Properties

Label 16.9.c.b.15.2
Level $16$
Weight $9$
Character 16.15
Analytic conductor $6.518$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [16,9,Mod(15,16)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("16.15"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(16, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 16.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,516] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.51805776098\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 15.2
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 16.15
Dual form 16.9.c.b.15.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+13.8564i q^{3} +258.000 q^{5} +3297.82i q^{7} +6369.00 q^{9} +23154.1i q^{11} +19138.0 q^{13} +3574.95i q^{15} -58686.0 q^{17} -152573. i q^{19} -45696.0 q^{21} -270117. i q^{23} -324061. q^{25} +179163. i q^{27} +842178. q^{29} +1.05120e6i q^{31} -320832. q^{33} +850839. i q^{35} +2.54861e6 q^{37} +265184. i q^{39} -4.32416e6 q^{41} -2.03702e6i q^{43} +1.64320e6 q^{45} -7.23321e6i q^{47} -5.11085e6 q^{49} -813177. i q^{51} +1.19219e6 q^{53} +5.97375e6i q^{55} +2.11411e6 q^{57} +338249. i q^{59} +8.41479e6 q^{61} +2.10038e7i q^{63} +4.93760e6 q^{65} +1.74247e7i q^{67} +3.74285e6 q^{69} -3.08765e7i q^{71} +1.27359e7 q^{73} -4.49032e6i q^{75} -7.63580e7 q^{77} -6.28665e6i q^{79} +3.93044e7 q^{81} -8.30740e7i q^{83} -1.51410e7 q^{85} +1.16696e7i q^{87} -1.68028e7 q^{89} +6.31138e7i q^{91} -1.45659e7 q^{93} -3.93638e7i q^{95} +1.20995e8 q^{97} +1.47468e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 516 q^{5} + 12738 q^{9} + 38276 q^{13} - 117372 q^{17} - 91392 q^{21} - 648122 q^{25} + 1684356 q^{29} - 641664 q^{33} + 5097220 q^{37} - 8648316 q^{41} + 3286404 q^{45} - 10221694 q^{49} + 2384388 q^{53}+ \cdots + 241989764 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/16\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(15\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 13.8564i 0.171067i 0.996335 + 0.0855334i \(0.0272594\pi\)
−0.996335 + 0.0855334i \(0.972741\pi\)
\(4\) 0 0
\(5\) 258.000 0.412800 0.206400 0.978468i \(-0.433825\pi\)
0.206400 + 0.978468i \(0.433825\pi\)
\(6\) 0 0
\(7\) 3297.82i 1.37352i 0.726884 + 0.686761i \(0.240968\pi\)
−0.726884 + 0.686761i \(0.759032\pi\)
\(8\) 0 0
\(9\) 6369.00 0.970736
\(10\) 0 0
\(11\) 23154.1i 1.58145i 0.612170 + 0.790727i \(0.290297\pi\)
−0.612170 + 0.790727i \(0.709703\pi\)
\(12\) 0 0
\(13\) 19138.0 0.670075 0.335037 0.942205i \(-0.391251\pi\)
0.335037 + 0.942205i \(0.391251\pi\)
\(14\) 0 0
\(15\) 3574.95i 0.0706164i
\(16\) 0 0
\(17\) −58686.0 −0.702650 −0.351325 0.936254i \(-0.614269\pi\)
−0.351325 + 0.936254i \(0.614269\pi\)
\(18\) 0 0
\(19\) − 152573.i − 1.17075i −0.810764 0.585373i \(-0.800948\pi\)
0.810764 0.585373i \(-0.199052\pi\)
\(20\) 0 0
\(21\) −45696.0 −0.234964
\(22\) 0 0
\(23\) − 270117.i − 0.965251i −0.875827 0.482625i \(-0.839683\pi\)
0.875827 0.482625i \(-0.160317\pi\)
\(24\) 0 0
\(25\) −324061. −0.829596
\(26\) 0 0
\(27\) 179163.i 0.337127i
\(28\) 0 0
\(29\) 842178. 1.19073 0.595363 0.803457i \(-0.297008\pi\)
0.595363 + 0.803457i \(0.297008\pi\)
\(30\) 0 0
\(31\) 1.05120e6i 1.13826i 0.822249 + 0.569128i \(0.192719\pi\)
−0.822249 + 0.569128i \(0.807281\pi\)
\(32\) 0 0
\(33\) −320832. −0.270534
\(34\) 0 0
\(35\) 850839.i 0.566990i
\(36\) 0 0
\(37\) 2.54861e6 1.35987 0.679934 0.733274i \(-0.262009\pi\)
0.679934 + 0.733274i \(0.262009\pi\)
\(38\) 0 0
\(39\) 265184.i 0.114627i
\(40\) 0 0
\(41\) −4.32416e6 −1.53026 −0.765132 0.643874i \(-0.777326\pi\)
−0.765132 + 0.643874i \(0.777326\pi\)
\(42\) 0 0
\(43\) − 2.03702e6i − 0.595828i −0.954593 0.297914i \(-0.903709\pi\)
0.954593 0.297914i \(-0.0962908\pi\)
\(44\) 0 0
\(45\) 1.64320e6 0.400720
\(46\) 0 0
\(47\) − 7.23321e6i − 1.48231i −0.671333 0.741156i \(-0.734278\pi\)
0.671333 0.741156i \(-0.265722\pi\)
\(48\) 0 0
\(49\) −5.11085e6 −0.886561
\(50\) 0 0
\(51\) − 813177.i − 0.120200i
\(52\) 0 0
\(53\) 1.19219e6 0.151093 0.0755463 0.997142i \(-0.475930\pi\)
0.0755463 + 0.997142i \(0.475930\pi\)
\(54\) 0 0
\(55\) 5.97375e6i 0.652824i
\(56\) 0 0
\(57\) 2.11411e6 0.200276
\(58\) 0 0
\(59\) 338249.i 0.0279144i 0.999903 + 0.0139572i \(0.00444286\pi\)
−0.999903 + 0.0139572i \(0.995557\pi\)
\(60\) 0 0
\(61\) 8.41479e6 0.607748 0.303874 0.952712i \(-0.401720\pi\)
0.303874 + 0.952712i \(0.401720\pi\)
\(62\) 0 0
\(63\) 2.10038e7i 1.33333i
\(64\) 0 0
\(65\) 4.93760e6 0.276607
\(66\) 0 0
\(67\) 1.74247e7i 0.864702i 0.901705 + 0.432351i \(0.142316\pi\)
−0.901705 + 0.432351i \(0.857684\pi\)
