Properties

Label 144.4.l.a.35.11
Level $144$
Weight $4$
Character 144.35
Analytic conductor $8.496$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,4,Mod(35,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.35"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.49627504083\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 35.11
Character \(\chi\) \(=\) 144.35
Dual form 144.4.l.a.107.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.272518 + 2.81527i) q^{2} +(-7.85147 - 1.53442i) q^{4} +(-6.30986 - 6.30986i) q^{5} +27.2034 q^{7} +(6.45947 - 21.6858i) q^{8} +(19.4835 - 16.0444i) q^{10} +(4.03980 - 4.03980i) q^{11} +(37.9212 + 37.9212i) q^{13} +(-7.41340 + 76.5848i) q^{14} +(59.2911 + 24.0949i) q^{16} +79.8655i q^{17} +(75.2269 - 75.2269i) q^{19} +(39.8597 + 59.2236i) q^{20} +(10.2722 + 12.4740i) q^{22} +25.2124i q^{23} -45.3714i q^{25} +(-117.093 + 96.4241i) q^{26} +(-213.586 - 41.7414i) q^{28} +(107.714 - 107.714i) q^{29} +237.126i q^{31} +(-83.9916 + 160.354i) q^{32} +(-224.843 - 21.7648i) q^{34} +(-171.649 - 171.649i) q^{35} +(210.098 - 210.098i) q^{37} +(191.283 + 232.285i) q^{38} +(-177.593 + 96.0761i) q^{40} +378.638 q^{41} +(191.327 + 191.327i) q^{43} +(-37.9171 + 25.5196i) q^{44} +(-70.9796 - 6.87083i) q^{46} -417.483 q^{47} +397.023 q^{49} +(127.733 + 12.3645i) q^{50} +(-239.550 - 355.924i) q^{52} +(-139.419 - 139.419i) q^{53} -50.9811 q^{55} +(175.719 - 589.928i) q^{56} +(273.891 + 332.599i) q^{58} +(282.641 - 282.641i) q^{59} +(-255.821 - 255.821i) q^{61} +(-667.574 - 64.6211i) q^{62} +(-428.550 - 280.158i) q^{64} -478.555i q^{65} +(-348.674 + 348.674i) q^{67} +(122.547 - 627.061i) q^{68} +(530.016 - 436.461i) q^{70} -321.318i q^{71} +135.177i q^{73} +(534.228 + 648.739i) q^{74} +(-706.072 + 475.212i) q^{76} +(109.896 - 109.896i) q^{77} -522.058i q^{79} +(-222.083 - 526.154i) q^{80} +(-103.186 + 1065.97i) q^{82} +(-444.221 - 444.221i) q^{83} +(503.940 - 503.940i) q^{85} +(-590.778 + 486.498i) q^{86} +(-61.5114 - 113.701i) q^{88} +1102.27 q^{89} +(1031.58 + 1031.58i) q^{91} +(38.6864 - 197.954i) q^{92} +(113.772 - 1175.33i) q^{94} -949.342 q^{95} -1069.15 q^{97} +(-108.196 + 1117.73i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 120 q^{10} - 144 q^{16} - 48 q^{19} + 72 q^{22} + 72 q^{28} - 984 q^{34} - 1272 q^{40} + 864 q^{43} - 1416 q^{46} + 2352 q^{49} - 648 q^{52} - 576 q^{55} + 1128 q^{58} + 1824 q^{61} + 3024 q^{64}+ \cdots - 11304 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.272518 + 2.81527i −0.0963496 + 0.995348i
\(3\) 0 0
\(4\) −7.85147 1.53442i −0.981433 0.191803i
\(5\) −6.30986 6.30986i −0.564371 0.564371i 0.366175 0.930546i \(-0.380667\pi\)
−0.930546 + 0.366175i \(0.880667\pi\)
\(6\) 0 0
\(7\) 27.2034 1.46884 0.734422 0.678693i \(-0.237453\pi\)
0.734422 + 0.678693i \(0.237453\pi\)
\(8\) 6.45947 21.6858i 0.285471 0.958387i
\(9\) 0 0
\(10\) 19.4835 16.0444i 0.616122 0.507368i
\(11\) 4.03980 4.03980i 0.110731 0.110731i −0.649570 0.760302i \(-0.725051\pi\)
0.760302 + 0.649570i \(0.225051\pi\)
\(12\) 0 0
\(13\) 37.9212 + 37.9212i 0.809034 + 0.809034i 0.984488 0.175453i \(-0.0561391\pi\)
−0.175453 + 0.984488i \(0.556139\pi\)
\(14\) −7.41340 + 76.5848i −0.141523 + 1.46201i
\(15\) 0 0
\(16\) 59.2911 + 24.0949i 0.926423 + 0.376483i
