −6.85317 −1.61531
\(19\) −1.03890 −0.238340 −0.119170 0.992874i \(-0.538023\pi\)
−0.119170 + 0.992874i \(0.538023\pi\)
\(20\) 0 0
\(21\) 0.138925 0.0303158
\(22\) −8.52699 −1.81796
\(23\) 4.52699 0.943942 0.471971 0.881614i \(-0.343543\pi\)
0.471971 + 0.881614i \(0.343543\pi\)
\(24\) −0.642450 −0.131140
\(25\) 0 0
\(26\) 10.2825 2.01657
\(27\) 1.21072 0.233003
\(28\) −2.30083 −0.434815
\(29\) 3.69127 0.685452 0.342726 0.939435i \(-0.388650\pi\)
0.342726 + 0.939435i \(0.388650\pi\)
\(30\) 0 0
\(31\) 10.8921 1.95627 0.978137 0.207962i \(-0.0666830\pi\)
0.978137 + 0.207962i \(0.0666830\pi\)
\(32\) −4.94880 −0.874832
\(33\) 0.747995 0.130209
\(34\) 0 0
\(35\) 0 0
\(36\) −9.95633 −1.65939
\(37\) −0.308729 −0.0507548 −0.0253774 0.999678i \(-0.508079\pi\)
−0.0253774 + 0.999678i \(0.508079\pi\)
\(38\) −2.40637 −0.390365
\(39\) −0.901992 −0.144434
\(40\) 0 0
\(41\) 6.15198 0.960778 0.480389 0.877056i \(-0.340495\pi\)
0.480389 + 0.877056i \(0.340495\pi\)
\(42\) 0.321786 0.0496527
\(43\) 7.88454 1.20238 0.601190 0.799106i \(-0.294693\pi\)
0.601190 + 0.799106i \(0.294693\pi\)
\(44\) −12.3881 −1.86757
\(45\) 0 0
\(46\) 10.4857 1.54603
\(47\) 4.43927 0.647533 0.323767 0.946137i \(-0.395051\pi\)
0.323767 + 0.946137i \(0.395051\pi\)
\(48\) −0.120617 −0.0174095
\(49\) −6.53251 −0.933215
\(50\) 0 0
\(51\) 0 0
\(52\) 14.9385 2.07160
\(53\) 11.4603 1.57420 0.787100 0.616826i \(-0.211582\pi\)
0.787100 + 0.616826i \(0.211582\pi\)
\(54\) 2.80435 0.381624
\(55\) 0 0
\(56\) −2.16190 −0.288896
\(57\) 0.211089 0.0279594
\(58\) 8.54996 1.12267
\(59\) −2.00000 −0.260378 −0.130189 0.991489i \(-0.541558\pi\)
−0.130189 + 0.991489i \(0.541558\pi\)
\(60\) 0 0
\(61\) −9.94089 −1.27280 −0.636400 0.771359i \(-0.719577\pi\)
−0.636400 + 0.771359i \(0.719577\pi\)
\(62\) 25.2289 3.20408
\(63\) 2.02298 0.254871
\(64\) −12.6500 −1.58125
\(65\) 0 0
\(66\) 1.73255 0.213263
\(67\) 9.16944 1.12023 0.560113 0.828417i \(-0.310758\pi\)
0.560113 + 0.828417i \(0.310758\pi\)
\(68\) 0 0
\(69\) −0.919815 −0.110733
\(70\) 0 0
\(71\) 9.37262 1.11233 0.556163 0.831073i \(-0.312273\pi\)
0.556163 + 0.831073i \(0.312273\pi\)
\(72\) −9.35517 −1.10252
\(73\) 2.26946 0.265620 0.132810 0.991141i \(-0.457600\pi\)
0.132810 + 0.991141i \(0.457600\pi\)
\(74\) −0.715099 −0.0831286
\(75\) 0 0
\(76\) −3.49599 −0.401018
\(77\) 2.51707 0.286846
\(78\) −2.08925 −0.236561
\(79\) −7.42696 −0.835599 −0.417799 0.908539i \(-0.637198\pi\)
−0.417799 + 0.908539i \(0.637198\pi\)
\(80\) 0 0
\(81\) 8.63015 0.958905
\(82\) 14.2496 1.57361
\(83\) −8.92344 −0.979474 −0.489737 0.871870i \(-0.662907\pi\)
−0.489737 + 0.871870i \(0.662907\pi\)
\(84\) 0.467493 0.0510077
\(85\) 0 0
\(86\) 18.2627 1.96932
\(87\) −0.750010 −0.0804096
\(88\) −11.6401 −1.24084
\(89\) 11.5523 1.22455 0.612273 0.790646i \(-0.290255\pi\)
0.612273 + 0.790646i \(0.290255\pi\)
\(90\) 0 0
\(91\) −3.03528 −0.318184
\(92\) 15.2337 1.58822
\(93\) −2.21310 −0.229488
\(94\) 10.2825 1.06056
\(95\) 0 0
\(96\) 1.00552 0.102626
\(97\) 12.5500 1.27426 0.637128 0.770758i \(-0.280122\pi\)
0.637128 + 0.770758i \(0.280122\pi\)
\(98\) −15.1310 −1.52846
\(99\) 10.8921 1.09469
\(100\) 0 0
\(101\) −6.78653 −0.675285 −0.337642 0.941274i \(-0.609629\pi\)
−0.337642 + 0.941274i \(0.609629\pi\)
\(102\) 0 0
\(103\) 8.74799 0.861966 0.430983 0.902360i \(-0.358167\pi\)
0.430983 + 0.902360i \(0.358167\pi\)
\(104\) 14.0365 1.37639
\(105\) 0 0
\(106\) 26.5452 2.57830
\(107\) −8.10078 −0.783132 −0.391566 0.920150i \(-0.628066\pi\)
−0.391566 + 0.920150i \(0.628066\pi\)
\(108\) 4.07418 0.392038
\(109\) 3.11308 0.298179 0.149090 0.988824i \(-0.452366\pi\)
0.149090 + 0.988824i \(0.452366\pi\)
\(110\) 0 0
\(111\) 0.0627291 0.00595399
\(112\) −0.405885 −0.0383526
\(113\) 6.93287 0.652190 0.326095 0.945337i \(-0.394267\pi\)
0.326095 + 0.945337i \(0.394267\pi\)
\(114\) 0.488938 0.0457932
\(115\) 0 0
\(116\) 12.4214 1.15330
\(117\) −13.1345 −1.21429
\(118\) −4.63253 −0.426459
\(119\) 0 0
\(120\) 0 0
\(121\) 2.55235 0.232031
\(122\) −23.0257 −2.08465
\(123\) −1.24999 −0.112708
\(124\) 36.6528 3.29151
\(125\) 0 0
\(126\) 4.68575 0.417440
\(127\) 21.1496 1.87672 0.938362 0.345655i \(-0.112343\pi\)
0.938362 + 0.345655i \(0.112343\pi\)
\(128\) −19.4031 −1.71501
\(129\) −1.60202 −0.141050
\(130\) 0 0
\(131\) −8.71186 −0.761159 −0.380580 0.924748i \(-0.624275\pi\)
−0.380580 + 0.924748i \(0.624275\pi\)
\(132\) 2.51707 0.219083
\(133\) 0.710332 0.0615936
\(134\) 21.2388 1.83476
