Properties

Label 144.9.g.d.127.1
Level $144$
Weight $9$
Character 144.127
Analytic conductor $58.663$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,9,Mod(127,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.127"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 144.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-516] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.6625198488\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 16)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 127.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 144.127
Dual form 144.9.g.d.127.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-258.000 q^{5} -3297.82i q^{7} +23154.1i q^{11} +19138.0 q^{13} +58686.0 q^{17} +152573. i q^{19} -270117. i q^{23} -324061. q^{25} -842178. q^{29} -1.05120e6i q^{31} +850839. i q^{35} +2.54861e6 q^{37} +4.32416e6 q^{41} +2.03702e6i q^{43} -7.23321e6i q^{47} -5.11085e6 q^{49} -1.19219e6 q^{53} -5.97375e6i q^{55} +338249. i q^{59} +8.41479e6 q^{61} -4.93760e6 q^{65} -1.74247e7i q^{67} -3.08765e7i q^{71} +1.27359e7 q^{73} +7.63580e7 q^{77} +6.28665e6i q^{79} -8.30740e7i q^{83} -1.51410e7 q^{85} +1.68028e7 q^{89} -6.31138e7i q^{91} -3.93638e7i q^{95} +1.20995e8 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 516 q^{5} + 38276 q^{13} + 117372 q^{17} - 648122 q^{25} - 1684356 q^{29} + 5097220 q^{37} + 8648316 q^{41} - 10221694 q^{49} - 2384388 q^{53} + 16829572 q^{61} - 9875208 q^{65} + 25471748 q^{73}+ \cdots + 241989764 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −258.000 −0.412800 −0.206400 0.978468i \(-0.566175\pi\)
−0.206400 + 0.978468i \(0.566175\pi\)
\(6\) 0 0
\(7\) − 3297.82i − 1.37352i −0.726884 0.686761i \(-0.759032\pi\)
0.726884 0.686761i \(-0.240968\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 23154.1i 1.58145i 0.612170 + 0.790727i \(0.290297\pi\)
−0.612170 + 0.790727i \(0.709703\pi\)
\(12\) 0 0
\(13\) 19138.0 0.670075 0.335037 0.942205i \(-0.391251\pi\)
0.335037 + 0.942205i \(0.391251\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 58686.0 0.702650 0.351325 0.936254i \(-0.385731\pi\)
0.351325 + 0.936254i \(0.385731\pi\)
\(18\) 0 0
\(19\) 152573.i 1.17075i 0.810764 + 0.585373i \(0.199052\pi\)
−0.810764 + 0.585373i \(0.800948\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 270117.i − 0.965251i −0.875827 0.482625i \(-0.839683\pi\)
0.875827 0.482625i \(-0.160317\pi\)
\(24\) 0 0
\(25\) −324061. −0.829596
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −842178. −1.19073 −0.595363 0.803457i \(-0.702992\pi\)
−0.595363 + 0.803457i \(0.702992\pi\)
\(30\) 0 0
\(31\) − 1.05120e6i − 1.13826i −0.822249 0.569128i \(-0.807281\pi\)
0.822249 0.569128i \(-0.192719\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 850839.i 0.566990i
\(36\) 0 0
\(37\) 2.54861e6 1.35987 0.679934 0.733274i \(-0.262009\pi\)
0.679934 + 0.733274i \(0.262009\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.32416e6 1.53026 0.765132 0.643874i \(-0.222674\pi\)
0.765132 + 0.643874i \(0.222674\pi\)
\(42\) 0 0
\(43\) 2.03702e6i 0.595828i 0.954593 + 0.297914i \(0.0962908\pi\)
−0.954593 + 0.297914i \(0.903709\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 7.23321e6i − 1.48231i −0.671333 0.741156i \(-0.734278\pi\)
0.671333 0.741156i \(-0.265722\pi\)
\(48\) 0 0
\(49\) −5.11085e6 −0.886561
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.19219e6 −0.151093 −0.0755463 0.997142i \(-0.524070\pi\)
−0.0755463 + 0.997142i \(0.524070\pi\)
\(54\) 0 0
\(55\) − 5.97375e6i − 0.652824i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 338249.i 0.0279144i 0.999903 + 0.0139572i \(0.00444286\pi\)
−0.999903 + 0.0139572i \(0.995557\pi\)
\(60\) 0 0
\(61\) 8.41479e6 0.607748 0.303874 0.952712i \(-0.401720\pi\)
0.303874 + 0.952712i \(0.401720\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.93760e6 −0.276607
\(66\) 0 0
\(67\) − 1.74247e7i − 0.864702i −0.901705 0.432351i \(-0.857684\pi\)
0.901705 0.432351i \(-0.142316\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 3.08765e7i − 1.21505i −0.794299 0.607526i \(-0.792162\pi\)
0.794299 0.607526i \(-0.207838\pi\)
\(72\) 0 0
\(73\) 1.27359e7 0.448474 0.224237 0.974535i \(-0.428011\pi\)