\(68\) 0 0
\(69\) 3.74285e6 0.165122
\(70\) 0 0
\(71\) − 3.08765e7i − 1.21505i −0.794299 0.607526i \(-0.792162\pi\)
0.794299 0.607526i \(-0.207838\pi\)
\(72\) 0 0
\(73\) 1.27359e7 0.448474 0.224237 0.974535i \(-0.428011\pi\)
0.224237 + 0.974535i \(0.428011\pi\)
\(74\) 0 0
\(75\) − 4.49032e6i − 0.141916i
\(76\) 0 0
\(77\) −7.63580e7 −2.17216
\(78\) 0 0
\(79\) − 6.28665e6i − 0.161403i −0.996738 0.0807014i \(-0.974284\pi\)
0.996738 0.0807014i \(-0.0257160\pi\)
\(80\) 0 0
\(81\) 3.93044e7 0.913065
\(82\) 0 0
\(83\) − 8.30740e7i − 1.75046i −0.483706 0.875231i \(-0.660709\pi\)
0.483706 0.875231i \(-0.339291\pi\)
\(84\) 0 0
\(85\) −1.51410e7 −0.290054
\(86\) 0 0
\(87\) 1.16696e7i 0.203694i
\(88\) 0 0
\(89\) −1.68028e7 −0.267807 −0.133904 0.990994i \(-0.542751\pi\)
−0.133904 + 0.990994i \(0.542751\pi\)
\(90\) 0 0
\(91\) 6.31138e7i 0.920362i
\(92\) 0 0
\(93\) −1.45659e7 −0.194718
\(94\) 0 0
\(95\) − 3.93638e7i − 0.483284i
\(96\) 0 0
\(97\) 1.20995e8 1.36672 0.683361 0.730081i \(-0.260518\pi\)
0.683361 + 0.730081i \(0.260518\pi\)
\(98\) 0 0
\(99\) 1.47468e8i 1.53517i
\(100\) 0 0
\(101\) 1.16328e7 0.111789 0.0558943 0.998437i \(-0.482199\pi\)
0.0558943 + 0.998437i \(0.482199\pi\)
\(102\) 0 0
\(103\) 1.34856e8i 1.19818i 0.800682 + 0.599090i \(0.204471\pi\)
−0.800682 + 0.599090i \(0.795529\pi\)
\(104\) 0 0
\(105\) −1.17896e7 −0.0969931
\(106\) 0 0
\(107\) − 1.31472e8i − 1.00299i −0.865160 0.501495i \(-0.832783\pi\)
0.865160 0.501495i \(-0.167217\pi\)
\(108\) 0 0
\(109\) 1.55823e7 0.110389 0.0551944 0.998476i \(-0.482422\pi\)
0.0551944 + 0.998476i \(0.482422\pi\)
\(110\) 0 0
\(111\) 3.53146e7i 0.232628i
\(112\) 0 0
\(113\) −4.64134e7 −0.284662 −0.142331 0.989819i \(-0.545460\pi\)
−0.142331 + 0.989819i \(0.545460\pi\)
\(114\) 0 0
\(115\) − 6.96901e7i − 0.398456i
\(116\) 0 0
\(117\) 1.21890e8 0.650466
\(118\) 0 0
\(119\) − 1.93536e8i − 0.965104i
\(120\) 0 0
\(121\) −3.21751e8 −1.50099
\(122\) 0 0
\(123\) − 5.99173e7i − 0.261777i
\(124\) 0 0
\(125\) −1.84389e8 −0.755257
\(126\) 0 0
\(127\) − 1.85766e8i − 0.714087i −0.934088 0.357043i \(-0.883785\pi\)
0.934088 0.357043i \(-0.116215\pi\)
\(128\) 0 0
\(129\) 2.82257e7 0.101926
\(130\) 0 0
\(131\) − 5.38679e7i − 0.182913i −0.995809 0.0914566i \(-0.970848\pi\)
0.995809 0.0914566i \(-0.0291523\pi\)
\(132\) 0 0
\(133\) 5.03159e8 1.60805
\(134\) 0 0
\(135\) 4.62241e7i 0.139166i
\(136\) 0 0
\(137\) −3.90826e8 −1.10943 −0.554716 0.832040i \(-0.687173\pi\)
−0.554716 + 0.832040i \(0.687173\pi\)
\(138\) 0 0
\(139\) 4.01458e8i 1.07543i 0.843128 + 0.537713i \(0.180712\pi\)
−0.843128 + 0.537713i \(0.819288\pi\)
\(140\) 0 0
\(141\) 1.00226e8 0.253574
\(142\) 0 0
\(143\) 4.43122e8i 1.05969i
\(144\) 0 0
\(145\) 2.17282e8 0.491532
\(146\) 0 0
\(147\) − 7.08180e7i − 0.151661i
\(148\) 0 0
\(149\) 7.54777e8 1.53135 0.765674 0.643229i \(-0.222406\pi\)
0.765674 + 0.643229i \(0.222406\pi\)
\(150\) 0 0
\(151\) 1.79562e8i 0.345388i 0.984976 + 0.172694i \(0.0552471\pi\)
−0.984976 + 0.172694i \(0.944753\pi\)
\(152\) 0 0
\(153\) −3.73771e8 −0.682087
\(154\) 0 0
\(155\) 2.71210e8i 0.469872i
\(156\) 0 0
\(157\) −8.56860e8 −1.41030 −0.705150 0.709058i \(-0.749120\pi\)
−0.705150 + 0.709058i \(0.749120\pi\)
\(158\) 0 0
\(159\) 1.65195e7i 0.0258469i
\(160\) 0 0
\(161\) 8.90798e8 1.32579
\(162\) 0 0
\(163\) − 4.60153e8i − 0.651856i −0.945395 0.325928i \(-0.894323\pi\)
0.945395 0.325928i \(-0.105677\pi\)
\(164\) 0 0
\(165\) −8.27747e7 −0.111676
\(166\) 0 0
\(167\) − 5.38177e8i − 0.691925i −0.938248 0.345963i \(-0.887552\pi\)
0.938248 0.345963i \(-0.112448\pi\)
\(168\) 0 0
\(169\) −4.49468e8 −0.551000
\(170\) 0 0
\(171\) − 9.71737e8i − 1.13649i
\(172\) 0 0
\(173\) −9.80770e8 −1.09492 −0.547461 0.836832i \(-0.684405\pi\)
−0.547461 + 0.836832i \(0.684405\pi\)
\(174\) 0 0
\(175\) − 1.06870e9i − 1.13947i
\(176\) 0 0
\(177\) −4.68691e6 −0.00477522
\(178\) 0 0
\(179\) 1.45845e9i 1.42062i 0.703889 + 0.710310i \(0.251445\pi\)
−0.703889 + 0.710310i \(0.748555\pi\)
\(180\) 0 0
\(181\) −1.08010e8 −0.100635 −0.0503175 0.998733i \(-0.516023\pi\)
−0.0503175 + 0.998733i \(0.516023\pi\)
\(182\) 0 0
\(183\) 1.16599e8i 0.103966i
\(184\) 0 0
\(185\) 6.57541e8 0.561353
\(186\) 0 0
\(187\) − 1.35882e9i − 1.11121i
\(188\) 0 0
\(189\) −5.90849e8 −0.463052
\(190\) 0 0
\(191\) 1.80549e9i 1.35663i 0.734772 + 0.678314i \(0.237289\pi\)
−0.734772 + 0.678314i \(0.762711\pi\)
\(192\) 0 0
\(193\) 1.80728e9 1.30255 0.651277 0.758840i \(-0.274234\pi\)
0.651277 + 0.758840i \(0.274234\pi\)
\(194\) 0 0
\(195\) 6.84174e7i 0.0473182i
\(196\) 0 0
\(197\) 2.28469e8 0.151692 0.0758459 0.997120i \(-0.475834\pi\)