\(135\) 0 0
\(136\) 0 0
\(137\) 0.243985 0.0208450 0.0104225 0.999946i \(-0.496682\pi\)
0.0104225 + 0.999946i \(0.496682\pi\)
\(138\) −2.13054 −0.181363
\(139\) −12.6884 −1.07622 −0.538108 0.842876i \(-0.680861\pi\)
−0.538108 + 0.842876i \(0.680861\pi\)
\(140\) 0 0
\(141\) −0.901992 −0.0759614
\(142\) 21.7095 1.82182
\(143\) −16.3425 −1.36663
\(144\) −1.75638 −0.146365
\(145\) 0 0
\(146\) 5.25667 0.435045
\(147\) 1.32731 0.109474
\(148\) −1.03890 −0.0853971
\(149\) 12.0103 0.983923 0.491961 0.870617i \(-0.336280\pi\)
0.491961 + 0.870617i \(0.336280\pi\)
\(150\) 0 0
\(151\) 8.95633 0.728856 0.364428 0.931232i \(-0.381265\pi\)
0.364428 + 0.931232i \(0.381265\pi\)
\(152\) −3.28490 −0.266441
\(153\) 0 0
\(154\) 5.83020 0.469811
\(155\) 0 0
\(156\) −3.03528 −0.243017
\(157\) −19.9127 −1.58920 −0.794602 0.607131i \(-0.792320\pi\)
−0.794602 + 0.607131i \(0.792320\pi\)
\(158\) −17.2028 −1.36858
\(159\) −2.32857 −0.184667
\(160\) 0 0
\(161\) −3.09526 −0.243940
\(162\) 19.9897 1.57054
\(163\) −22.4011 −1.75459 −0.877296 0.479951i \(-0.840655\pi\)
−0.877296 + 0.479951i \(0.840655\pi\)
\(164\) 20.7019 1.61655
\(165\) 0 0
\(166\) −20.6690 −1.60423
\(167\) 4.58133 0.354514 0.177257 0.984165i \(-0.443278\pi\)
0.177257 + 0.984165i \(0.443278\pi\)
\(168\) 0.439266 0.0338901
\(169\) 6.70708 0.515929
\(170\) 0 0
\(171\) 3.07381 0.235060
\(172\) 26.5321 2.02306
\(173\) 8.09764 0.615652 0.307826 0.951443i \(-0.400399\pi\)
0.307826 + 0.951443i \(0.400399\pi\)
\(174\) −1.73722 −0.131699
\(175\) 0 0
\(176\) −2.18536 −0.164728
\(177\) 0.406370 0.0305446
\(178\) 26.7583 2.00562
\(179\) 4.40637 0.329348 0.164674 0.986348i \(-0.447343\pi\)
0.164674 + 0.986348i \(0.447343\pi\)
\(180\) 0 0
\(181\) 5.93727 0.441314 0.220657 0.975351i \(-0.429180\pi\)
0.220657 + 0.975351i \(0.429180\pi\)
\(182\) −7.03051 −0.521136
\(183\) 2.01984 0.149311
\(184\) 14.3139 1.05523
\(185\) 0 0
\(186\) −5.12614 −0.375867
\(187\) 0 0
\(188\) 14.9385 1.08950
\(189\) −0.827812 −0.0602144
\(190\) 0 0
\(191\) −9.89759 −0.716165 −0.358082 0.933690i \(-0.616569\pi\)
−0.358082 + 0.933690i \(0.616569\pi\)
\(192\) 2.57029 0.185494
\(193\) 8.47578 0.610100 0.305050 0.952336i \(-0.401327\pi\)
0.305050 + 0.952336i \(0.401327\pi\)
\(194\) 29.0690 2.08704
\(195\) 0 0
\(196\) −21.9824 −1.57017
\(197\) −13.5381 −0.964553 −0.482276 0.876019i \(-0.660190\pi\)
−0.482276 + 0.876019i \(0.660190\pi\)
\(198\) 25.2289 1.79294
\(199\) 9.15388 0.648901 0.324451 0.945903i \(-0.394821\pi\)
0.324451 + 0.945903i \(0.394821\pi\)
\(200\) 0 0
\(201\) −1.86309 −0.131412
\(202\) −15.7194 −1.10601
\(203\) −2.52385 −0.177139
\(204\) 0 0
\(205\) 0 0
\(206\) 20.2627 1.41177
\(207\) −13.3941 −0.930952
\(208\) 2.63528 0.182724
\(209\) 3.82456 0.264550
\(210\) 0 0
\(211\) −7.72465 −0.531787 −0.265893 0.964002i \(-0.585667\pi\)
−0.265893 + 0.964002i \(0.585667\pi\)
\(212\) 38.5650 2.64866
\(213\) −1.90438 −0.130486
\(214\) −18.7636 −1.28265
\(215\) 0 0
\(216\) 3.82818 0.260475
\(217\) −7.44729 −0.505555
\(218\) 7.21072 0.488372
\(219\) −0.461120 −0.0311596
\(220\) 0 0
\(221\) 0 0
\(222\) 0.145297 0.00975172
\(223\) −13.7194 −0.918719 −0.459359 0.888250i \(-0.651921\pi\)
−0.459359 + 0.888250i \(0.651921\pi\)
\(224\) 3.38366 0.226080
\(225\) 0 0
\(226\) 16.0584 1.06819
\(227\) 1.80044 0.119499 0.0597496 0.998213i \(-0.480970\pi\)
0.0597496 + 0.998213i \(0.480970\pi\)
\(228\) 0.710332 0.0470429
\(229\) −3.24838 −0.214659 −0.107330 0.994223i \(-0.534230\pi\)
−0.107330 + 0.994223i \(0.534230\pi\)
\(230\) 0 0
\(231\) −0.511430 −0.0336496
\(232\) 11.6714 0.766267
\(233\) −5.38254 −0.352622 −0.176311 0.984335i \(-0.556416\pi\)
−0.176311 + 0.984335i \(0.556416\pi\)
\(234\) −30.4230 −1.98882
\(235\) 0 0
\(236\) −6.73017 −0.438097
\(237\) 1.50905 0.0980231
\(238\) 0 0
\(239\) −3.62071 −0.234204 −0.117102 0.993120i \(-0.537361\pi\)
−0.117102 + 0.993120i \(0.537361\pi\)
\(240\) 0 0
\(241\) 7.66781 0.493927 0.246964 0.969025i \(-0.420567\pi\)
0.246964 + 0.969025i \(0.420567\pi\)
\(242\) 5.91191 0.380032
\(243\) −5.38568 −0.345491
\(244\) −33.4520 −2.14154
\(245\) 0 0
\(246\) −2.89531 −0.184598
\(247\) −4.61196 −0.293452
\(248\) 34.4397 2.18692
\(249\) 1.81311 0.114901
\(250\) 0 0
\(251\) −6.04595 −0.381617 −0.190809 0.981627i \(-0.561111\pi\)
−0.190809 + 0.981627i \(0.561111\pi\)
\(252\) 6.80749 0.428831
\(253\) −16.6654 −1.04775
\(254\) 48.9881 3.07379
\(255\) 0 0
\(256\) −19.6428 −1.22768