0.224237 + 0.974535i \(0.428011\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.63580e7 2.17216
\(78\) 0 0
\(79\) 6.28665e6i 0.161403i 0.996738 + 0.0807014i \(0.0257160\pi\)
−0.996738 + 0.0807014i \(0.974284\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 8.30740e7i − 1.75046i −0.483706 0.875231i \(-0.660709\pi\)
0.483706 0.875231i \(-0.339291\pi\)
\(84\) 0 0
\(85\) −1.51410e7 −0.290054
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.68028e7 0.267807 0.133904 0.990994i \(-0.457249\pi\)
0.133904 + 0.990994i \(0.457249\pi\)
\(90\) 0 0
\(91\) − 6.31138e7i − 0.920362i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 3.93638e7i − 0.483284i
\(96\) 0 0
\(97\) 1.20995e8 1.36672 0.683361 0.730081i \(-0.260518\pi\)
0.683361 + 0.730081i \(0.260518\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.16328e7 −0.111789 −0.0558943 0.998437i \(-0.517801\pi\)
−0.0558943 + 0.998437i \(0.517801\pi\)
\(102\) 0 0
\(103\) − 1.34856e8i − 1.19818i −0.800682 0.599090i \(-0.795529\pi\)
0.800682 0.599090i \(-0.204471\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1.31472e8i − 1.00299i −0.865160 0.501495i \(-0.832783\pi\)
0.865160 0.501495i \(-0.167217\pi\)
\(108\) 0 0
\(109\) 1.55823e7 0.110389 0.0551944 0.998476i \(-0.482422\pi\)
0.0551944 + 0.998476i \(0.482422\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.64134e7 0.284662 0.142331 0.989819i \(-0.454540\pi\)
0.142331 + 0.989819i \(0.454540\pi\)
\(114\) 0 0
\(115\) 6.96901e7i 0.398456i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 1.93536e8i − 0.965104i
\(120\) 0 0
\(121\) −3.21751e8 −1.50099
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.84389e8 0.755257
\(126\) 0 0
\(127\) 1.85766e8i 0.714087i 0.934088 + 0.357043i \(0.116215\pi\)
−0.934088 + 0.357043i \(0.883785\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 5.38679e7i − 0.182913i −0.995809 0.0914566i \(-0.970848\pi\)
0.995809 0.0914566i \(-0.0291523\pi\)
\(132\) 0 0
\(133\) 5.03159e8 1.60805
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.90826e8 1.10943 0.554716 0.832040i \(-0.312827\pi\)
0.554716 + 0.832040i \(0.312827\pi\)
\(138\) 0 0
\(139\) − 4.01458e8i − 1.07543i −0.843128 0.537713i \(-0.819288\pi\)
0.843128 0.537713i \(-0.180712\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.43122e8i 1.05969i
\(144\) 0 0
\(145\) 2.17282e8 0.491532
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.54777e8 −1.53135 −0.765674 0.643229i \(-0.777594\pi\)
−0.765674 + 0.643229i \(0.777594\pi\)
\(150\) 0 0
\(151\) − 1.79562e8i − 0.345388i −0.984976 0.172694i \(-0.944753\pi\)
0.984976 0.172694i \(-0.0552471\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.71210e8i 0.469872i
\(156\) 0 0
\(157\) −8.56860e8 −1.41030 −0.705150 0.709058i \(-0.749120\pi\)
−0.705150 + 0.709058i \(0.749120\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −8.90798e8 −1.32579
\(162\) 0 0
\(163\) 4.60153e8i 0.651856i 0.945395 + 0.325928i \(0.105677\pi\)
−0.945395 + 0.325928i \(0.894323\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 5.38177e8i − 0.691925i −0.938248 0.345963i \(-0.887552\pi\)
0.938248 0.345963i \(-0.112448\pi\)
\(168\) 0 0
\(169\) −4.49468e8 −0.551000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.80770e8 1.09492 0.547461 0.836832i \(-0.315595\pi\)
0.547461 + 0.836832i \(0.315595\pi\)
\(174\) 0 0
\(175\) 1.06870e9i 1.13947i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.45845e9i 1.42062i 0.703889 + 0.710310i \(0.251445\pi\)
−0.703889 + 0.710310i \(0.748555\pi\)
\(180\) 0 0
\(181\) −1.08010e8 −0.100635 −0.0503175 0.998733i \(-0.516023\pi\)
−0.0503175 + 0.998733i \(0.516023\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.57541e8 −0.561353
\(186\) 0 0
\(187\) 1.35882e9i 1.11121i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.80549e9i 1.35663i 0.734772 + 0.678314i \(0.237289\pi\)
−0.734772 + 0.678314i \(0.762711\pi\)
\(192\) 0 0
\(193\) 1.80728e9 1.30255 0.651277 0.758840i \(-0.274234\pi\)
0.651277 + 0.758840i \(0.274234\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.28469e8 −0.151692 −0.0758459 0.997120i \(-0.524166\pi\)
−0.0758459 + 0.997120i \(0.524166\pi\)
\(198\) 0 0
\(199\) − 1.23311e9i − 0.786305i −0.919473 0.393153i \(-0.871384\pi\)
0.919473 0.393153i \(-0.128616\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.77736e9i 1.63549i