0.0758459 + 0.997120i \(0.475834\pi\)
\(198\) 0 0
\(199\) 1.23311e9i 0.786305i 0.919473 + 0.393153i \(0.128616\pi\)
−0.919473 + 0.393153i \(0.871384\pi\)
\(200\) 0 0
\(201\) −2.41444e8 −0.147922
\(202\) 0 0
\(203\) 2.77736e9i 1.63549i
\(204\) 0 0
\(205\) −1.11563e9 −0.631693
\(206\) 0 0
\(207\) − 1.72037e9i − 0.937004i
\(208\) 0 0
\(209\) 3.53268e9 1.85148
\(210\) 0 0
\(211\) 2.15314e8i 0.108628i 0.998524 + 0.0543141i \(0.0172972\pi\)
−0.998524 + 0.0543141i \(0.982703\pi\)
\(212\) 0 0
\(213\) 4.27838e8 0.207855
\(214\) 0 0
\(215\) − 5.25550e8i − 0.245958i
\(216\) 0 0
\(217\) −3.46668e9 −1.56342
\(218\) 0 0
\(219\) 1.76473e8i 0.0767190i
\(220\) 0 0
\(221\) −1.12313e9 −0.470828
\(222\) 0 0
\(223\) − 4.09616e8i − 0.165637i −0.996565 0.0828185i \(-0.973608\pi\)
0.996565 0.0828185i \(-0.0263922\pi\)
\(224\) 0 0
\(225\) −2.06394e9 −0.805319
\(226\) 0 0
\(227\) − 5.22333e9i − 1.96718i −0.180415 0.983591i \(-0.557744\pi\)
0.180415 0.983591i \(-0.442256\pi\)
\(228\) 0 0
\(229\) 2.86620e9 1.04223 0.521116 0.853486i \(-0.325516\pi\)
0.521116 + 0.853486i \(0.325516\pi\)
\(230\) 0 0
\(231\) − 1.05805e9i − 0.371584i
\(232\) 0 0
\(233\) −4.91979e8 −0.166925 −0.0834627 0.996511i \(-0.526598\pi\)
−0.0834627 + 0.996511i \(0.526598\pi\)
\(234\) 0 0
\(235\) − 1.86617e9i − 0.611898i
\(236\) 0 0
\(237\) 8.71104e7 0.0276106
\(238\) 0 0
\(239\) 3.04443e9i 0.933071i 0.884503 + 0.466535i \(0.154498\pi\)
−0.884503 + 0.466535i \(0.845502\pi\)
\(240\) 0 0
\(241\) −3.10239e9 −0.919662 −0.459831 0.888006i \(-0.652090\pi\)
−0.459831 + 0.888006i \(0.652090\pi\)
\(242\) 0 0
\(243\) 1.72011e9i 0.493322i
\(244\) 0 0
\(245\) −1.31860e9 −0.365972
\(246\) 0 0
\(247\) − 2.91994e9i − 0.784488i
\(248\) 0 0
\(249\) 1.15111e9 0.299446
\(250\) 0 0
\(251\) 1.89495e9i 0.477422i 0.971091 + 0.238711i \(0.0767248\pi\)
−0.971091 + 0.238711i \(0.923275\pi\)
\(252\) 0 0
\(253\) 6.25430e9 1.52650
\(254\) 0 0
\(255\) − 2.09800e8i − 0.0496186i
\(256\) 0 0
\(257\) −2.97422e9 −0.681774 −0.340887 0.940104i \(-0.610727\pi\)
−0.340887 + 0.940104i \(0.610727\pi\)
\(258\) 0 0
\(259\) 8.40487e9i 1.86781i
\(260\) 0 0
\(261\) 5.36383e9 1.15588
\(262\) 0 0
\(263\) 3.15278e9i 0.658977i 0.944160 + 0.329488i \(0.106876\pi\)
−0.944160 + 0.329488i \(0.893124\pi\)
\(264\) 0 0
\(265\) 3.07586e8 0.0623711
\(266\) 0 0
\(267\) − 2.32827e8i − 0.0458129i
\(268\) 0 0
\(269\) 1.48778e7 0.00284137 0.00142069 0.999999i \(-0.499548\pi\)
0.00142069 + 0.999999i \(0.499548\pi\)
\(270\) 0 0
\(271\) 1.72933e9i 0.320627i 0.987066 + 0.160313i \(0.0512505\pi\)
−0.987066 + 0.160313i \(0.948750\pi\)
\(272\) 0 0
\(273\) −8.74530e8 −0.157443
\(274\) 0 0
\(275\) − 7.50333e9i − 1.31197i
\(276\) 0 0
\(277\) −3.04182e9 −0.516671 −0.258336 0.966055i \(-0.583174\pi\)
−0.258336 + 0.966055i \(0.583174\pi\)
\(278\) 0 0
\(279\) 6.69511e9i 1.10495i
\(280\) 0 0
\(281\) 3.75819e9 0.602773 0.301386 0.953502i \(-0.402551\pi\)
0.301386 + 0.953502i \(0.402551\pi\)
\(282\) 0 0
\(283\) − 1.14220e9i − 0.178072i −0.996028 0.0890358i \(-0.971621\pi\)
0.996028 0.0890358i \(-0.0283786\pi\)
\(284\) 0 0
\(285\) 5.45441e8 0.0826739
\(286\) 0 0
\(287\) − 1.42603e10i − 2.10185i
\(288\) 0 0
\(289\) −3.53171e9 −0.506283
\(290\) 0 0
\(291\) 1.67655e9i 0.233801i
\(292\) 0 0
\(293\) −1.10157e10 −1.49466 −0.747328 0.664456i \(-0.768663\pi\)
−0.747328 + 0.664456i \(0.768663\pi\)
\(294\) 0 0
\(295\) 8.72682e7i 0.0115231i
\(296\) 0 0
\(297\) −4.14836e9 −0.533151
\(298\) 0 0
\(299\) − 5.16950e9i − 0.646790i
\(300\) 0 0
\(301\) 6.71772e9 0.818382
\(302\) 0 0
\(303\) 1.61188e8i 0.0191233i
\(304\) 0 0
\(305\) 2.17101e9 0.250878
\(306\) 0 0
\(307\) − 4.87606e9i − 0.548928i −0.961597 0.274464i \(-0.911500\pi\)
0.961597 0.274464i \(-0.0885004\pi\)
\(308\) 0 0
\(309\) −1.86862e9 −0.204969
\(310\) 0 0
\(311\) − 1.05124e10i − 1.12372i −0.827231 0.561862i \(-0.810085\pi\)
0.827231 0.561862i \(-0.189915\pi\)
\(312\) 0 0
\(313\) 1.08431e10 1.12974 0.564868 0.825181i \(-0.308927\pi\)
0.564868 + 0.825181i \(0.308927\pi\)
\(314\) 0 0
\(315\) 5.41899e9i 0.550397i
\(316\) 0 0
\(317\) −1.43464e10 −1.42071 −0.710356 0.703842i \(-0.751466\pi\)
−0.710356 + 0.703842i \(0.751466\pi\)
\(318\) 0 0
\(319\) 1.94998e10i 1.88308i
\(320\) 0 0
\(321\) 1.82172e9 0.171578
\(322\) 0 0
\(323\) 8.95389e9i 0.822625i
\(324\) 0 0
\(325\) −6.20188e9 −0.555891
\(326\) 0 0
\(327\) 2.15914e8i 0.0188838i
\(328\) 0 0
\(329\) 2.38539e10 2.03599
\(330\) 0 0
\(331\) 4.66058e9i 0.388265i 0.980975 + 0.194132i \(0.0621891\pi\)
−0.980975 + 0.194132i \(0.937811\pi\)
\(332\) 0 0
\(333\) 1.62321e10 1.32007
\(334\) 0 0