\(257\) −6.13054 −0.382412 −0.191206 0.981550i \(-0.561240\pi\)
−0.191206 + 0.981550i \(0.561240\pi\)
\(258\) −3.71070 −0.231018
\(259\) 0.211089 0.0131164
\(260\) 0 0
\(261\) −10.9214 −0.676019
\(262\) −20.1790 −1.24666
\(263\) −12.3012 −0.758525 −0.379263 0.925289i \(-0.623822\pi\)
−0.379263 + 0.925289i \(0.623822\pi\)
\(264\) 2.36509 0.145561
\(265\) 0 0
\(266\) 1.64532 0.100881
\(267\) −2.34726 −0.143650
\(268\) 30.8559 1.88483
\(269\) −9.92508 −0.605143 −0.302572 0.953127i \(-0.597845\pi\)
−0.302572 + 0.953127i \(0.597845\pi\)
\(270\) 0 0
\(271\) 20.3040 1.23338 0.616689 0.787207i \(-0.288474\pi\)
0.616689 + 0.787207i \(0.288474\pi\)
\(272\) 0 0
\(273\) 0.616723 0.0373258
\(274\) 0.565133 0.0341410
\(275\) 0 0
\(276\) −3.09526 −0.186313
\(277\) −18.1671 −1.09155 −0.545776 0.837931i \(-0.683765\pi\)
−0.545776 + 0.837931i \(0.683765\pi\)
\(278\) −29.3897 −1.76268
\(279\) −32.2265 −1.92935
\(280\) 0 0
\(281\) 10.6983 0.638208 0.319104 0.947720i \(-0.396618\pi\)
0.319104 + 0.947720i \(0.396618\pi\)
\(282\) −2.08925 −0.124413
\(283\) −10.0773 −0.599034 −0.299517 0.954091i \(-0.596826\pi\)
−0.299517 + 0.954091i \(0.596826\pi\)
\(284\) 31.5397 1.87154
\(285\) 0 0
\(286\) −37.8536 −2.23833
\(287\) −4.20632 −0.248291
\(288\) 14.6421 0.862793
\(289\) 0 0
\(290\) 0 0
\(291\) −2.54996 −0.149481
\(292\) 7.63693 0.446918
\(293\) −20.5349 −1.19966 −0.599831 0.800127i \(-0.704765\pi\)
−0.599831 + 0.800127i \(0.704765\pi\)
\(294\) 3.07439 0.179302
\(295\) 0 0
\(296\) −0.976172 −0.0567388
\(297\) −4.45709 −0.258627
\(298\) 27.8191 1.61151
\(299\) 20.0965 1.16221
\(300\) 0 0
\(301\) −5.39093 −0.310728
\(302\) 20.7452 1.19375
\(303\) 1.37892 0.0792169
\(304\) −0.616723 −0.0353715
\(305\) 0 0
\(306\) 0 0
\(307\) 13.1177 0.748669 0.374335 0.927294i \(-0.377871\pi\)
0.374335 + 0.927294i \(0.377871\pi\)
\(308\) 8.47015 0.482631
\(309\) −1.77746 −0.101116
\(310\) 0 0
\(311\) 12.3646 0.701132 0.350566 0.936538i \(-0.385989\pi\)
0.350566 + 0.936538i \(0.385989\pi\)
\(312\) −2.85201 −0.161463
\(313\) 5.16000 0.291661 0.145830 0.989310i \(-0.453415\pi\)
0.145830 + 0.989310i \(0.453415\pi\)
\(314\) −46.1230 −2.60287
\(315\) 0 0
\(316\) −24.9924 −1.40593
\(317\) 23.7655 1.33480 0.667400 0.744699i \(-0.267407\pi\)
0.667400 + 0.744699i \(0.267407\pi\)
\(318\) −5.39358 −0.302457
\(319\) −13.5889 −0.760830
\(320\) 0 0
\(321\) 1.64596 0.0918683
\(322\) −7.16944 −0.399537
\(323\) 0 0
\(324\) 29.0412 1.61340
\(325\) 0 0
\(326\) −51.8869 −2.87375
\(327\) −0.632531 −0.0349790
\(328\) 19.4520 1.07405
\(329\) −3.03528 −0.167340
\(330\) 0 0
\(331\) 20.8341 1.14514 0.572572 0.819854i \(-0.305946\pi\)
0.572572 + 0.819854i \(0.305946\pi\)
\(332\) −30.0281 −1.64801
\(333\) 0.913442 0.0500563
\(334\) 10.6116 0.580639
\(335\) 0 0
\(336\) 0.0824698 0.00449910
\(337\) −14.3080 −0.779406 −0.389703 0.920941i \(-0.627422\pi\)
−0.389703 + 0.920941i \(0.627422\pi\)
\(338\) 15.5354 0.845013
\(339\) −1.40865 −0.0765076
\(340\) 0 0
\(341\) −40.0975 −2.17140
\(342\) 7.11976 0.384993
\(343\) 9.25264 0.499596
\(344\) 24.9301 1.34414
\(345\) 0 0
\(346\) 18.7563 1.00834
\(347\) 21.9988 1.18096 0.590478 0.807054i \(-0.298939\pi\)
0.590478 + 0.807054i \(0.298939\pi\)
\(348\) −2.52385 −0.135293
\(349\) −6.06199 −0.324491 −0.162246 0.986750i \(-0.551874\pi\)
−0.162246 + 0.986750i \(0.551874\pi\)
\(350\) 0 0
\(351\) 5.37471 0.286881
\(352\) 18.2183 0.971036
\(353\) −20.8785 −1.11125 −0.555626 0.831432i \(-0.687521\pi\)
−0.555626 + 0.831432i \(0.687521\pi\)
\(354\) 0.941260 0.0500274
\(355\) 0 0
\(356\) 38.8746 2.06035
\(357\) 0 0
\(358\) 10.2063 0.539421
\(359\) 18.4842 0.975557 0.487779 0.872967i \(-0.337807\pi\)
0.487779 + 0.872967i \(0.337807\pi\)
\(360\) 0 0
\(361\) −17.9207 −0.943194
\(362\) 13.7523 0.722805
\(363\) −0.518598 −0.0272193
\(364\) −10.2140 −0.535358
\(365\) 0 0
\(366\) 4.67848 0.244548
\(367\) −23.6044 −1.23214 −0.616070 0.787691i \(-0.711276\pi\)
−0.616070 + 0.787691i \(0.711276\pi\)
\(368\) 2.68736 0.140088
\(369\) −18.2020 −0.947556
\(370\) 0 0
\(371\) −7.83583 −0.406816
\(372\) −7.44729 −0.386124
\(373\) 18.0123 0.932643 0.466321 0.884615i \(-0.345579\pi\)
0.466321 + 0.884615i \(0.345579\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 14.0365 0.723878
\(377\) 16.3865 0.843949
\(378\) −1.91743 −0.0986221
\(379\) 5.74523 0.295112 0.147556 0.989054i \(-0.452859\pi\)
0.147556 + 0.989054i \(0.452859\pi\)
\(380\) 0 0
\(381\) −4.29728 −0.220156