\(204\) 0 0
\(205\) −1.11563e9 −0.631693
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.53268e9 −1.85148
\(210\) 0 0
\(211\) − 2.15314e8i − 0.108628i −0.998524 0.0543141i \(-0.982703\pi\)
0.998524 0.0543141i \(-0.0172972\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 5.25550e8i − 0.245958i
\(216\) 0 0
\(217\) −3.46668e9 −1.56342
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.12313e9 0.470828
\(222\) 0 0
\(223\) 4.09616e8i 0.165637i 0.996565 + 0.0828185i \(0.0263922\pi\)
−0.996565 + 0.0828185i \(0.973608\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 5.22333e9i − 1.96718i −0.180415 0.983591i \(-0.557744\pi\)
0.180415 0.983591i \(-0.442256\pi\)
\(228\) 0 0
\(229\) 2.86620e9 1.04223 0.521116 0.853486i \(-0.325516\pi\)
0.521116 + 0.853486i \(0.325516\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.91979e8 0.166925 0.0834627 0.996511i \(-0.473402\pi\)
0.0834627 + 0.996511i \(0.473402\pi\)
\(234\) 0 0
\(235\) 1.86617e9i 0.611898i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.04443e9i 0.933071i 0.884503 + 0.466535i \(0.154498\pi\)
−0.884503 + 0.466535i \(0.845502\pi\)
\(240\) 0 0
\(241\) −3.10239e9 −0.919662 −0.459831 0.888006i \(-0.652090\pi\)
−0.459831 + 0.888006i \(0.652090\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.31860e9 0.365972
\(246\) 0 0
\(247\) 2.91994e9i 0.784488i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.89495e9i 0.477422i 0.971091 + 0.238711i \(0.0767248\pi\)
−0.971091 + 0.238711i \(0.923275\pi\)
\(252\) 0 0
\(253\) 6.25430e9 1.52650
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.97422e9 0.681774 0.340887 0.940104i \(-0.389273\pi\)
0.340887 + 0.940104i \(0.389273\pi\)
\(258\) 0 0
\(259\) − 8.40487e9i − 1.86781i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.15278e9i 0.658977i 0.944160 + 0.329488i \(0.106876\pi\)
−0.944160 + 0.329488i \(0.893124\pi\)
\(264\) 0 0
\(265\) 3.07586e8 0.0623711
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.48778e7 −0.00284137 −0.00142069 0.999999i \(-0.500452\pi\)
−0.00142069 + 0.999999i \(0.500452\pi\)
\(270\) 0 0
\(271\) − 1.72933e9i − 0.320627i −0.987066 0.160313i \(-0.948750\pi\)
0.987066 0.160313i \(-0.0512505\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 7.50333e9i − 1.31197i
\(276\) 0 0
\(277\) −3.04182e9 −0.516671 −0.258336 0.966055i \(-0.583174\pi\)
−0.258336 + 0.966055i \(0.583174\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3.75819e9 −0.602773 −0.301386 0.953502i \(-0.597449\pi\)
−0.301386 + 0.953502i \(0.597449\pi\)
\(282\) 0 0
\(283\) 1.14220e9i 0.178072i 0.996028 + 0.0890358i \(0.0283786\pi\)
−0.996028 + 0.0890358i \(0.971621\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 1.42603e10i − 2.10185i
\(288\) 0 0
\(289\) −3.53171e9 −0.506283
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.10157e10 1.49466 0.747328 0.664456i \(-0.231337\pi\)
0.747328 + 0.664456i \(0.231337\pi\)
\(294\) 0 0
\(295\) − 8.72682e7i − 0.0115231i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 5.16950e9i − 0.646790i
\(300\) 0 0
\(301\) 6.71772e9 0.818382
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.17101e9 −0.250878
\(306\) 0 0
\(307\) 4.87606e9i 0.548928i 0.961597 + 0.274464i \(0.0885004\pi\)
−0.961597 + 0.274464i \(0.911500\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 1.05124e10i − 1.12372i −0.827231 0.561862i \(-0.810085\pi\)
0.827231 0.561862i \(-0.189915\pi\)
\(312\) 0 0
\(313\) 1.08431e10 1.12974 0.564868 0.825181i \(-0.308927\pi\)
0.564868 + 0.825181i \(0.308927\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.43464e10 1.42071 0.710356 0.703842i \(-0.248534\pi\)
0.710356 + 0.703842i \(0.248534\pi\)
\(318\) 0 0
\(319\) − 1.94998e10i − 1.88308i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.95389e9i 0.822625i
\(324\) 0 0
\(325\) −6.20188e9 −0.555891
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.38539e10 −2.03599
\(330\) 0 0
\(331\) − 4.66058e9i − 0.388265i −0.980975 0.194132i \(-0.937811\pi\)
0.980975 0.194132i \(-0.0621891\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.49558e9i 0.356949i
\(336\) 0 0
\(337\) −1.98174e9 −0.153648 −0.0768239 0.997045i \(-0.524478\pi\)