\(335\) 4.49558e9i 0.356949i
\(336\) 0 0
\(337\) −1.98174e9 −0.153648 −0.0768239 0.997045i \(-0.524478\pi\)
−0.0768239 + 0.997045i \(0.524478\pi\)
\(338\) 0 0
\(339\) − 6.43123e8i − 0.0486963i
\(340\) 0 0
\(341\) −2.43396e10 −1.80010
\(342\) 0 0
\(343\) 2.15663e9i 0.155811i
\(344\) 0 0
\(345\) 9.65655e8 0.0681625
\(346\) 0 0
\(347\) − 8.31164e8i − 0.0573283i −0.999589 0.0286641i \(-0.990875\pi\)
0.999589 0.0286641i \(-0.00912533\pi\)
\(348\) 0 0
\(349\) 1.24018e10 0.835958 0.417979 0.908457i \(-0.362739\pi\)
0.417979 + 0.908457i \(0.362739\pi\)
\(350\) 0 0
\(351\) 3.42883e9i 0.225901i
\(352\) 0 0
\(353\) −4.45970e9 −0.287214 −0.143607 0.989635i \(-0.545870\pi\)
−0.143607 + 0.989635i \(0.545870\pi\)
\(354\) 0 0
\(355\) − 7.96615e9i − 0.501574i
\(356\) 0 0
\(357\) 2.68172e9 0.165097
\(358\) 0 0
\(359\) − 9.78764e9i − 0.589251i −0.955613 0.294626i \(-0.904805\pi\)
0.955613 0.294626i \(-0.0951949\pi\)
\(360\) 0 0
\(361\) −6.29492e9 −0.370648
\(362\) 0 0
\(363\) − 4.45832e9i − 0.256770i
\(364\) 0 0
\(365\) 3.28586e9 0.185130
\(366\) 0 0
\(367\) − 3.12246e10i − 1.72121i −0.509276 0.860603i \(-0.670087\pi\)
0.509276 0.860603i \(-0.329913\pi\)
\(368\) 0 0
\(369\) −2.75406e10 −1.48548
\(370\) 0 0
\(371\) 3.93165e9i 0.207529i
\(372\) 0 0
\(373\) −1.60695e10 −0.830168 −0.415084 0.909783i \(-0.636248\pi\)
−0.415084 + 0.909783i \(0.636248\pi\)
\(374\) 0 0
\(375\) − 2.55497e9i − 0.129199i
\(376\) 0 0
\(377\) 1.61176e10 0.797875
\(378\) 0 0
\(379\) − 3.79438e9i − 0.183901i −0.995764 0.0919506i \(-0.970690\pi\)
0.995764 0.0919506i \(-0.0293102\pi\)
\(380\) 0 0
\(381\) 2.57405e9 0.122157
\(382\) 0 0
\(383\) 6.89325e9i 0.320353i 0.987088 + 0.160177i \(0.0512064\pi\)
−0.987088 + 0.160177i \(0.948794\pi\)
\(384\) 0 0
\(385\) −1.97004e10 −0.896667
\(386\) 0 0
\(387\) − 1.29738e10i − 0.578392i
\(388\) 0 0
\(389\) 2.16828e10 0.946926 0.473463 0.880814i \(-0.343004\pi\)
0.473463 + 0.880814i \(0.343004\pi\)
\(390\) 0 0
\(391\) 1.58521e10i 0.678233i
\(392\) 0 0
\(393\) 7.46416e8 0.0312904
\(394\) 0 0
\(395\) − 1.62196e9i − 0.0666271i
\(396\) 0 0
\(397\) 2.55255e10 1.02757 0.513786 0.857918i \(-0.328243\pi\)
0.513786 + 0.857918i \(0.328243\pi\)
\(398\) 0 0
\(399\) 6.97197e9i 0.275083i
\(400\) 0 0
\(401\) 8.44054e9 0.326432 0.163216 0.986590i \(-0.447813\pi\)
0.163216 + 0.986590i \(0.447813\pi\)
\(402\) 0 0
\(403\) 2.01179e10i 0.762716i
\(404\) 0 0
\(405\) 1.01405e10 0.376913
\(406\) 0 0
\(407\) 5.90107e10i 2.15057i
\(408\) 0 0
\(409\) −3.07378e10 −1.09845 −0.549225 0.835675i \(-0.685077\pi\)
−0.549225 + 0.835675i \(0.685077\pi\)
\(410\) 0 0
\(411\) − 5.41544e9i − 0.189787i
\(412\) 0 0
\(413\) −1.11549e9 −0.0383410
\(414\) 0 0
\(415\) − 2.14331e10i − 0.722591i
\(416\) 0 0
\(417\) −5.56276e9 −0.183970
\(418\) 0 0
\(419\) 2.64123e10i 0.856941i 0.903556 + 0.428470i \(0.140947\pi\)
−0.903556 + 0.428470i \(0.859053\pi\)
\(420\) 0 0
\(421\) 5.03302e10 1.60214 0.801070 0.598570i \(-0.204264\pi\)
0.801070 + 0.598570i \(0.204264\pi\)
\(422\) 0 0
\(423\) − 4.60683e10i − 1.43893i
\(424\) 0 0
\(425\) 1.90178e10 0.582915
\(426\) 0 0
\(427\) 2.77505e10i 0.834755i
\(428\) 0 0
\(429\) −6.14008e9 −0.181278
\(430\) 0 0
\(431\) 2.47805e10i 0.718127i 0.933313 + 0.359063i \(0.116904\pi\)
−0.933313 + 0.359063i \(0.883096\pi\)
\(432\) 0 0
\(433\) −1.97724e10 −0.562482 −0.281241 0.959637i \(-0.590746\pi\)
−0.281241 + 0.959637i \(0.590746\pi\)
\(434\) 0 0
\(435\) 3.01075e9i 0.0840847i
\(436\) 0 0
\(437\) −4.12125e10 −1.13006
\(438\) 0 0
\(439\) − 5.78110e10i − 1.55651i −0.627948 0.778255i \(-0.716105\pi\)
0.627948 0.778255i \(-0.283895\pi\)
\(440\) 0 0
\(441\) −3.25510e10 −0.860617
\(442\) 0 0
\(443\) − 2.77961e10i − 0.721719i −0.932620 0.360860i \(-0.882483\pi\)
0.932620 0.360860i \(-0.117517\pi\)
\(444\) 0 0
\(445\) −4.33513e9 −0.110551
\(446\) 0 0
\(447\) 1.04585e10i 0.261963i
\(448\) 0 0
\(449\) 4.37962e10 1.07758 0.538792 0.842439i \(-0.318881\pi\)
0.538792 + 0.842439i \(0.318881\pi\)
\(450\) 0 0
\(451\) − 1.00122e11i − 2.42004i
\(452\) 0 0
\(453\) −2.48809e9 −0.0590844
\(454\) 0 0
\(455\) 1.62834e10i 0.379925i
\(456\) 0 0
\(457\) −1.89812e10 −0.435171 −0.217585 0.976041i \(-0.569818\pi\)
−0.217585 + 0.976041i \(0.569818\pi\)
\(458\) 0 0
\(459\) − 1.05144e10i − 0.236882i
\(460\) 0 0
\(461\) −2.20604e10 −0.488438 −0.244219 0.969720i \(-0.578532\pi\)
−0.244219 + 0.969720i \(0.578532\pi\)
\(462\) 0 0
\(463\) 2.37920e10i 0.517734i 0.965913 + 0.258867i \(0.0833491\pi\)
−0.965913 + 0.258867i \(0.916651\pi\)
\(464\) 0 0
\(465\) −3.75800e9 −0.0803794
\(466\) 0 0