\(382\) −22.9255 −1.17297
\(383\) 35.3281 1.80518 0.902591 0.430499i \(-0.141663\pi\)
0.902591 + 0.430499i \(0.141663\pi\)
\(384\) 3.94242 0.201186
\(385\) 0 0
\(386\) 19.6322 0.999251
\(387\) −23.3281 −1.18583
\(388\) 42.2317 2.14399
\(389\) −18.2627 −0.925955 −0.462977 0.886370i \(-0.653219\pi\)
−0.462977 + 0.886370i \(0.653219\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −20.6551 −1.04324
\(393\) 1.77012 0.0892907
\(394\) −31.3579 −1.57979
\(395\) 0 0
\(396\) 36.6528 1.84187
\(397\) 4.64092 0.232921 0.116461 0.993195i \(-0.462845\pi\)
0.116461 + 0.993195i \(0.462845\pi\)
\(398\) 21.2028 1.06280
\(399\) −0.144329 −0.00722548
\(400\) 0 0
\(401\) 27.4049 1.36853 0.684267 0.729232i \(-0.260122\pi\)
0.684267 + 0.729232i \(0.260122\pi\)
\(402\) −4.31541 −0.215233
\(403\) 48.3528 2.40862
\(404\) −22.8372 −1.13620
\(405\) 0 0
\(406\) −5.84590 −0.290127
\(407\) 1.13654 0.0563363
\(408\) 0 0
\(409\) 1.38254 0.0683623 0.0341811 0.999416i \(-0.489118\pi\)
0.0341811 + 0.999416i \(0.489118\pi\)
\(410\) 0 0
\(411\) −0.0495740 −0.00244531
\(412\) 29.4378 1.45029
\(413\) 1.36747 0.0672888
\(414\) −31.0242 −1.52476
\(415\) 0 0
\(416\) −21.9690 −1.07712
\(417\) 2.57809 0.126250
\(418\) 8.85869 0.433293
\(419\) 33.2300 1.62339 0.811695 0.584081i \(-0.198545\pi\)
0.811695 + 0.584081i \(0.198545\pi\)
\(420\) 0 0
\(421\) 4.61109 0.224731 0.112365 0.993667i \(-0.464157\pi\)
0.112365 + 0.993667i \(0.464157\pi\)
\(422\) −17.8923 −0.870986
\(423\) −13.1345 −0.638622
\(424\) 36.2365 1.75980
\(425\) 0 0
\(426\) −4.41104 −0.213715
\(427\) 6.79693 0.328927
\(428\) −27.2598 −1.31765
\(429\) 3.32055 0.160318
\(430\) 0 0
\(431\) −7.33812 −0.353465 −0.176732 0.984259i \(-0.556553\pi\)
−0.176732 + 0.984259i \(0.556553\pi\)
\(432\) 0.718721 0.0345795
\(433\) −15.3487 −0.737610 −0.368805 0.929507i \(-0.620233\pi\)
−0.368805 + 0.929507i \(0.620233\pi\)
\(434\) −17.2499 −0.828021
\(435\) 0 0
\(436\) 10.4758 0.501699
\(437\) −4.70309 −0.224979
\(438\) −1.06808 −0.0510347
\(439\) 5.60355 0.267443 0.133721 0.991019i \(-0.457307\pi\)
0.133721 + 0.991019i \(0.457307\pi\)
\(440\) 0 0
\(441\) 19.3278 0.920373
\(442\) 0 0
\(443\) −29.6338 −1.40794 −0.703971 0.710228i \(-0.748592\pi\)
−0.703971 + 0.710228i \(0.748592\pi\)
\(444\) 0.211089 0.0100178
\(445\) 0 0
\(446\) −31.7778 −1.50472
\(447\) −2.44031 −0.115423
\(448\) 8.64923 0.408638
\(449\) 34.4203 1.62439 0.812197 0.583383i \(-0.198271\pi\)
0.812197 + 0.583383i \(0.198271\pi\)
\(450\) 0 0
\(451\) −22.6476 −1.06643
\(452\) 23.3297 1.09734
\(453\) −1.81979 −0.0855013
\(454\) 4.17029 0.195721
\(455\) 0 0
\(456\) 0.667442 0.0312558
\(457\) 9.32504 0.436207 0.218103 0.975926i \(-0.430013\pi\)
0.218103 + 0.975926i \(0.430013\pi\)
\(458\) −7.52412 −0.351579
\(459\) 0 0
\(460\) 0 0
\(461\) 19.1715 0.892904 0.446452 0.894808i \(-0.352687\pi\)
0.446452 + 0.894808i \(0.352687\pi\)
\(462\) −1.18461 −0.0551129
\(463\) 19.6385 0.912680 0.456340 0.889805i \(-0.349160\pi\)
0.456340 + 0.889805i \(0.349160\pi\)
\(464\) 2.19125 0.101726
\(465\) 0 0
\(466\) −12.4674 −0.577541
\(467\) −21.1027 −0.976515 −0.488258 0.872699i \(-0.662367\pi\)
−0.488258 + 0.872699i \(0.662367\pi\)
\(468\) −44.1988 −2.04309
\(469\) −6.26946 −0.289497
\(470\) 0 0
\(471\) 4.04595 0.186428
\(472\) −6.32380 −0.291077
\(473\) −29.0257 −1.33461
\(474\) 3.49535 0.160547
\(475\) 0 0
\(476\) 0 0
\(477\) −33.9079 −1.55254
\(478\) −8.38653 −0.383591
\(479\) 28.6762 1.31025 0.655125 0.755521i \(-0.272616\pi\)
0.655125 + 0.755521i \(0.272616\pi\)
\(480\) 0 0
\(481\) −1.37053 −0.0624909
\(482\) 17.7607 0.808977
\(483\) 0.628909 0.0286164
\(484\) 8.58886 0.390403
\(485\) 0 0
\(486\) −12.4747 −0.565862
\(487\) −39.2139 −1.77695 −0.888475 0.458925i \(-0.848234\pi\)
−0.888475 + 0.458925i \(0.848234\pi\)
\(488\) −31.4321 −1.42287
\(489\) 4.55157 0.205829
\(490\) 0 0
\(491\) −36.3499 −1.64045 −0.820224 0.572042i \(-0.806151\pi\)
−0.820224 + 0.572042i \(0.806151\pi\)
\(492\) −4.20632 −0.189636
\(493\) 0 0
\(494\) −10.6825 −0.480629
\(495\) 0 0
\(496\) 6.46586 0.290326
\(497\) −6.40839 −0.287455
\(498\) 4.19964 0.188190
\(499\) 8.52061 0.381435 0.190718 0.981645i \(-0.438919\pi\)
0.190718 + 0.981645i \(0.438919\pi\)
\(500\) 0 0
\(501\) −0.930856 −0.0415876
\(502\) −14.0040 −0.625030
\(503\) −18.6790 −0.832854 −0.416427 0.909169i \(-0.636718\pi\)
−0.416427 + 0.909169i \(0.636718\pi\)
\(504\) 6.39645 0.284921
\(505\) 0 0
\(506\) −38.6016 −1.71605
\(507\) −1.36278 −0.0605231