−0.0768239 + 0.997045i \(0.524478\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.43396e10 1.80010
\(342\) 0 0
\(343\) − 2.15663e9i − 0.155811i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 8.31164e8i − 0.0573283i −0.999589 0.0286641i \(-0.990875\pi\)
0.999589 0.0286641i \(-0.00912533\pi\)
\(348\) 0 0
\(349\) 1.24018e10 0.835958 0.417979 0.908457i \(-0.362739\pi\)
0.417979 + 0.908457i \(0.362739\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.45970e9 0.287214 0.143607 0.989635i \(-0.454130\pi\)
0.143607 + 0.989635i \(0.454130\pi\)
\(354\) 0 0
\(355\) 7.96615e9i 0.501574i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 9.78764e9i − 0.589251i −0.955613 0.294626i \(-0.904805\pi\)
0.955613 0.294626i \(-0.0951949\pi\)
\(360\) 0 0
\(361\) −6.29492e9 −0.370648
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.28586e9 −0.185130
\(366\) 0 0
\(367\) 3.12246e10i 1.72121i 0.509276 + 0.860603i \(0.329913\pi\)
−0.509276 + 0.860603i \(0.670087\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.93165e9i 0.207529i
\(372\) 0 0
\(373\) −1.60695e10 −0.830168 −0.415084 0.909783i \(-0.636248\pi\)
−0.415084 + 0.909783i \(0.636248\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.61176e10 −0.797875
\(378\) 0 0
\(379\) 3.79438e9i 0.183901i 0.995764 + 0.0919506i \(0.0293102\pi\)
−0.995764 + 0.0919506i \(0.970690\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.89325e9i 0.320353i 0.987088 + 0.160177i \(0.0512064\pi\)
−0.987088 + 0.160177i \(0.948794\pi\)
\(384\) 0 0
\(385\) −1.97004e10 −0.896667
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.16828e10 −0.946926 −0.473463 0.880814i \(-0.656996\pi\)
−0.473463 + 0.880814i \(0.656996\pi\)
\(390\) 0 0
\(391\) − 1.58521e10i − 0.678233i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 1.62196e9i − 0.0666271i
\(396\) 0 0
\(397\) 2.55255e10 1.02757 0.513786 0.857918i \(-0.328243\pi\)
0.513786 + 0.857918i \(0.328243\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.44054e9 −0.326432 −0.163216 0.986590i \(-0.552187\pi\)
−0.163216 + 0.986590i \(0.552187\pi\)
\(402\) 0 0
\(403\) − 2.01179e10i − 0.762716i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.90107e10i 2.15057i
\(408\) 0 0
\(409\) −3.07378e10 −1.09845 −0.549225 0.835675i \(-0.685077\pi\)
−0.549225 + 0.835675i \(0.685077\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.11549e9 0.0383410
\(414\) 0 0
\(415\) 2.14331e10i 0.722591i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.64123e10i 0.856941i 0.903556 + 0.428470i \(0.140947\pi\)
−0.903556 + 0.428470i \(0.859053\pi\)
\(420\) 0 0
\(421\) 5.03302e10 1.60214 0.801070 0.598570i \(-0.204264\pi\)
0.801070 + 0.598570i \(0.204264\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.90178e10 −0.582915
\(426\) 0 0
\(427\) − 2.77505e10i − 0.834755i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.47805e10i 0.718127i 0.933313 + 0.359063i \(0.116904\pi\)
−0.933313 + 0.359063i \(0.883096\pi\)
\(432\) 0 0
\(433\) −1.97724e10 −0.562482 −0.281241 0.959637i \(-0.590746\pi\)
−0.281241 + 0.959637i \(0.590746\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.12125e10 1.13006
\(438\) 0 0
\(439\) 5.78110e10i 1.55651i 0.627948 + 0.778255i \(0.283895\pi\)
−0.627948 + 0.778255i \(0.716105\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 2.77961e10i − 0.721719i −0.932620 0.360860i \(-0.882483\pi\)
0.932620 0.360860i \(-0.117517\pi\)
\(444\) 0 0
\(445\) −4.33513e9 −0.110551
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4.37962e10 −1.07758 −0.538792 0.842439i \(-0.681119\pi\)
−0.538792 + 0.842439i \(0.681119\pi\)
\(450\) 0 0
\(451\) 1.00122e11i 2.42004i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.62834e10i 0.379925i
\(456\) 0 0
\(457\) −1.89812e10 −0.435171 −0.217585 0.976041i \(-0.569818\pi\)
−0.217585 + 0.976041i \(0.569818\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.20604e10 0.488438 0.244219 0.969720i \(-0.421468\pi\)
0.244219 + 0.969720i \(0.421468\pi\)
\(462\) 0 0
\(463\) − 2.37920e10i − 0.517734i −0.965913 0.258867i \(-0.916651\pi\)
0.965913 0.258867i \(-0.0833491\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.51836e10i 0.739729i 0.929086 + 0.369864i \(0.120596\pi\)
−0.929086 + 0.369864i \(0.879404\pi\)
\(468\) 0 0
\(469\) −5.74637e10 −1.18769
