Properties

Label 144.9.g
Level $144$
Weight $9$
Character orbit 144.g
Rep. character $\chi_{144}(127,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $9$
Sturm bound $216$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 144.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(216\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(144, [\chi])\).

Total New Old
Modular forms 204 20 184
Cusp forms 180 20 160
Eisenstein series 24 0 24

Trace form

\( 20 q - 504 q^{5} - 68536 q^{13} - 99288 q^{17} + 2252956 q^{25} - 2000952 q^{29} - 1236440 q^{37} - 4672728 q^{41} - 16562284 q^{49} + 17479368 q^{53} + 3839656 q^{61} + 27689616 q^{65} - 129983992 q^{73}+ \cdots + 302046728 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(144, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
144.9.g.a 144.g 4.b $1$ $58.663$ \(\Q\) \(\Q(\sqrt{-1}) \) 144.9.g.a \(0\) \(0\) \(-672\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-672q^{5}+478q^{13}-154560q^{17}+\cdots\)
144.9.g.b 144.g 4.b $1$ $58.663$ \(\Q\) \(\Q(\sqrt{-1}) \) 144.9.g.a \(0\) \(0\) \(672\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+672q^{5}+478q^{13}+154560q^{17}+\cdots\)
144.9.g.c 144.g 4.b $2$ $58.663$ \(\Q(\sqrt{-3}) \) None 48.9.g.b \(0\) \(0\) \(-1452\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-726 q^{5}+49\beta q^{7}+213\beta q^{11}+\cdots\)
144.9.g.d 144.g 4.b $2$ $58.663$ \(\Q(\sqrt{-3}) \) None 16.9.c.b \(0\) \(0\) \(-516\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-258 q^{5}-238\beta q^{7}+1671\beta q^{11}+\cdots\)
144.9.g.e 144.g 4.b $2$ $58.663$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 144.9.g.e \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-47\beta q^{7}+35806 q^{13}-598\beta q^{19}+\cdots\)
144.9.g.f 144.g 4.b $2$ $58.663$ \(\Q(\sqrt{-3}) \) None 48.9.g.a \(0\) \(0\) \(180\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+90 q^{5}+133\beta q^{7}-747\beta q^{11}+\cdots\)
144.9.g.g 144.g 4.b $2$ $58.663$ \(\Q(\sqrt{-35}) \) None 16.9.c.a \(0\) \(0\) \(1020\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+510q^{5}-2\beta q^{7}-15\beta q^{11}-27710q^{13}+\cdots\)
144.9.g.h 144.g 4.b $4$ $58.663$ \(\Q(\sqrt{-3}, \sqrt{355})\) None 144.9.g.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{5}-119\beta _{2}q^{7}+\beta _{3}q^{11}-45986q^{13}+\cdots\)
144.9.g.i 144.g 4.b $4$ $58.663$ \(\Q(\sqrt{-3}, \sqrt{1801})\) None 48.9.g.c \(0\) \(0\) \(264\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(66+\beta _{2})q^{5}+(-193\beta _{1}-\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{9}^{\mathrm{old}}(144, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)