\(508\) 71.1702 3.15767
\(509\) 3.53567 0.156716 0.0783579 0.996925i \(-0.475032\pi\)
0.0783579 + 0.996925i \(0.475032\pi\)
\(510\) 0 0
\(511\) −1.55171 −0.0686436
\(512\) −6.69175 −0.295737
\(513\) −1.25782 −0.0555341
\(514\) −14.1999 −0.626333
\(515\) 0 0
\(516\) −5.39093 −0.237322
\(517\) −16.3425 −0.718742
\(518\) 0.488938 0.0214827
\(519\) −1.64532 −0.0722215
\(520\) 0 0
\(521\) 4.64206 0.203373 0.101686 0.994817i \(-0.467576\pi\)
0.101686 + 0.994817i \(0.467576\pi\)
\(522\) −25.2969 −1.10722
\(523\) 18.3331 0.801649 0.400824 0.916155i \(-0.368724\pi\)
0.400824 + 0.916155i \(0.368724\pi\)
\(524\) −29.3162 −1.28068
\(525\) 0 0
\(526\) −28.4929 −1.24235
\(527\) 0 0
\(528\) 0.444032 0.0193240
\(529\) −2.50639 −0.108974
\(530\) 0 0
\(531\) 5.91743 0.256795
\(532\) 2.39033 0.103634
\(533\) 27.3103 1.18294
\(534\) −5.43688 −0.235277
\(535\) 0 0
\(536\) 28.9928 1.25230
\(537\) −0.895308 −0.0386354
\(538\) −22.9891 −0.991132
\(539\) 24.0485 1.03584
\(540\) 0 0
\(541\) −22.4428 −0.964891 −0.482445 0.875926i \(-0.660251\pi\)
−0.482445 + 0.875926i \(0.660251\pi\)
\(542\) 47.0294 2.02008
\(543\) −1.20636 −0.0517700
\(544\) 0 0
\(545\) 0 0
\(546\) 1.42849 0.0611339
\(547\) 25.9778 1.11073 0.555365 0.831607i \(-0.312578\pi\)
0.555365 + 0.831607i \(0.312578\pi\)
\(548\) 0.821029 0.0350726
\(549\) 29.4123 1.25529
\(550\) 0 0
\(551\) −3.83486 −0.163371
\(552\) −2.90836 −0.123788
\(553\) 5.07807 0.215942
\(554\) −42.0797 −1.78780
\(555\) 0 0
\(556\) −42.6976 −1.81078
\(557\) −4.86144 −0.205986 −0.102993 0.994682i \(-0.532842\pi\)
−0.102993 + 0.994682i \(0.532842\pi\)
\(558\) −74.6452 −3.15998
\(559\) 35.0015 1.48041
\(560\) 0 0
\(561\) 0 0
\(562\) 24.7802 1.04529
\(563\) −1.53365 −0.0646357 −0.0323179 0.999478i \(-0.510289\pi\)
−0.0323179 + 0.999478i \(0.510289\pi\)
\(564\) −3.03528 −0.127808
\(565\) 0 0
\(566\) −23.3417 −0.981127
\(567\) −5.90073 −0.247807
\(568\) 29.6353 1.24347
\(569\) −16.5770 −0.694946 −0.347473 0.937690i \(-0.612960\pi\)
−0.347473 + 0.937690i \(0.612960\pi\)
\(570\) 0 0
\(571\) 14.2904 0.598036 0.299018 0.954248i \(-0.403341\pi\)
0.299018 + 0.954248i \(0.403341\pi\)
\(572\) −54.9939 −2.29941
\(573\) 2.01104 0.0840125
\(574\) −9.74296 −0.406663
\(575\) 0 0
\(576\) 37.4277 1.55949
\(577\) −28.5424 −1.18824 −0.594119 0.804377i \(-0.702499\pi\)
−0.594119 + 0.804377i \(0.702499\pi\)
\(578\) 0 0
\(579\) −1.72215 −0.0715702
\(580\) 0 0
\(581\) 6.10126 0.253123
\(582\) −5.90639 −0.244828
\(583\) −42.1895 −1.74731
\(584\) 7.17581 0.296937
\(585\) 0 0
\(586\) −47.5643 −1.96486
\(587\) 33.5281 1.38385 0.691927 0.721967i \(-0.256762\pi\)
0.691927 + 0.721967i \(0.256762\pi\)
\(588\) 4.46650 0.184195
\(589\) −11.3158 −0.466259
\(590\) 0 0
\(591\) 2.75075 0.113151
\(592\) −0.183271 −0.00753239
\(593\) −42.4729 −1.74415 −0.872077 0.489368i \(-0.837227\pi\)
−0.872077 + 0.489368i \(0.837227\pi\)
\(594\) −10.3238 −0.423591
\(595\) 0 0
\(596\) 40.4157 1.65549
\(597\) −1.85993 −0.0761219
\(598\) 46.5488 1.90352
\(599\) −7.00705 −0.286300 −0.143150 0.989701i \(-0.545723\pi\)
−0.143150 + 0.989701i \(0.545723\pi\)
\(600\) 0 0
\(601\) −39.3146 −1.60368 −0.801839 0.597541i \(-0.796145\pi\)
−0.801839 + 0.597541i \(0.796145\pi\)
\(602\) −12.4868 −0.508925
\(603\) −27.1298 −1.10481
\(604\) 30.1388 1.22633
\(605\) 0 0
\(606\) 3.19394 0.129745
\(607\) −18.7928 −0.762777 −0.381389 0.924415i \(-0.624554\pi\)
−0.381389 + 0.924415i \(0.624554\pi\)
\(608\) 5.14131 0.208508
\(609\) 0.512808 0.0207800
\(610\) 0 0
\(611\) 19.7071 0.797263
\(612\) 0 0
\(613\) 1.83560 0.0741392 0.0370696 0.999313i \(-0.488198\pi\)
0.0370696 + 0.999313i \(0.488198\pi\)
\(614\) 30.3842 1.22621
\(615\) 0 0
\(616\) 7.95872 0.320666
\(617\) 29.0011 1.16754 0.583771 0.811918i \(-0.301577\pi\)
0.583771 + 0.811918i \(0.301577\pi\)
\(618\) −4.11707 −0.165613
\(619\) −27.7941 −1.11714 −0.558569 0.829458i \(-0.688649\pi\)
−0.558569 + 0.829458i \(0.688649\pi\)
\(620\) 0 0
\(621\) 5.48092 0.219942
\(622\) 28.6397 1.14835
\(623\) −7.89874 −0.316456
\(624\) −0.535450 −0.0214351
\(625\) 0 0
\(626\) 11.9519 0.477695
\(627\) −0.777092 −0.0310341
\(628\) −67.0078 −2.67390
\(629\) 0 0
\(630\) 0 0
\(631\) −14.1785 −0.564437 −0.282219 0.959350i \(-0.591070\pi\)
−0.282219 + 0.959350i \(0.591070\pi\)
\(632\) −23.4833 −0.934116
\(633\) 1.56953 0.0623833
\(634\) 55.0471 2.18620
\(635\) 0 0
\(636\) −7.83583 −0.310711
\(637\) −28.9995 −1.14900
\(638\) −31.4754 −1.24612