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.71652e10 −0.942274
\(474\) 0 0
\(475\) − 4.94429e10i − 0.971247i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 7.76849e10i − 1.47569i −0.674971 0.737844i \(-0.735844\pi\)
0.674971 0.737844i \(-0.264156\pi\)
\(480\) 0 0
\(481\) 4.87753e10 0.911212
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.12167e10 −0.564183
\(486\) 0 0
\(487\) − 7.39381e10i − 1.31448i −0.753683 0.657238i \(-0.771725\pi\)
0.753683 0.657238i \(-0.228275\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.09306e10i 0.876299i 0.898902 + 0.438150i \(0.144366\pi\)
−0.898902 + 0.438150i \(0.855634\pi\)
\(492\) 0 0
\(493\) −4.94241e10 −0.836663
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.01825e11 −1.66890
\(498\) 0 0
\(499\) 9.24638e9i 0.149132i 0.997216 + 0.0745658i \(0.0237571\pi\)
−0.997216 + 0.0745658i \(0.976243\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.60365e10i 0.250517i 0.992124 + 0.125259i \(0.0399760\pi\)
−0.992124 + 0.125259i \(0.960024\pi\)
\(504\) 0 0
\(505\) 3.00125e9 0.0461463
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.34179e11 1.99900 0.999500 0.0316279i \(-0.0100692\pi\)
0.999500 + 0.0316279i \(0.0100692\pi\)
\(510\) 0 0
\(511\) − 4.20007e10i − 0.615989i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.47929e10i 0.494609i
\(516\) 0 0
\(517\) 1.67478e11 2.34421
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.26281e11 1.71391 0.856954 0.515392i \(-0.172354\pi\)
0.856954 + 0.515392i \(0.172354\pi\)
\(522\) 0 0
\(523\) 1.13332e11i 1.51476i 0.652973 + 0.757381i \(0.273521\pi\)
−0.652973 + 0.757381i \(0.726479\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 6.16909e10i − 0.799794i
\(528\) 0 0
\(529\) 5.34791e9 0.0682906
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8.27557e10 1.02539
\(534\) 0 0
\(535\) 3.39197e10i 0.414034i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 1.18337e11i − 1.40205i
\(540\) 0 0
\(541\) −1.02482e11 −1.19635 −0.598174 0.801366i \(-0.704107\pi\)
−0.598174 + 0.801366i \(0.704107\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4.02023e9 −0.0455685
\(546\) 0 0
\(547\) − 1.56718e11i − 1.75053i −0.483648 0.875263i \(-0.660689\pi\)
0.483648 0.875263i \(-0.339311\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 1.28494e11i − 1.39404i
\(552\) 0 0
\(553\) 2.07323e10 0.221690
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.50567e10 −0.779774 −0.389887 0.920863i \(-0.627486\pi\)
−0.389887 + 0.920863i \(0.627486\pi\)
\(558\) 0 0
\(559\) 3.89844e10i 0.399249i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 1.69090e11i − 1.68300i −0.540255 0.841502i \(-0.681672\pi\)
0.540255 0.841502i \(-0.318328\pi\)
\(564\) 0 0
\(565\) −1.19747e10 −0.117509
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.64531e11 1.56964 0.784818 0.619727i \(-0.212757\pi\)
0.784818 + 0.619727i \(0.212757\pi\)
\(570\) 0 0
\(571\) − 1.61351e11i − 1.51784i −0.651182 0.758922i \(-0.725727\pi\)
0.651182 0.758922i \(-0.274273\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.75343e10i 0.800768i
\(576\) 0 0
\(577\) −5.65816e10 −0.510472 −0.255236 0.966879i \(-0.582153\pi\)
−0.255236 + 0.966879i \(0.582153\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.73963e11 −2.40430
\(582\) 0 0
\(583\) − 2.76041e10i − 0.238946i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.21103e10i 0.691584i 0.938311 + 0.345792i \(0.112390\pi\)
−0.938311 + 0.345792i \(0.887610\pi\)
\(588\) 0 0
\(589\) 1.60385e11 1.33261
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.12807e10 0.172095 0.0860474 0.996291i \(-0.472576\pi\)
0.0860474 + 0.996291i \(0.472576\pi\)
\(594\) 0 0
\(595\) 4.99323e10i 0.398395i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.52874e10i 0.196425i 0.995165 + 0.0982126i \(0.0313125\pi\)
−0.995165 + 0.0982126i \(0.968687\pi\)
\(600\) 0 0
\(601\) 1.98139e9 0.0151870 0.00759349 0.999971i \(-0.497583\pi\)
0.00759349 + 0.999971i \(0.497583\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8.30119e10 0.619610
\(606\) 0 0
\(607\) − 1.14604e11i − 0.844200i −0.906549 0.422100i \(-0.861293\pi\)
0.906549 0.422100i \(-0.138707\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 1.38429e11i − 0.993260i
\(612\) 0 0