\(467\) 3.51836e10i 0.739729i 0.929086 + 0.369864i \(0.120596\pi\)
−0.929086 + 0.369864i \(0.879404\pi\)
\(468\) 0 0
\(469\) −5.74637e10 −1.18769
\(470\) 0 0
\(471\) − 1.18730e10i − 0.241255i
\(472\) 0 0
\(473\) 4.71652e10 0.942274
\(474\) 0 0
\(475\) 4.94429e10i 0.971247i
\(476\) 0 0
\(477\) 7.59308e9 0.146671
\(478\) 0 0
\(479\) − 7.76849e10i − 1.47569i −0.674971 0.737844i \(-0.735844\pi\)
0.674971 0.737844i \(-0.264156\pi\)
\(480\) 0 0
\(481\) 4.87753e10 0.911212
\(482\) 0 0
\(483\) 1.23433e10i 0.226799i
\(484\) 0 0
\(485\) 3.12167e10 0.564183
\(486\) 0 0
\(487\) 7.39381e10i 1.31448i 0.753683 + 0.657238i \(0.228275\pi\)
−0.753683 + 0.657238i \(0.771725\pi\)
\(488\) 0 0
\(489\) 6.37607e9 0.111511
\(490\) 0 0
\(491\) 5.09306e10i 0.876299i 0.898902 + 0.438150i \(0.144366\pi\)
−0.898902 + 0.438150i \(0.855634\pi\)
\(492\) 0 0
\(493\) −4.94241e10 −0.836663
\(494\) 0 0
\(495\) 3.80468e10i 0.633720i
\(496\) 0 0
\(497\) 1.01825e11 1.66890
\(498\) 0 0
\(499\) − 9.24638e9i − 0.149132i −0.997216 0.0745658i \(-0.976243\pi\)
0.997216 0.0745658i \(-0.0237571\pi\)
\(500\) 0 0
\(501\) 7.45720e9 0.118365
\(502\) 0 0
\(503\) 1.60365e10i 0.250517i 0.992124 + 0.125259i \(0.0399760\pi\)
−0.992124 + 0.125259i \(0.960024\pi\)
\(504\) 0 0
\(505\) 3.00125e9 0.0461463
\(506\) 0 0
\(507\) − 6.22801e9i − 0.0942578i
\(508\) 0 0
\(509\) −1.34179e11 −1.99900 −0.999500 0.0316279i \(-0.989931\pi\)
−0.999500 + 0.0316279i \(0.989931\pi\)
\(510\) 0 0
\(511\) 4.20007e10i 0.615989i
\(512\) 0 0
\(513\) 2.73355e10 0.394691
\(514\) 0 0
\(515\) 3.47929e10i 0.494609i
\(516\) 0 0
\(517\) 1.67478e11 2.34421
\(518\) 0 0
\(519\) − 1.35899e10i − 0.187305i
\(520\) 0 0
\(521\) −1.26281e11 −1.71391 −0.856954 0.515392i \(-0.827646\pi\)
−0.856954 + 0.515392i \(0.827646\pi\)
\(522\) 0 0
\(523\) − 1.13332e11i − 1.51476i −0.652973 0.757381i \(-0.726479\pi\)
0.652973 0.757381i \(-0.273521\pi\)
\(524\) 0 0
\(525\) 1.48083e10 0.194925
\(526\) 0 0
\(527\) − 6.16909e10i − 0.799794i
\(528\) 0 0
\(529\) 5.34791e9 0.0682906
\(530\) 0 0
\(531\) 2.15431e9i 0.0270975i
\(532\) 0 0
\(533\) −8.27557e10 −1.02539
\(534\) 0 0
\(535\) − 3.39197e10i − 0.414034i
\(536\) 0 0
\(537\) −2.02088e10 −0.243021
\(538\) 0 0
\(539\) − 1.18337e11i − 1.40205i
\(540\) 0 0
\(541\) −1.02482e11 −1.19635 −0.598174 0.801366i \(-0.704107\pi\)
−0.598174 + 0.801366i \(0.704107\pi\)
\(542\) 0 0
\(543\) − 1.49663e9i − 0.0172153i
\(544\) 0 0
\(545\) 4.02023e9 0.0455685
\(546\) 0 0
\(547\) 1.56718e11i 1.75053i 0.483648 + 0.875263i \(0.339311\pi\)
−0.483648 + 0.875263i \(0.660689\pi\)
\(548\) 0 0
\(549\) 5.35938e10 0.589963
\(550\) 0 0
\(551\) − 1.28494e11i − 1.39404i
\(552\) 0 0
\(553\) 2.07323e10 0.221690
\(554\) 0 0
\(555\) 9.11116e9i 0.0960289i
\(556\) 0 0
\(557\) 7.50567e10 0.779774 0.389887 0.920863i \(-0.372514\pi\)
0.389887 + 0.920863i \(0.372514\pi\)
\(558\) 0 0
\(559\) − 3.89844e10i − 0.399249i
\(560\) 0 0
\(561\) 1.88283e10 0.190091
\(562\) 0 0
\(563\) − 1.69090e11i − 1.68300i −0.540255 0.841502i \(-0.681672\pi\)
0.540255 0.841502i \(-0.318328\pi\)
\(564\) 0 0
\(565\) −1.19747e10 −0.117509
\(566\) 0 0
\(567\) 1.29619e11i 1.25411i
\(568\) 0 0
\(569\) −1.64531e11 −1.56964 −0.784818 0.619727i \(-0.787243\pi\)
−0.784818 + 0.619727i \(0.787243\pi\)
\(570\) 0 0
\(571\) 1.61351e11i 1.51784i 0.651182 + 0.758922i \(0.274273\pi\)
−0.651182 + 0.758922i \(0.725727\pi\)
\(572\) 0 0
\(573\) −2.50176e10 −0.232074
\(574\) 0 0
\(575\) 8.75343e10i 0.800768i
\(576\) 0 0
\(577\) −5.65816e10 −0.510472 −0.255236 0.966879i \(-0.582153\pi\)
−0.255236 + 0.966879i \(0.582153\pi\)
\(578\) 0 0
\(579\) 2.50424e10i 0.222824i
\(580\) 0 0
\(581\) 2.73963e11 2.40430
\(582\) 0 0
\(583\) 2.76041e10i 0.238946i
\(584\) 0 0
\(585\) 3.14476e10 0.268512
\(586\) 0 0
\(587\) 8.21103e10i 0.691584i 0.938311 + 0.345792i \(0.112390\pi\)
−0.938311 + 0.345792i \(0.887610\pi\)
\(588\) 0 0
\(589\) 1.60385e11 1.33261
\(590\) 0 0
\(591\) 3.16576e9i 0.0259494i
\(592\) 0 0
\(593\) −2.12807e10 −0.172095 −0.0860474 0.996291i \(-0.527424\pi\)
−0.0860474 + 0.996291i \(0.527424\pi\)
\(594\) 0 0
\(595\) − 4.99323e10i − 0.398395i
\(596\) 0 0
\(597\) −1.70865e10 −0.134511
\(598\) 0 0
\(599\) 2.52874e10i 0.196425i 0.995165 + 0.0982126i \(0.0313125\pi\)
−0.995165 + 0.0982126i \(0.968687\pi\)
\(600\) 0 0
\(601\) 1.98139e9 0.0151870 0.00759349 0.999971i \(-0.497583\pi\)
0.00759349 + 0.999971i \(0.497583\pi\)
\(602\) 0 0
\(603\) 1.10978e11i 0.839398i
\(604\) 0 0
\(605\) −8.30119e10 −0.619610
\(606\) 0 0
\(607\) 1.14604e11i 0.844200i 0.906549 + 0.422100i \(0.138707\pi\)
−0.906549 + 0.422100i \(0.861293\pi\)
\(608\) 0 0