\(639\) −27.7309 −1.09702
\(640\) 0 0
\(641\) 27.8734 1.10093 0.550466 0.834857i \(-0.314450\pi\)
0.550466 + 0.834857i \(0.314450\pi\)
\(642\) 3.81247 0.150466
\(643\) 25.8277 1.01854 0.509272 0.860605i \(-0.329915\pi\)
0.509272 + 0.860605i \(0.329915\pi\)
\(644\) −10.4158 −0.410440
\(645\) 0 0
\(646\) 0 0
\(647\) −4.40912 −0.173340 −0.0866702 0.996237i \(-0.527623\pi\)
−0.0866702 + 0.996237i \(0.527623\pi\)
\(648\) 27.2877 1.07196
\(649\) 7.36270 0.289011
\(650\) 0 0
\(651\) 1.51318 0.0593060
\(652\) −75.3817 −2.95217
\(653\) −30.9245 −1.21017 −0.605084 0.796161i \(-0.706861\pi\)
−0.605084 + 0.796161i \(0.706861\pi\)
\(654\) −1.46511 −0.0572903
\(655\) 0 0
\(656\) 3.65200 0.142587
\(657\) −6.71469 −0.261965
\(658\) −7.03051 −0.274078
\(659\) 39.7992 1.55036 0.775179 0.631742i \(-0.217660\pi\)
0.775179 + 0.631742i \(0.217660\pi\)
\(660\) 0 0
\(661\) −13.0969 −0.509409 −0.254704 0.967019i \(-0.581978\pi\)
−0.254704 + 0.967019i \(0.581978\pi\)
\(662\) 48.2573 1.87557
\(663\) 0 0
\(664\) −28.2150 −1.09496
\(665\) 0 0
\(666\) 2.11578 0.0819846
\(667\) 16.7103 0.647027
\(668\) 15.4166 0.596485
\(669\) 2.78757 0.107774
\(670\) 0 0
\(671\) 36.5959 1.41277
\(672\) −0.687509 −0.0265212
\(673\) −22.2830 −0.858946 −0.429473 0.903080i \(-0.641301\pi\)
−0.429473 + 0.903080i \(0.641301\pi\)
\(674\) −33.1411 −1.27655
\(675\) 0 0
\(676\) 22.5699 0.868073
\(677\) 10.5576 0.405762 0.202881 0.979203i \(-0.434970\pi\)
0.202881 + 0.979203i \(0.434970\pi\)
\(678\) −3.26282 −0.125308
\(679\) −8.58084 −0.329303
\(680\) 0 0
\(681\) −0.365822 −0.0140183
\(682\) −92.8766 −3.55643
\(683\) −1.80882 −0.0692128 −0.0346064 0.999401i \(-0.511018\pi\)
−0.0346064 + 0.999401i \(0.511018\pi\)
\(684\) 10.3436 0.395499
\(685\) 0 0
\(686\) 21.4316 0.818261
\(687\) 0.660022 0.0251814
\(688\) 4.68050 0.178442
\(689\) 50.8755 1.93820
\(690\) 0 0
\(691\) −3.84649 −0.146327 −0.0731636 0.997320i \(-0.523310\pi\)
−0.0731636 + 0.997320i \(0.523310\pi\)
\(692\) 27.2493 1.03586
\(693\) −7.44729 −0.282899
\(694\) 50.9550 1.93423
\(695\) 0 0
\(696\) −2.37146 −0.0898899
\(697\) 0 0
\(698\) −14.0412 −0.531467
\(699\) 1.09365 0.0413657
\(700\) 0 0
\(701\) 43.9484 1.65991 0.829955 0.557830i \(-0.188366\pi\)
0.829955 + 0.557830i \(0.188366\pi\)
\(702\) 12.4493 0.469867
\(703\) 0.320739 0.0120969
\(704\) 46.5690 1.75514
\(705\) 0 0
\(706\) −48.3602 −1.82006
\(707\) 4.64018 0.174512
\(708\) 1.36747 0.0513926
\(709\) −45.9706 −1.72646 −0.863232 0.504808i \(-0.831563\pi\)
−0.863232 + 0.504808i \(0.831563\pi\)
\(710\) 0 0
\(711\) 21.9743 0.824100
\(712\) 36.5274 1.36892
\(713\) 49.3083 1.84661
\(714\) 0 0
\(715\) 0 0
\(716\) 14.8278 0.554141
\(717\) 0.735674 0.0274742
\(718\) 42.8142 1.59781
\(719\) −6.24809 −0.233014 −0.116507 0.993190i \(-0.537170\pi\)
−0.116507 + 0.993190i \(0.537170\pi\)
\(720\) 0 0
\(721\) −5.98131 −0.222755
\(722\) −41.5091 −1.54481
\(723\) −1.55798 −0.0579420
\(724\) 19.9794 0.742529
\(725\) 0 0
\(726\) −1.20121 −0.0445811
\(727\) 49.9606 1.85294 0.926469 0.376372i \(-0.122829\pi\)
0.926469 + 0.376372i \(0.122829\pi\)
\(728\) −9.59725 −0.355698
\(729\) −24.7962 −0.918376
\(730\) 0 0
\(731\) 0 0
\(732\) 6.79693 0.251222
\(733\) −37.4111 −1.38181 −0.690906 0.722945i \(-0.742788\pi\)
−0.690906 + 0.722945i \(0.742788\pi\)
\(734\) −54.6741 −2.01806
\(735\) 0 0
\(736\) −22.4031 −0.825790
\(737\) −33.7559 −1.24342
\(738\) −42.1606 −1.55195
\(739\) 38.9348 1.43224 0.716120 0.697978i \(-0.245916\pi\)
0.716120 + 0.697978i \(0.245916\pi\)
\(740\) 0 0
\(741\) 0.937080 0.0344245
\(742\) −18.1499 −0.666303
\(743\) −13.0253 −0.477850 −0.238925 0.971038i \(-0.576795\pi\)
−0.238925 + 0.971038i \(0.576795\pi\)
\(744\) −6.99762 −0.256545
\(745\) 0 0
\(746\) 41.7213 1.52753
\(747\) 26.4019 0.965996
\(748\) 0 0
\(749\) 5.53878 0.202383
\(750\) 0 0
\(751\) 42.3558 1.54559 0.772793 0.634659i \(-0.218859\pi\)
0.772793 + 0.634659i \(0.218859\pi\)
\(752\) 2.63528 0.0960989
\(753\) 1.22845 0.0447671
\(754\) 37.9556 1.38226
\(755\) 0 0
\(756\) −2.78566 −0.101313
\(757\) 4.20834 0.152955 0.0764773 0.997071i \(-0.475633\pi\)
0.0764773 + 0.997071i \(0.475633\pi\)
\(758\) 13.3075 0.483349
\(759\) 3.38616 0.122910
\(760\) 0 0
\(761\) 31.8563 1.15479 0.577395 0.816465i \(-0.304069\pi\)
0.577395 + 0.816465i \(0.304069\pi\)
\(762\) −9.95364 −0.360582
\(763\) −2.12852 −0.0770576
\(764\) −33.3062 −1.20498
\(765\) 0 0
\(766\) 81.8293 2.95661
\(767\) −8.87853 −0.320585