\(613\) 2.76203e10 0.195608 0.0978040 0.995206i \(-0.468818\pi\)
0.0978040 + 0.995206i \(0.468818\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.65475e10 0.666193 0.333097 0.942893i \(-0.391906\pi\)
0.333097 + 0.942893i \(0.391906\pi\)
\(618\) 0 0
\(619\) 1.47548e11i 1.00501i 0.864575 + 0.502505i \(0.167588\pi\)
−0.864575 + 0.502505i \(0.832412\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 5.54127e10i − 0.367839i
\(624\) 0 0
\(625\) 7.90140e10 0.517826
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.49568e11 0.955510
\(630\) 0 0
\(631\) 1.55246e11i 0.979273i 0.871927 + 0.489636i \(0.162870\pi\)
−0.871927 + 0.489636i \(0.837130\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 4.79276e10i − 0.294775i
\(636\) 0 0
\(637\) −9.78114e10 −0.594062
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.80081e10 0.462070 0.231035 0.972945i \(-0.425789\pi\)
0.231035 + 0.972945i \(0.425789\pi\)
\(642\) 0 0
\(643\) − 1.17490e11i − 0.687317i −0.939095 0.343659i \(-0.888334\pi\)
0.939095 0.343659i \(-0.111666\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 5.16493e10i − 0.294745i −0.989081 0.147373i \(-0.952918\pi\)
0.989081 0.147373i \(-0.0470817\pi\)
\(648\) 0 0
\(649\) −7.83183e9 −0.0441453
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.22742e10 −0.122504 −0.0612520 0.998122i \(-0.519509\pi\)
−0.0612520 + 0.998122i \(0.519509\pi\)
\(654\) 0 0
\(655\) 1.38979e10i 0.0755066i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.20284e10i 0.328889i 0.986386 + 0.164444i \(0.0525831\pi\)
−0.986386 + 0.164444i \(0.947417\pi\)
\(660\) 0 0
\(661\) −2.63096e11 −1.37819 −0.689093 0.724672i \(-0.741991\pi\)
−0.689093 + 0.724672i \(0.741991\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.29815e11 −0.663801
\(666\) 0 0
\(667\) 2.27486e11i 1.14935i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.94836e11i 0.961125i
\(672\) 0 0
\(673\) 1.76424e11 0.859998 0.429999 0.902829i \(-0.358514\pi\)
0.429999 + 0.902829i \(0.358514\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.46667e11 −1.17424 −0.587119 0.809501i \(-0.699738\pi\)
−0.587119 + 0.809501i \(0.699738\pi\)
\(678\) 0 0
\(679\) − 3.99020e11i − 1.87722i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2.76508e11i 1.27065i 0.772245 + 0.635324i \(0.219134\pi\)
−0.772245 + 0.635324i \(0.780866\pi\)
\(684\) 0 0
\(685\) −1.00833e11 −0.457974
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.28162e10 −0.101243
\(690\) 0 0
\(691\) − 1.65551e11i − 0.726139i −0.931762 0.363069i \(-0.881729\pi\)
0.931762 0.363069i \(-0.118271\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.03576e11i 0.443936i
\(696\) 0 0
\(697\) 2.53768e11 1.07524
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2.76257e11 −1.14404 −0.572020 0.820240i \(-0.693840\pi\)
−0.572020 + 0.820240i \(0.693840\pi\)
\(702\) 0 0
\(703\) 3.88849e11i 1.59206i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.83628e10i 0.153544i
\(708\) 0 0
\(709\) 9.90119e10 0.391834 0.195917 0.980620i \(-0.437232\pi\)
0.195917 + 0.980620i \(0.437232\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.83947e11 −1.09870
\(714\) 0 0
\(715\) − 1.14326e11i − 0.437441i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.65608e11i 0.619676i 0.950789 + 0.309838i \(0.100275\pi\)
−0.950789 + 0.309838i \(0.899725\pi\)
\(720\) 0 0
\(721\) −4.44732e11 −1.64573
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.72917e11 0.987822
\(726\) 0 0
\(727\) 3.35426e11i 1.20077i 0.799712 + 0.600383i \(0.204985\pi\)
−0.799712 + 0.600383i \(0.795015\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.19544e11i 0.418658i
\(732\) 0 0
\(733\) −1.73168e11 −0.599863 −0.299932 0.953961i \(-0.596964\pi\)
−0.299932 + 0.953961i \(0.596964\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.03453e11 1.36749
\(738\) 0 0
\(739\) 5.36956e11i 1.80036i 0.435513 + 0.900182i \(0.356567\pi\)
−0.435513 + 0.900182i \(0.643433\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 5.97670e9i − 0.0196113i −0.999952 0.00980564i \(-0.996879\pi\)
0.999952 0.00980564i \(-0.00312128\pi\)
\(744\) 0 0
\(745\) 1.94733e11 0.632140
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.33570e11 −1.37763
\(750\) 0 0
\(751\) − 1.34684e11i − 0.423405i −0.977334 0.211703i \(-0.932099\pi\)