\(609\) −3.84842e10 −0.279778
\(610\) 0 0
\(611\) − 1.38429e11i − 0.993260i
\(612\) 0 0
\(613\) 2.76203e10 0.195608 0.0978040 0.995206i \(-0.468818\pi\)
0.0978040 + 0.995206i \(0.468818\pi\)
\(614\) 0 0
\(615\) − 1.54587e10i − 0.108062i
\(616\) 0 0
\(617\) −9.65475e10 −0.666193 −0.333097 0.942893i \(-0.608094\pi\)
−0.333097 + 0.942893i \(0.608094\pi\)
\(618\) 0 0
\(619\) − 1.47548e11i − 1.00501i −0.864575 0.502505i \(-0.832412\pi\)
0.864575 0.502505i \(-0.167588\pi\)
\(620\) 0 0
\(621\) 4.83950e10 0.325413
\(622\) 0 0
\(623\) − 5.54127e10i − 0.367839i
\(624\) 0 0
\(625\) 7.90140e10 0.517826
\(626\) 0 0
\(627\) 4.89503e10i 0.316727i
\(628\) 0 0
\(629\) −1.49568e11 −0.955510
\(630\) 0 0
\(631\) − 1.55246e11i − 0.979273i −0.871927 0.489636i \(-0.837130\pi\)
0.871927 0.489636i \(-0.162870\pi\)
\(632\) 0 0
\(633\) −2.98348e9 −0.0185827
\(634\) 0 0
\(635\) − 4.79276e10i − 0.294775i
\(636\) 0 0
\(637\) −9.78114e10 −0.594062
\(638\) 0 0
\(639\) − 1.96653e11i − 1.17950i
\(640\) 0 0
\(641\) −7.80081e10 −0.462070 −0.231035 0.972945i \(-0.574211\pi\)
−0.231035 + 0.972945i \(0.574211\pi\)
\(642\) 0 0
\(643\) 1.17490e11i 0.687317i 0.939095 + 0.343659i \(0.111666\pi\)
−0.939095 + 0.343659i \(0.888334\pi\)
\(644\) 0 0
\(645\) 7.28224e9 0.0420752
\(646\) 0 0
\(647\) − 5.16493e10i − 0.294745i −0.989081 0.147373i \(-0.952918\pi\)
0.989081 0.147373i \(-0.0470817\pi\)
\(648\) 0 0
\(649\) −7.83183e9 −0.0441453
\(650\) 0 0
\(651\) − 4.80357e10i − 0.267449i
\(652\) 0 0
\(653\) 2.22742e10 0.122504 0.0612520 0.998122i \(-0.480491\pi\)
0.0612520 + 0.998122i \(0.480491\pi\)
\(654\) 0 0
\(655\) − 1.38979e10i − 0.0755066i
\(656\) 0 0
\(657\) 8.11148e10 0.435350
\(658\) 0 0
\(659\) 6.20284e10i 0.328889i 0.986386 + 0.164444i \(0.0525831\pi\)
−0.986386 + 0.164444i \(0.947417\pi\)
\(660\) 0 0
\(661\) −2.63096e11 −1.37819 −0.689093 0.724672i \(-0.741991\pi\)
−0.689093 + 0.724672i \(0.741991\pi\)
\(662\) 0 0
\(663\) − 1.55626e10i − 0.0805430i
\(664\) 0 0
\(665\) 1.29815e11 0.663801
\(666\) 0 0
\(667\) − 2.27486e11i − 1.14935i
\(668\) 0 0
\(669\) 5.67581e9 0.0283350
\(670\) 0 0
\(671\) 1.94836e11i 0.961125i
\(672\) 0 0
\(673\) 1.76424e11 0.859998 0.429999 0.902829i \(-0.358514\pi\)
0.429999 + 0.902829i \(0.358514\pi\)
\(674\) 0 0
\(675\) − 5.80598e10i − 0.279680i
\(676\) 0 0
\(677\) 2.46667e11 1.17424 0.587119 0.809501i \(-0.300262\pi\)
0.587119 + 0.809501i \(0.300262\pi\)
\(678\) 0 0
\(679\) 3.99020e11i 1.87722i
\(680\) 0 0
\(681\) 7.23766e10 0.336519
\(682\) 0 0
\(683\) 2.76508e11i 1.27065i 0.772245 + 0.635324i \(0.219134\pi\)
−0.772245 + 0.635324i \(0.780866\pi\)
\(684\) 0 0
\(685\) −1.00833e11 −0.457974
\(686\) 0 0
\(687\) 3.97152e10i 0.178291i
\(688\) 0 0
\(689\) 2.28162e10 0.101243
\(690\) 0 0
\(691\) 1.65551e11i 0.726139i 0.931762 + 0.363069i \(0.118271\pi\)
−0.931762 + 0.363069i \(0.881729\pi\)
\(692\) 0 0
\(693\) −4.86324e11 −2.10859
\(694\) 0 0
\(695\) 1.03576e11i 0.443936i
\(696\) 0 0
\(697\) 2.53768e11 1.07524
\(698\) 0 0
\(699\) − 6.81706e9i − 0.0285554i
\(700\) 0 0
\(701\) 2.76257e11 1.14404 0.572020 0.820240i \(-0.306160\pi\)
0.572020 + 0.820240i \(0.306160\pi\)
\(702\) 0 0
\(703\) − 3.88849e11i − 1.59206i
\(704\) 0 0
\(705\) 2.58584e10 0.104675
\(706\) 0 0
\(707\) 3.83628e10i 0.153544i
\(708\) 0 0
\(709\) 9.90119e10 0.391834 0.195917 0.980620i \(-0.437232\pi\)
0.195917 + 0.980620i \(0.437232\pi\)
\(710\) 0 0
\(711\) − 4.00397e10i − 0.156680i
\(712\) 0 0
\(713\) 2.83947e11 1.09870
\(714\) 0 0
\(715\) 1.14326e11i 0.437441i
\(716\) 0 0
\(717\) −4.21849e10 −0.159617
\(718\) 0 0
\(719\) 1.65608e11i 0.619676i 0.950789 + 0.309838i \(0.100275\pi\)
−0.950789 + 0.309838i \(0.899725\pi\)
\(720\) 0 0
\(721\) −4.44732e11 −1.64573
\(722\) 0 0
\(723\) − 4.29880e10i − 0.157324i
\(724\) 0 0
\(725\) −2.72917e11 −0.987822
\(726\) 0 0
\(727\) − 3.35426e11i − 1.20077i −0.799712 0.600383i \(-0.795015\pi\)
0.799712 0.600383i \(-0.204985\pi\)
\(728\) 0 0
\(729\) 2.34042e11 0.828674
\(730\) 0 0
\(731\) 1.19544e11i 0.418658i
\(732\) 0 0
\(733\) −1.73168e11 −0.599863 −0.299932 0.953961i \(-0.596964\pi\)
−0.299932 + 0.953961i \(0.596964\pi\)
\(734\) 0 0
\(735\) − 1.82710e10i − 0.0626057i
\(736\) 0 0
\(737\) −4.03453e11 −1.36749
\(738\) 0 0
\(739\) − 5.36956e11i − 1.80036i −0.435513 0.900182i \(-0.643433\pi\)
0.435513 0.900182i \(-0.356567\pi\)
\(740\) 0 0
\(741\) 4.04599e10 0.134200
\(742\) 0 0
\(743\) − 5.97670e9i − 0.0196113i −0.999952 0.00980564i \(-0.996879\pi\)
0.999952 0.00980564i \(-0.00312128\pi\)
\(744\) 0 0
\(745\) 1.94733e11 0.632140
\(746\) 0 0
\(747\) − 5.29098e11i − 1.69924i
\(748\) 0 0
