Defining parameters
| Level: | \( N \) | \(=\) | \( 144 = 2^{4} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 9 \) |
| Character orbit: | \([\chi]\) | \(=\) | 144.g (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 9 \) | ||
| Sturm bound: | \(216\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(144, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 204 | 20 | 184 |
| Cusp forms | 180 | 20 | 160 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(144, [\chi])\) into newform subspaces
Decomposition of \(S_{9}^{\mathrm{old}}(144, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)