0.977334 0.211703i \(-0.0679008\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.63270e10i 0.142576i
\(756\) 0 0
\(757\) −5.86211e11 −1.78513 −0.892567 0.450915i \(-0.851098\pi\)
−0.892567 + 0.450915i \(0.851098\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.93475e11 0.875049 0.437525 0.899206i \(-0.355855\pi\)
0.437525 + 0.899206i \(0.355855\pi\)
\(762\) 0 0
\(763\) − 5.13876e10i − 0.151621i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.47340e9i 0.0187047i
\(768\) 0 0
\(769\) −2.61135e10 −0.0746724 −0.0373362 0.999303i \(-0.511887\pi\)
−0.0373362 + 0.999303i \(0.511887\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.32516e11 −1.49147 −0.745735 0.666243i \(-0.767901\pi\)
−0.745735 + 0.666243i \(0.767901\pi\)
\(774\) 0 0
\(775\) 3.40654e11i 0.944292i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.59749e11i 1.79155i
\(780\) 0 0
\(781\) 7.14917e11 1.92155
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.21070e11 0.582172
\(786\) 0 0
\(787\) − 3.20509e11i − 0.835490i −0.908564 0.417745i \(-0.862820\pi\)
0.908564 0.417745i \(-0.137180\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 1.53063e11i − 0.390990i
\(792\) 0 0
\(793\) 1.61042e11 0.407237
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.88402e11 −0.714768 −0.357384 0.933958i \(-0.616331\pi\)
−0.357384 + 0.933958i \(0.616331\pi\)
\(798\) 0 0
\(799\) − 4.24488e11i − 1.04155i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.94887e11i 0.709241i
\(804\) 0 0
\(805\) 2.29826e11 0.547287
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.95879e11 0.690748 0.345374 0.938465i \(-0.387752\pi\)
0.345374 + 0.938465i \(0.387752\pi\)
\(810\) 0 0
\(811\) 1.70426e11i 0.393961i 0.980407 + 0.196980i \(0.0631136\pi\)
−0.980407 + 0.196980i \(0.936886\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 1.18719e11i − 0.269086i
\(816\) 0 0
\(817\) −3.10793e11 −0.697563
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.71581e11 −0.597760 −0.298880 0.954291i \(-0.596613\pi\)
−0.298880 + 0.954291i \(0.596613\pi\)
\(822\) 0 0
\(823\) − 7.55264e11i − 1.64626i −0.567851 0.823131i \(-0.692225\pi\)
0.567851 0.823131i \(-0.307775\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 8.91170e11i − 1.90519i −0.304240 0.952596i \(-0.598402\pi\)
0.304240 0.952596i \(-0.401598\pi\)
\(828\) 0 0
\(829\) −5.33503e10 −0.112958 −0.0564792 0.998404i \(-0.517987\pi\)
−0.0564792 + 0.998404i \(0.517987\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.99935e11 −0.622942
\(834\) 0 0
\(835\) 1.38850e11i 0.285627i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.28645e10i 0.0461439i 0.999734 + 0.0230720i \(0.00734469\pi\)
−0.999734 + 0.0230720i \(0.992655\pi\)
\(840\) 0 0
\(841\) 2.09017e11 0.417829
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.15963e11 0.227453
\(846\) 0 0
\(847\) 1.06108e12i 2.06165i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 6.88422e11i − 1.31261i
\(852\) 0 0
\(853\) −8.98910e11 −1.69793 −0.848965 0.528449i \(-0.822774\pi\)
−0.848965 + 0.528449i \(0.822774\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.50807e11 1.57728 0.788638 0.614857i \(-0.210786\pi\)
0.788638 + 0.614857i \(0.210786\pi\)
\(858\) 0 0
\(859\) − 6.19591e11i − 1.13797i −0.822346 0.568987i \(-0.807335\pi\)
0.822346 0.568987i \(-0.192665\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 3.14088e10i − 0.0566250i −0.999599 0.0283125i \(-0.990987\pi\)
0.999599 0.0283125i \(-0.00901335\pi\)
\(864\) 0 0
\(865\) −2.53039e11 −0.451983
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.45561e11 −0.255251
\(870\) 0 0
\(871\) − 3.33474e11i − 0.579415i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 6.08083e11i − 1.03736i
\(876\) 0 0
\(877\) 5.09974e11 0.862084 0.431042 0.902332i \(-0.358146\pi\)
0.431042 + 0.902332i \(0.358146\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 5.15781e11 0.856173 0.428087 0.903738i \(-0.359188\pi\)
0.428087 + 0.903738i \(0.359188\pi\)
\(882\) 0 0
\(883\) 4.89454e11i 0.805136i 0.915390 + 0.402568i \(0.131882\pi\)
−0.915390 + 0.402568i \(0.868118\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1.92939e11i − 0.311692i −0.987781 0.155846i \(-0.950190\pi\)
0.987781 0.155846i \(-0.0498103\pi\)