\(749\) 4.33570e11 1.37763
\(750\) 0 0
\(751\) 1.34684e11i 0.423405i 0.977334 + 0.211703i \(0.0679008\pi\)
−0.977334 + 0.211703i \(0.932099\pi\)
\(752\) 0 0
\(753\) −2.62572e10 −0.0816710
\(754\) 0 0
\(755\) 4.63270e10i 0.142576i
\(756\) 0 0
\(757\) −5.86211e11 −1.78513 −0.892567 0.450915i \(-0.851098\pi\)
−0.892567 + 0.450915i \(0.851098\pi\)
\(758\) 0 0
\(759\) 8.66621e10i 0.261133i
\(760\) 0 0
\(761\) −2.93475e11 −0.875049 −0.437525 0.899206i \(-0.644145\pi\)
−0.437525 + 0.899206i \(0.644145\pi\)
\(762\) 0 0
\(763\) 5.13876e10i 0.151621i
\(764\) 0 0
\(765\) −9.64330e10 −0.281566
\(766\) 0 0
\(767\) 6.47340e9i 0.0187047i
\(768\) 0 0
\(769\) −2.61135e10 −0.0746724 −0.0373362 0.999303i \(-0.511887\pi\)
−0.0373362 + 0.999303i \(0.511887\pi\)
\(770\) 0 0
\(771\) − 4.12120e10i − 0.116629i
\(772\) 0 0
\(773\) 5.32516e11 1.49147 0.745735 0.666243i \(-0.232099\pi\)
0.745735 + 0.666243i \(0.232099\pi\)
\(774\) 0 0
\(775\) − 3.40654e11i − 0.944292i
\(776\) 0 0
\(777\) −1.16461e11 −0.319520
\(778\) 0 0
\(779\) 6.59749e11i 1.79155i
\(780\) 0 0
\(781\) 7.14917e11 1.92155
\(782\) 0 0
\(783\) 1.50887e11i 0.401426i
\(784\) 0 0
\(785\) −2.21070e11 −0.582172
\(786\) 0 0
\(787\) 3.20509e11i 0.835490i 0.908564 + 0.417745i \(0.137180\pi\)
−0.908564 + 0.417745i \(0.862820\pi\)
\(788\) 0 0
\(789\) −4.36862e10 −0.112729
\(790\) 0 0
\(791\) − 1.53063e11i − 0.390990i
\(792\) 0 0
\(793\) 1.61042e11 0.407237
\(794\) 0 0
\(795\) 4.26204e9i 0.0106696i
\(796\) 0 0
\(797\) 2.88402e11 0.714768 0.357384 0.933958i \(-0.383669\pi\)
0.357384 + 0.933958i \(0.383669\pi\)
\(798\) 0 0
\(799\) 4.24488e11i 1.04155i
\(800\) 0 0
\(801\) −1.07017e11 −0.259970
\(802\) 0 0
\(803\) 2.94887e11i 0.709241i
\(804\) 0 0
\(805\) 2.29826e11 0.547287
\(806\) 0 0
\(807\) 2.06152e8i 0 0.000486065i
\(808\) 0 0
\(809\) −2.95879e11 −0.690748 −0.345374 0.938465i \(-0.612248\pi\)
−0.345374 + 0.938465i \(0.612248\pi\)
\(810\) 0 0
\(811\) − 1.70426e11i − 0.393961i −0.980407 0.196980i \(-0.936886\pi\)
0.980407 0.196980i \(-0.0631136\pi\)
\(812\) 0 0
\(813\) −2.39623e10 −0.0548486
\(814\) 0 0
\(815\) − 1.18719e11i − 0.269086i
\(816\) 0 0
\(817\) −3.10793e11 −0.697563
\(818\) 0 0
\(819\) 4.01972e11i 0.893428i
\(820\) 0 0
\(821\) 2.71581e11 0.597760 0.298880 0.954291i \(-0.403387\pi\)
0.298880 + 0.954291i \(0.403387\pi\)
\(822\) 0 0
\(823\) 7.55264e11i 1.64626i 0.567851 + 0.823131i \(0.307775\pi\)
−0.567851 + 0.823131i \(0.692225\pi\)
\(824\) 0 0
\(825\) 1.03969e11 0.224434
\(826\) 0 0
\(827\) − 8.91170e11i − 1.90519i −0.304240 0.952596i \(-0.598402\pi\)
0.304240 0.952596i \(-0.401598\pi\)
\(828\) 0 0
\(829\) −5.33503e10 −0.112958 −0.0564792 0.998404i \(-0.517987\pi\)
−0.0564792 + 0.998404i \(0.517987\pi\)
\(830\) 0 0
\(831\) − 4.21487e10i − 0.0883853i
\(832\) 0 0
\(833\) 2.99935e11 0.622942
\(834\) 0 0
\(835\) − 1.38850e11i − 0.285627i
\(836\) 0 0
\(837\) −1.88337e11 −0.383737
\(838\) 0 0
\(839\) 2.28645e10i 0.0461439i 0.999734 + 0.0230720i \(0.00734469\pi\)
−0.999734 + 0.0230720i \(0.992655\pi\)
\(840\) 0 0
\(841\) 2.09017e11 0.417829
\(842\) 0 0
\(843\) 5.20750e10i 0.103114i
\(844\) 0 0
\(845\) −1.15963e11 −0.227453
\(846\) 0 0
\(847\) − 1.06108e12i − 2.06165i
\(848\) 0 0
\(849\) 1.58267e10 0.0304621
\(850\) 0 0
\(851\) − 6.88422e11i − 1.31261i
\(852\) 0 0
\(853\) −8.98910e11 −1.69793 −0.848965 0.528449i \(-0.822774\pi\)
−0.848965 + 0.528449i \(0.822774\pi\)
\(854\) 0 0
\(855\) − 2.50708e11i − 0.469142i
\(856\) 0 0
\(857\) −8.50807e11 −1.57728 −0.788638 0.614857i \(-0.789214\pi\)
−0.788638 + 0.614857i \(0.789214\pi\)
\(858\) 0 0
\(859\) 6.19591e11i 1.13797i 0.822346 + 0.568987i \(0.192665\pi\)
−0.822346 + 0.568987i \(0.807335\pi\)
\(860\) 0 0
\(861\) 1.97597e11 0.359556
\(862\) 0 0
\(863\) − 3.14088e10i − 0.0566250i −0.999599 0.0283125i \(-0.990987\pi\)
0.999599 0.0283125i \(-0.00901335\pi\)
\(864\) 0 0
\(865\) −2.53039e11 −0.451983
\(866\) 0 0
\(867\) − 4.89368e10i − 0.0866083i
\(868\) 0 0
\(869\) 1.45561e11 0.255251
\(870\) 0 0
\(871\) 3.33474e11i 0.579415i
\(872\) 0 0
\(873\) 7.70616e11 1.32673
\(874\) 0 0
\(875\) − 6.08083e11i − 1.03736i
\(876\) 0 0
\(877\) 5.09974e11 0.862084 0.431042 0.902332i \(-0.358146\pi\)
0.431042 + 0.902332i \(0.358146\pi\)
\(878\) 0 0
\(879\) − 1.52638e11i − 0.255686i
\(880\) 0 0
\(881\) −5.15781e11 −0.856173 −0.428087 0.903738i \(-0.640812\pi\)
−0.428087 + 0.903738i \(0.640812\pi\)
\(882\) 0 0
\(883\) − 4.89454e11i − 0.805136i −0.915390 0.402568i \(-0.868118\pi\)
0.915390 0.402568i \(-0.131882\pi\)
\(884\) 0 0
\(885\) −1.20922e9 −0.00197121
\(886\) 0 0
