Properties

Label 1445.2.b
Level 14451445
Weight 22
Character orbit 1445.b
Rep. character χ1445(579,)\chi_{1445}(579,\cdot)
Character field Q\Q
Dimension 120120
Newform subspaces 99
Sturm bound 306306
Trace bound 66

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1445=5172 1445 = 5 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1445.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 5 5
Character field: Q\Q
Newform subspaces: 9 9
Sturm bound: 306306
Trace bound: 66
Distinguishing TpT_p: 22, 1111

Dimensions

The following table gives the dimensions of various subspaces of M2(1445,[χ])M_{2}(1445, [\chi]).

Total New Old
Modular forms 172 150 22
Cusp forms 136 120 16
Eisenstein series 36 30 6

Trace form

120q104q4+2q588q96q10+4q1112q142q15+88q16+12q19+2q2024q2112q24+10q258q29+26q30+24q3120q35+24q99+O(q100) 120 q - 104 q^{4} + 2 q^{5} - 88 q^{9} - 6 q^{10} + 4 q^{11} - 12 q^{14} - 2 q^{15} + 88 q^{16} + 12 q^{19} + 2 q^{20} - 24 q^{21} - 12 q^{24} + 10 q^{25} - 8 q^{29} + 26 q^{30} + 24 q^{31} - 20 q^{35}+ \cdots - 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1445,[χ])S_{2}^{\mathrm{new}}(1445, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1445.2.b.a 1445.b 5.b 44 11.53811.538 Q(ζ8)\Q(\zeta_{8}) None 85.2.j.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+ζ82q2+(ζ8+ζ83)q3+q4+(2ζ8+)q5+q+\zeta_{8}^{2}q^{2}+(\zeta_{8}+\zeta_{8}^{3})q^{3}+q^{4}+(-2\zeta_{8}+\cdots)q^{5}+\cdots
1445.2.b.b 1445.b 5.b 88 11.53811.538 8.0.\cdots.11 None 85.2.c.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ2q2β3q3+(2β4)q4+(β3+)q5+q-\beta _{2}q^{2}-\beta _{3}q^{3}+(-2-\beta _{4})q^{4}+(\beta _{3}+\cdots)q^{5}+\cdots
1445.2.b.c 1445.b 5.b 88 11.53811.538 8.0.\cdots.1 None 1445.2.b.c 00 00 1-1 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β3q2+β6q3+(1+β1)q4+β2q5+q+\beta _{3}q^{2}+\beta _{6}q^{3}+(-1+\beta _{1})q^{4}+\beta _{2}q^{5}+\cdots
1445.2.b.d 1445.b 5.b 88 11.53811.538 8.0.\cdots.1 None 1445.2.b.c 00 00 11 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β3q2β6q3+(1+β1)q4β2q5+q+\beta _{3}q^{2}-\beta _{6}q^{3}+(-1+\beta _{1})q^{4}-\beta _{2}q^{5}+\cdots
1445.2.b.e 1445.b 5.b 88 11.53811.538 8.0.619810816.2 None 85.2.b.a 00 00 22 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ6q2+(β2β3+β4β5+β6+)q3+q-\beta _{6}q^{2}+(-\beta _{2}-\beta _{3}+\beta _{4}-\beta _{5}+\beta _{6}+\cdots)q^{3}+\cdots
1445.2.b.f 1445.b 5.b 1212 11.53811.538 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 85.2.j.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ3q2β10q3+(1+β8)q4+q-\beta _{3}q^{2}-\beta _{10}q^{3}+(-1+\beta _{8})q^{4}+\cdots
1445.2.b.g 1445.b 5.b 2424 11.53811.538 None 1445.2.b.g 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]
1445.2.b.h 1445.b 5.b 2424 11.53811.538 None 1445.2.b.g 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]
1445.2.b.i 1445.b 5.b 2424 11.53811.538 None 85.2.m.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Decomposition of S2old(1445,[χ])S_{2}^{\mathrm{old}}(1445, [\chi]) into lower level spaces

S2old(1445,[χ]) S_{2}^{\mathrm{old}}(1445, [\chi]) \simeq S2new(85,[χ])S_{2}^{\mathrm{new}}(85, [\chi])2^{\oplus 2}