\(888\) 0 0
\(889\) 6.12623e11 0.980813
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.10359e12 1.73541
\(894\) 0 0
\(895\) − 3.76279e11i − 0.586432i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 8.85300e11i 1.35535i
\(900\) 0 0
\(901\) −6.99651e10 −0.106165
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.78665e10 0.0415421
\(906\) 0 0
\(907\) − 1.42541e11i − 0.210626i −0.994439 0.105313i \(-0.966416\pi\)
0.994439 0.105313i \(-0.0335844\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.37631e11i 0.345008i 0.985009 + 0.172504i \(0.0551858\pi\)
−0.985009 + 0.172504i \(0.944814\pi\)
\(912\) 0 0
\(913\) 1.92350e12 2.76827
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.77647e11 −0.251235
\(918\) 0 0
\(919\) 1.08609e11i 0.152266i 0.997098 + 0.0761332i \(0.0242574\pi\)
−0.997098 + 0.0761332i \(0.975743\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 5.90915e11i − 0.814176i
\(924\) 0 0
\(925\) −8.25905e11 −1.12814
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −8.87938e11 −1.19212 −0.596060 0.802940i \(-0.703268\pi\)
−0.596060 + 0.802940i \(0.703268\pi\)
\(930\) 0 0
\(931\) − 7.79777e11i − 1.03794i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 3.50575e11i − 0.458706i
\(936\) 0 0
\(937\) −6.83385e11 −0.886557 −0.443279 0.896384i \(-0.646185\pi\)
−0.443279 + 0.896384i \(0.646185\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.37589e11 0.430556 0.215278 0.976553i \(-0.430934\pi\)
0.215278 + 0.976553i \(0.430934\pi\)
\(942\) 0 0
\(943\) − 1.16803e12i − 1.47709i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 8.44705e11i − 1.05028i −0.851016 0.525140i \(-0.824013\pi\)
0.851016 0.525140i \(-0.175987\pi\)
\(948\) 0 0
\(949\) 2.43739e11 0.300511
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.63793e11 0.198574 0.0992871 0.995059i \(-0.468344\pi\)
0.0992871 + 0.995059i \(0.468344\pi\)
\(954\) 0 0
\(955\) − 4.65816e11i − 0.560016i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 1.28887e12i − 1.52383i
\(960\) 0 0
\(961\) −2.52135e11 −0.295625
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −4.66278e11 −0.537694
\(966\) 0 0
\(967\) 8.83990e11i 1.01098i 0.862833 + 0.505489i \(0.168688\pi\)
−0.862833 + 0.505489i \(0.831312\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 3.35605e11i − 0.377530i −0.982022 0.188765i \(-0.939552\pi\)
0.982022 0.188765i \(-0.0604485\pi\)
\(972\) 0 0
\(973\) −1.32394e12 −1.47712
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.95199e11 −0.323994 −0.161997 0.986791i \(-0.551794\pi\)
−0.161997 + 0.986791i \(0.551794\pi\)
\(978\) 0 0
\(979\) 3.89053e11i 0.423524i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4.59775e11i 0.492415i 0.969217 + 0.246208i \(0.0791845\pi\)
−0.969217 + 0.246208i \(0.920816\pi\)
\(984\) 0 0
\(985\) 5.89449e10 0.0626183
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.50232e11 0.575123
\(990\) 0 0
\(991\) 1.43414e12i 1.48696i 0.668761 + 0.743478i \(0.266825\pi\)
−0.668761 + 0.743478i \(0.733175\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.18144e11i 0.324587i
\(996\) 0 0
\(997\) 1.38321e12 1.39993 0.699965 0.714177i \(-0.253199\pi\)
0.699965 + 0.714177i \(0.253199\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.9.g.d.127.1 2
3.2 odd 2 16.9.c.b.15.1 2
4.3 odd 2 inner 144.9.g.d.127.2 2
12.11 even 2 16.9.c.b.15.2 yes 2
15.2 even 4 400.9.h.a.399.1 4
15.8 even 4 400.9.h.a.399.3 4
15.14 odd 2 400.9.b.e.351.2 2
24.5 odd 2 64.9.c.c.63.2 2
24.11 even 2 64.9.c.c.63.1 2
48.5 odd 4 256.9.d.d.127.2 4
48.11 even 4 256.9.d.d.127.4 4
48.29 odd 4 256.9.d.d.127.3 4
48.35 even 4 256.9.d.d.127.1 4
60.23 odd 4 400.9.h.a.399.2 4
60.47 odd 4 400.9.h.a.399.4 4
60.59 even 2 400.9.b.e.351.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
16.9.c.b.15.1 2 3.2 odd 2
16.9.c.b.15.2 yes 2 12.11 even 2
64.9.c.c.63.1 2 24.11 even 2
64.9.c.c.63.2 2 24.5 odd 2
144.9.g.d.127.1 2 1.1 even 1 trivial
144.9.g.d.127.2 2 4.3 odd 2 inner
256.9.d.d.127.1 4 48.35 even 4
256.9.d.d.127.2 4 48.5 odd 4
256.9.d.d.127.3 4 48.29 odd 4
256.9.d.d.127.4 4 48.11 even 4
400.9.b.e.351.1 2 60.59 even 2
400.9.b.e.351.2 2 15.14 odd 2
400.9.h.a.399.1 4 15.2 even 4
400.9.h.a.399.2 4 60.23 odd 4
400.9.h.a.399.3 4 15.8 even 4
400.9.h.a.399.4 4 60.47 odd 4