\(768\) 3.99113 0.144017
\(769\) −7.43010 −0.267936 −0.133968 0.990986i \(-0.542772\pi\)
−0.133968 + 0.990986i \(0.542772\pi\)
\(770\) 0 0
\(771\) 1.24563 0.0448604
\(772\) 28.5217 1.02652
\(773\) 7.33384 0.263780 0.131890 0.991264i \(-0.457895\pi\)
0.131890 + 0.991264i \(0.457895\pi\)
\(774\) −54.0341 −1.94221
\(775\) 0 0
\(776\) 39.6817 1.42449
\(777\) −0.0428901 −0.00153867
\(778\) −42.3012 −1.51657
\(779\) −6.39130 −0.228992
\(780\) 0 0
\(781\) −34.5039 −1.23465
\(782\) 0 0
\(783\) 4.46910 0.159713
\(784\) −3.87789 −0.138496
\(785\) 0 0
\(786\) 4.10007 0.146244
\(787\) 35.7257 1.27348 0.636742 0.771077i \(-0.280282\pi\)
0.636742 + 0.771077i \(0.280282\pi\)
\(788\) −45.5570 −1.62290
\(789\) 2.49942 0.0889817
\(790\) 0 0
\(791\) −4.74024 −0.168544
\(792\) 34.4397 1.22376
\(793\) −44.1303 −1.56711
\(794\) 10.7496 0.381489
\(795\) 0 0
\(796\) 30.8036 1.09180
\(797\) 28.2025 0.998985 0.499492 0.866318i \(-0.333520\pi\)
0.499492 + 0.866318i \(0.333520\pi\)
\(798\) −0.334304 −0.0118342
\(799\) 0 0
\(800\) 0 0
\(801\) −34.1801 −1.20769
\(802\) 63.4769 2.24145
\(803\) −8.35468 −0.294830
\(804\) −6.26946 −0.221107
\(805\) 0 0
\(806\) 111.998 3.94496
\(807\) 2.01663 0.0709886
\(808\) −21.4583 −0.754901
\(809\) 41.9318 1.47424 0.737121 0.675761i \(-0.236185\pi\)
0.737121 + 0.675761i \(0.236185\pi\)
\(810\) 0 0
\(811\) −4.46604 −0.156824 −0.0784119 0.996921i \(-0.524985\pi\)
−0.0784119 + 0.996921i \(0.524985\pi\)
\(812\) −8.49297 −0.298045
\(813\) −4.12546 −0.144686
\(814\) 2.63253 0.0922702
\(815\) 0 0
\(816\) 0 0
\(817\) −8.19125 −0.286576
\(818\) 3.20233 0.111967
\(819\) 8.98053 0.313805
\(820\) 0 0
\(821\) −19.6083 −0.684334 −0.342167 0.939639i \(-0.611161\pi\)
−0.342167 + 0.939639i \(0.611161\pi\)
\(822\) −0.114827 −0.00400504
\(823\) −46.9128 −1.63528 −0.817638 0.575732i \(-0.804717\pi\)
−0.817638 + 0.575732i \(0.804717\pi\)
\(824\) 27.6603 0.963592
\(825\) 0 0
\(826\) 3.16742 0.110209
\(827\) −14.0134 −0.487295 −0.243648 0.969864i \(-0.578344\pi\)
−0.243648 + 0.969864i \(0.578344\pi\)
\(828\) −45.0722 −1.56637
\(829\) −40.5206 −1.40734 −0.703669 0.710528i \(-0.748456\pi\)
−0.703669 + 0.710528i \(0.748456\pi\)
\(830\) 0 0
\(831\) 3.69127 0.128049
\(832\) −56.1566 −1.94688
\(833\) 0 0
\(834\) 5.97154 0.206778
\(835\) 0 0
\(836\) 12.8700 0.445117
\(837\) 13.1873 0.455818
\(838\) 76.9694 2.65887
\(839\) −8.68840 −0.299957 −0.149978 0.988689i \(-0.547920\pi\)
−0.149978 + 0.988689i \(0.547920\pi\)
\(840\) 0 0
\(841\) −15.3745 −0.530156
\(842\) 10.6805 0.368074
\(843\) −2.17374 −0.0748675
\(844\) −25.9941 −0.894754
\(845\) 0 0
\(846\) −30.4230 −1.04597
\(847\) −1.74513 −0.0599633
\(848\) 6.80321 0.233623
\(849\) 2.04756 0.0702720
\(850\) 0 0
\(851\) −1.39761 −0.0479096
\(852\) −6.40839 −0.219548
\(853\) 23.1523 0.792721 0.396361 0.918095i \(-0.370273\pi\)
0.396361 + 0.918095i \(0.370273\pi\)
\(854\) 15.7435 0.538731
\(855\) 0 0
\(856\) −25.6139 −0.875464
\(857\) −43.6043 −1.48950 −0.744748 0.667346i \(-0.767430\pi\)
−0.744748 + 0.667346i \(0.767430\pi\)
\(858\) 7.69127 0.262576
\(859\) −14.2532 −0.486314 −0.243157 0.969987i \(-0.578183\pi\)
−0.243157 + 0.969987i \(0.578183\pi\)
\(860\) 0 0
\(861\) 0.854661 0.0291268
\(862\) −16.9970 −0.578921
\(863\) −24.1162 −0.820926 −0.410463 0.911877i \(-0.634633\pi\)
−0.410463 + 0.911877i \(0.634633\pi\)
\(864\) −5.99161 −0.203839
\(865\) 0 0
\(866\) −35.5516 −1.20809
\(867\) 0 0
\(868\) −25.0608 −0.850617
\(869\) 27.3413 0.927489
\(870\) 0 0
\(871\) 40.7056 1.37926
\(872\) 9.84325 0.333335
\(873\) −37.1318 −1.25672
\(874\) −10.8936 −0.368482
\(875\) 0 0
\(876\) −1.55171 −0.0524274
\(877\) 1.56540 0.0528599 0.0264299 0.999651i \(-0.491586\pi\)
0.0264299 + 0.999651i \(0.491586\pi\)
\(878\) 12.9793 0.438030
\(879\) 4.17238 0.140731
\(880\) 0 0
\(881\) 39.0973 1.31722 0.658610 0.752484i \(-0.271145\pi\)
0.658610 + 0.752484i \(0.271145\pi\)
\(882\) 44.7684 1.50743
\(883\) −30.9249 −1.04071 −0.520354 0.853951i \(-0.674200\pi\)
−0.520354 + 0.853951i \(0.674200\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −68.6397 −2.30599
\(887\) 45.1839 1.51713 0.758564 0.651599i \(-0.225901\pi\)
0.758564 + 0.651599i \(0.225901\pi\)
\(888\) 0.198343 0.00665597
\(889\) −14.4607 −0.484997
\(890\) 0 0
\(891\) −31.7706 −1.06436
\(892\) −46.1670 −1.54578
\(893\) −4.61196 −0.154333
\(894\) −5.65241 −0.189045
\(895\) 0 0
\(896\) 13.2666 0.443206
\(897\) −4.08330 −0.136338
\(898\) 79.7265 2.66051
