Defining parameters
Level: | \( N \) | = | \( 16 = 2^{4} \) |
Weight: | \( k \) | = | \( 9 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(16))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 71 | 38 | 33 |
Cusp forms | 57 | 34 | 23 |
Eisenstein series | 14 | 4 | 10 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(16))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
16.9.c | \(\chi_{16}(15, \cdot)\) | 16.9.c.a | 2 | 1 |
16.9.c.b | 2 | |||
16.9.d | \(\chi_{16}(7, \cdot)\) | None | 0 | 1 |
16.9.f | \(\chi_{16}(3, \cdot)\) | 16.9.f.a | 30 | 2 |
Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(16))\) into lower level spaces
\( S_{9}^{\mathrm{old}}(\Gamma_1(16)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)