Properties

Label 144.9
Level 144
Weight 9
Dimension 2032
Nonzero newspaces 8
Sturm bound 10368
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(10368\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(144))\).

Total New Old
Modular forms 4720 2072 2648
Cusp forms 4496 2032 2464
Eisenstein series 224 40 184

Trace form

\( 2032 q - 6 q^{2} - 6 q^{3} + 180 q^{4} - 513 q^{5} - 8 q^{6} + 3001 q^{7} - 8736 q^{8} + 3806 q^{9} - 1876 q^{10} - 19779 q^{11} - 8 q^{12} - 68543 q^{13} - 56856 q^{14} + 91899 q^{15} - 179260 q^{16} - 181956 q^{17}+ \cdots - 546769989 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(144))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
144.9.b \(\chi_{144}(55, \cdot)\) None 0 1
144.9.e \(\chi_{144}(17, \cdot)\) 144.9.e.a 2 1
144.9.e.b 2
144.9.e.c 2
144.9.e.d 2
144.9.e.e 4
144.9.e.f 4
144.9.g \(\chi_{144}(127, \cdot)\) 144.9.g.a 1 1
144.9.g.b 1
144.9.g.c 2
144.9.g.d 2
144.9.g.e 2
144.9.g.f 2
144.9.g.g 2
144.9.g.h 4
144.9.g.i 4
144.9.h \(\chi_{144}(89, \cdot)\) None 0 1
144.9.j \(\chi_{144}(53, \cdot)\) n/a 128 2
144.9.m \(\chi_{144}(19, \cdot)\) n/a 158 2
144.9.n \(\chi_{144}(41, \cdot)\) None 0 2
144.9.o \(\chi_{144}(31, \cdot)\) 144.9.o.a 32 2
144.9.o.b 32
144.9.o.c 32
144.9.q \(\chi_{144}(65, \cdot)\) 144.9.q.a 14 2
144.9.q.b 16
144.9.q.c 16
144.9.q.d 48
144.9.t \(\chi_{144}(7, \cdot)\) None 0 2
144.9.v \(\chi_{144}(43, \cdot)\) n/a 760 4
144.9.w \(\chi_{144}(5, \cdot)\) n/a 760 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(144))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(144)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)