\(899\) 40.2056 1.34093
\(900\) 0 0
\(901\) 0 0
\(902\) −52.4579 −1.74666
\(903\) 1.09536 0.0364511
\(904\) 21.9211 0.729083
\(905\) 0 0
\(906\) −4.21512 −0.140038
\(907\) 33.9862 1.12849 0.564246 0.825606i \(-0.309167\pi\)
0.564246 + 0.825606i \(0.309167\pi\)
\(908\) 6.05862 0.201062
\(909\) 20.0794 0.665992
\(910\) 0 0
\(911\) −22.1997 −0.735509 −0.367754 0.929923i \(-0.619873\pi\)
−0.367754 + 0.929923i \(0.619873\pi\)
\(912\) 0.125309 0.00414939
\(913\) 32.8503 1.08719
\(914\) 21.5993 0.714440
\(915\) 0 0
\(916\) −10.9311 −0.361173
\(917\) 5.95660 0.196704
\(918\) 0 0
\(919\) −8.84668 −0.291825 −0.145913 0.989297i \(-0.546612\pi\)
−0.145913 + 0.989297i \(0.546612\pi\)
\(920\) 0 0
\(921\) −2.66533 −0.0878256
\(922\) 44.4062 1.46244
\(923\) 41.6076 1.36953
\(924\) −1.72101 −0.0566169
\(925\) 0 0
\(926\) 45.4881 1.49483
\(927\) −25.8828 −0.850104
\(928\) −18.2673 −0.599655
\(929\) −13.9941 −0.459131 −0.229566 0.973293i \(-0.573731\pi\)
−0.229566 + 0.973293i \(0.573731\pi\)
\(930\) 0 0
\(931\) 6.78663 0.222423
\(932\) −18.1127 −0.593302
\(933\) −2.51230 −0.0822490
\(934\) −48.8794 −1.59938
\(935\) 0 0
\(936\) −41.5301 −1.35745
\(937\) 5.19129 0.169592 0.0847960 0.996398i \(-0.472976\pi\)
0.0847960 + 0.996398i \(0.472976\pi\)
\(938\) −14.5217 −0.474151
\(939\) −1.04843 −0.0342144
\(940\) 0 0
\(941\) 26.2746 0.856527 0.428264 0.903654i \(-0.359125\pi\)
0.428264 + 0.903654i \(0.359125\pi\)
\(942\) 9.37150 0.305340
\(943\) 27.8499 0.906919
\(944\) −1.18726 −0.0386420
\(945\) 0 0
\(946\) −67.2313 −2.18588
\(947\) 13.9416 0.453040 0.226520 0.974007i \(-0.427265\pi\)
0.226520 + 0.974007i \(0.427265\pi\)
\(948\) 5.07807 0.164928
\(949\) 10.0747 0.327040
\(950\) 0 0
\(951\) −4.82878 −0.156584
\(952\) 0 0
\(953\) −19.3298 −0.626154 −0.313077 0.949728i \(-0.601360\pi\)
−0.313077 + 0.949728i \(0.601360\pi\)
\(954\) −78.5397 −2.54282
\(955\) 0 0
\(956\) −12.1840 −0.394059
\(957\) 2.76105 0.0892521
\(958\) 66.4217 2.14599
\(959\) −0.166821 −0.00538692
\(960\) 0 0
\(961\) 87.6372 2.82701
\(962\) −3.17451 −0.102350
\(963\) 23.9679 0.772355
\(964\) 25.8028 0.831053
\(965\) 0 0
\(966\) 1.45672 0.0468692
\(967\) −27.0663 −0.870393 −0.435197 0.900335i \(-0.643321\pi\)
−0.435197 + 0.900335i \(0.643321\pi\)
\(968\) 8.07027 0.259388
\(969\) 0 0
\(970\) 0 0
\(971\) 9.36344 0.300487 0.150244 0.988649i \(-0.451994\pi\)
0.150244 + 0.988649i \(0.451994\pi\)
\(972\) −18.1233 −0.581304
\(973\) 8.67550 0.278124
\(974\) −90.8297 −2.91037
\(975\) 0 0
\(976\) −5.90121 −0.188893
\(977\) −14.1127 −0.451506 −0.225753 0.974185i \(-0.572484\pi\)
−0.225753 + 0.974185i \(0.572484\pi\)
\(978\) 10.5426 0.337116
\(979\) −42.5282 −1.35921
\(980\) 0 0
\(981\) −9.21072 −0.294076
\(982\) −84.1961 −2.68680
\(983\) −48.9970 −1.56276 −0.781381 0.624054i \(-0.785485\pi\)
−0.781381 + 0.624054i \(0.785485\pi\)
\(984\) −3.95234 −0.125996
\(985\) 0 0
\(986\) 0 0
\(987\) 0.616723 0.0196305
\(988\) −15.5196 −0.493745
\(989\) 35.6932 1.13498
\(990\) 0 0
\(991\) 20.7542 0.659279 0.329639 0.944107i \(-0.393073\pi\)
0.329639 + 0.944107i \(0.393073\pi\)
\(992\) −53.9026 −1.71141
\(993\) −4.23317 −0.134336
\(994\) −14.8435 −0.470808
\(995\) 0 0
\(996\) 6.10126 0.193326
\(997\) −9.54268 −0.302220 −0.151110 0.988517i \(-0.548285\pi\)
−0.151110 + 0.988517i \(0.548285\pi\)
\(998\) 19.7360 0.624732
\(999\) −0.373785 −0.0118260
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.w.1.4 4
5.2 odd 4 1445.2.b.e.579.8 8
5.3 odd 4 1445.2.b.e.579.1 8
5.4 even 2 7225.2.a.v.1.1 4
17.16 even 2 425.2.a.h.1.4 4
51.50 odd 2 3825.2.a.bh.1.1 4
68.67 odd 2 6800.2.a.bt.1.3 4
85.33 odd 4 85.2.b.a.69.1 8
85.67 odd 4 85.2.b.a.69.8 yes 8
85.84 even 2 425.2.a.g.1.1 4
255.152 even 4 765.2.b.c.154.1 8
255.203 even 4 765.2.b.c.154.8 8
255.254 odd 2 3825.2.a.bj.1.4 4
340.67 even 4 1360.2.e.d.1089.5 8
340.203 even 4 1360.2.e.d.1089.4 8
340.339 odd 2 6800.2.a.bw.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.b.a.69.1 8 85.33 odd 4
85.2.b.a.69.8 yes 8 85.67 odd 4
425.2.a.g.1.1 4 85.84 even 2
425.2.a.h.1.4 4 17.16 even 2
765.2.b.c.154.1 8 255.152 even 4
765.2.b.c.154.8 8 255.203 even 4
1360.2.e.d.1089.4 8 340.203 even 4
1360.2.e.d.1089.5 8 340.67 even 4
1445.2.b.e.579.1 8 5.3 odd 4
1445.2.b.e.579.8 8 5.2 odd 4
3825.2.a.bh.1.1 4 51.50 odd 2
3825.2.a.bj.1.4 4 255.254 odd 2
6800.2.a.bt.1.3 4 68.67 odd 2
6800.2.a.bw.1.2 4 340.339 odd 2
7225.2.a.v.1.1 4 5.4 even 2
7225.2.a.w.1.4 4 1.1 even 1 trivial