\(887\) − 1.92939e11i − 0.311692i −0.987781 0.155846i \(-0.950190\pi\)
0.987781 0.155846i \(-0.0498103\pi\)
\(888\) 0 0
\(889\) 6.12623e11 0.980813
\(890\) 0 0
\(891\) 9.10057e11i 1.44397i
\(892\) 0 0
\(893\) −1.10359e12 −1.73541
\(894\) 0 0
\(895\) 3.76279e11i 0.586432i
\(896\) 0 0
\(897\) 7.16306e10 0.110644
\(898\) 0 0
\(899\) 8.85300e11i 1.35535i
\(900\) 0 0
\(901\) −6.99651e10 −0.106165
\(902\) 0 0
\(903\) 9.30835e10i 0.139998i
\(904\) 0 0
\(905\) −2.78665e10 −0.0415421
\(906\) 0 0
\(907\) 1.42541e11i 0.210626i 0.994439 + 0.105313i \(0.0335844\pi\)
−0.994439 + 0.105313i \(0.966416\pi\)
\(908\) 0 0
\(909\) 7.40891e10 0.108517
\(910\) 0 0
\(911\) 2.37631e11i 0.345008i 0.985009 + 0.172504i \(0.0551858\pi\)
−0.985009 + 0.172504i \(0.944814\pi\)
\(912\) 0 0
\(913\) 1.92350e12 2.76827
\(914\) 0 0
\(915\) 3.00825e10i 0.0429170i
\(916\) 0 0
\(917\) 1.77647e11 0.251235
\(918\) 0 0
\(919\) − 1.08609e11i − 0.152266i −0.997098 0.0761332i \(-0.975743\pi\)
0.997098 0.0761332i \(-0.0242574\pi\)
\(920\) 0 0
\(921\) 6.75646e10 0.0939033
\(922\) 0 0
\(923\) − 5.90915e11i − 0.814176i
\(924\) 0 0
\(925\) −8.25905e11 −1.12814
\(926\) 0 0
\(927\) 8.58899e11i 1.16312i
\(928\) 0 0
\(929\) 8.87938e11 1.19212 0.596060 0.802940i \(-0.296732\pi\)
0.596060 + 0.802940i \(0.296732\pi\)
\(930\) 0 0
\(931\) 7.79777e11i 1.03794i
\(932\) 0 0
\(933\) 1.45664e11 0.192232
\(934\) 0 0
\(935\) − 3.50575e11i − 0.458706i
\(936\) 0 0
\(937\) −6.83385e11 −0.886557 −0.443279 0.896384i \(-0.646185\pi\)
−0.443279 + 0.896384i \(0.646185\pi\)
\(938\) 0 0
\(939\) 1.50247e11i 0.193260i
\(940\) 0 0
\(941\) −3.37589e11 −0.430556 −0.215278 0.976553i \(-0.569066\pi\)
−0.215278 + 0.976553i \(0.569066\pi\)
\(942\) 0 0
\(943\) 1.16803e12i 1.47709i
\(944\) 0 0
\(945\) −1.52439e11 −0.191148
\(946\) 0 0
\(947\) − 8.44705e11i − 1.05028i −0.851016 0.525140i \(-0.824013\pi\)
0.851016 0.525140i \(-0.175987\pi\)
\(948\) 0 0
\(949\) 2.43739e11 0.300511
\(950\) 0 0
\(951\) − 1.98790e11i − 0.243037i
\(952\) 0 0
\(953\) −1.63793e11 −0.198574 −0.0992871 0.995059i \(-0.531656\pi\)
−0.0992871 + 0.995059i \(0.531656\pi\)
\(954\) 0 0
\(955\) 4.65816e11i 0.560016i
\(956\) 0 0
\(957\) −2.70198e11 −0.322132
\(958\) 0 0
\(959\) − 1.28887e12i − 1.52383i
\(960\) 0 0
\(961\) −2.52135e11 −0.295625
\(962\) 0 0
\(963\) − 8.37343e11i − 0.973639i
\(964\) 0 0
\(965\) 4.66278e11 0.537694
\(966\) 0 0
\(967\) − 8.83990e11i − 1.01098i −0.862833 0.505489i \(-0.831312\pi\)
0.862833 0.505489i \(-0.168688\pi\)
\(968\) 0 0
\(969\) −1.24069e11 −0.140724
\(970\) 0 0
\(971\) − 3.35605e11i − 0.377530i −0.982022 0.188765i \(-0.939552\pi\)
0.982022 0.188765i \(-0.0604485\pi\)
\(972\) 0 0
\(973\) −1.32394e12 −1.47712
\(974\) 0 0
\(975\) − 8.59358e10i − 0.0950945i
\(976\) 0 0
\(977\) 2.95199e11 0.323994 0.161997 0.986791i \(-0.448206\pi\)
0.161997 + 0.986791i \(0.448206\pi\)
\(978\) 0 0
\(979\) − 3.89053e11i − 0.423524i
\(980\) 0 0
\(981\) 9.92435e10 0.107158
\(982\) 0 0
\(983\) 4.59775e11i 0.492415i 0.969217 + 0.246208i \(0.0791845\pi\)
−0.969217 + 0.246208i \(0.920816\pi\)
\(984\) 0 0
\(985\) 5.89449e10 0.0626183
\(986\) 0 0
\(987\) 3.30529e11i 0.348290i
\(988\) 0 0
\(989\) −5.50232e11 −0.575123
\(990\) 0 0
\(991\) − 1.43414e12i − 1.48696i −0.668761 0.743478i \(-0.733175\pi\)
0.668761 0.743478i \(-0.266825\pi\)
\(992\) 0 0
\(993\) −6.45789e10 −0.0664192
\(994\) 0 0
\(995\) 3.18144e11i 0.324587i
\(996\) 0 0
\(997\) 1.38321e12 1.39993 0.699965 0.714177i \(-0.253199\pi\)
0.699965 + 0.714177i \(0.253199\pi\)
\(998\) 0 0
\(999\) 4.56617e11i 0.458449i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 16.9.c.b.15.2 yes 2
3.2 odd 2 144.9.g.d.127.2 2
4.3 odd 2 inner 16.9.c.b.15.1 2
5.2 odd 4 400.9.h.a.399.4 4
5.3 odd 4 400.9.h.a.399.2 4
5.4 even 2 400.9.b.e.351.1 2
8.3 odd 2 64.9.c.c.63.2 2
8.5 even 2 64.9.c.c.63.1 2
12.11 even 2 144.9.g.d.127.1 2
16.3 odd 4 256.9.d.d.127.3 4
16.5 even 4 256.9.d.d.127.4 4
16.11 odd 4 256.9.d.d.127.2 4
16.13 even 4 256.9.d.d.127.1 4
20.3 even 4 400.9.h.a.399.3 4
20.7 even 4 400.9.h.a.399.1 4
20.19 odd 2 400.9.b.e.351.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
16.9.c.b.15.1 2 4.3 odd 2 inner
16.9.c.b.15.2 yes 2 1.1 even 1 trivial
64.9.c.c.63.1 2 8.5 even 2
64.9.c.c.63.2 2 8.3 odd 2
144.9.g.d.127.1 2 12.11 even 2
144.9.g.d.127.2 2 3.2 odd 2
256.9.d.d.127.1 4 16.13 even 4
256.9.d.d.127.2 4 16.11 odd 4
256.9.d.d.127.3 4 16.3 odd 4
256.9.d.d.127.4 4 16.5 even 4
400.9.b.e.351.1 2 5.4 even 2
400.9.b.e.351.2 2 20.19 odd 2
400.9.h.a.399.1 4 20.7 even 4
400.9.h.a.399.2 4 5.3 odd 4
400.9.h.a.399.3 4 20.3 even 4
400.9.h.a.399.4 4 5.2 odd 4