\(17\) 79.8655i 1.13943i 0.821844 + 0.569713i \(0.192945\pi\)
−0.821844 + 0.569713i \(0.807055\pi\)
\(18\) 0 0
\(19\) 75.2269 75.2269i 0.908328 0.908328i −0.0878089 0.996137i \(-0.527986\pi\)
0.996137 + 0.0878089i \(0.0279865\pi\)
\(20\) 39.8597 + 59.2236i 0.445645 + 0.662140i
\(21\) 0 0
\(22\) 10.2722 + 12.4740i 0.0995473 + 0.120885i
\(23\) 25.2124i 0.228572i 0.993448 + 0.114286i \(0.0364580\pi\)
−0.993448 + 0.114286i \(0.963542\pi\)
\(24\) 0 0
\(25\) 45.3714i 0.362971i
\(26\) −117.093 + 96.4241i −0.883221 + 0.727320i
\(27\) 0 0
\(28\) −213.586 41.7414i −1.44157 0.281728i
\(29\) 107.714 107.714i 0.689726 0.689726i −0.272445 0.962171i \(-0.587832\pi\)
0.962171 + 0.272445i \(0.0878324\pi\)
\(30\) 0 0
\(31\) 237.126i 1.37384i 0.726732 + 0.686921i \(0.241038\pi\)
−0.726732 + 0.686921i \(0.758962\pi\)
\(32\) −83.9916 + 160.354i −0.463992 + 0.885839i
\(33\) 0 0
\(34\) −224.843 21.7648i −1.13412 0.109783i
\(35\) −171.649 171.649i −0.828973 0.828973i
\(36\) 0 0
\(37\) 210.098 210.098i 0.933512 0.933512i −0.0644112 0.997923i \(-0.520517\pi\)
0.997923 + 0.0644112i \(0.0205169\pi\)
\(38\) 191.283 + 232.285i 0.816585 + 0.991620i
\(39\) 0 0
\(40\) −177.593 + 96.0761i −0.701997 + 0.379774i
\(41\) 378.638 1.44228 0.721139 0.692790i \(-0.243619\pi\)
0.721139 + 0.692790i \(0.243619\pi\)
\(42\) 0 0
\(43\) 191.327 + 191.327i 0.678538 + 0.678538i 0.959669 0.281131i \(-0.0907096\pi\)
−0.281131 + 0.959669i \(0.590710\pi\)
\(44\) −37.9171 + 25.5196i −0.129914 + 0.0874369i
\(45\) 0 0
\(46\) −70.9796 6.87083i −0.227508 0.0220228i
\(47\) −417.483 −1.29566 −0.647831 0.761784i \(-0.724324\pi\)
−0.647831 + 0.761784i \(0.724324\pi\)
\(48\) 0 0
\(49\) 397.023 1.15750
\(50\) 127.733 + 12.3645i 0.361283 + 0.0349721i
\(51\) 0 0
\(52\) −239.550 355.924i −0.638838 0.949188i
\(53\) −139.419 139.419i −0.361335 0.361335i 0.502970 0.864304i \(-0.332241\pi\)
−0.864304 + 0.502970i \(0.832241\pi\)
\(54\) 0 0
\(55\) −50.9811 −0.124987
\(56\) 175.719 589.928i 0.419313 1.40772i
\(57\) 0 0
\(58\) 273.891 + 332.599i 0.620062 + 0.752972i
\(59\) 282.641 282.641i 0.623674 0.623674i −0.322795 0.946469i \(-0.604623\pi\)
0.946469 + 0.322795i \(0.104623\pi\)
\(60\) 0 0
\(61\) −255.821 255.821i −0.536960 0.536960i 0.385675 0.922635i \(-0.373969\pi\)
−0.922635 + 0.385675i \(0.873969\pi\)
\(62\) −667.574 64.6211i −1.36745 0.132369i
\(63\) 0 0
\(64\) −428.550 280.158i −0.837012 0.547184i
\(65\) 478.555i 0.913191i
\(66\) 0 0
\(67\) −348.674 + 348.674i −0.635781 + 0.635781i −0.949512 0.313731i \(-0.898421\pi\)
0.313731 + 0.949512i \(0.398421\pi\)
\(68\) 122.547 627.061i 0.218545 1.11827i
\(69\) 0 0
\(70\) 530.016 436.461i 0.904987 0.745245i
\(71\) 321.318i 0.537090i −0.963267 0.268545i \(-0.913457\pi\)
0.963267 0.268545i \(-0.0865428\pi\)
\(72\) 0 0
\(73\) 135.177i 0.216729i 0.994111 + 0.108365i \(0.0345614\pi\)
−0.994111 + 0.108365i \(0.965439\pi\)
\(74\) 534.228 + 648.739i 0.839226 + 1.01911i
\(75\) 0 0
\(76\) −706.072 + 475.212i −1.06568 + 0.717244i
\(77\) 109.896 109.896i 0.162647 0.162647i
\(78\) 0 0
\(79\) 522.058i 0.743495i −0.928334 0.371747i \(-0.878759\pi\)
0.928334 0.371747i \(-0.121241\pi\)
\(80\) −222.083 526.154i −0.310370 0.735322i
\(81\) 0 0
\(82\) −103.186 + 1065.97i −0.138963 + 1.43557i
\(83\) −444.221 444.221i −0.587465 0.587465i 0.349479 0.936944i \(-0.386359\pi\)
−0.936944 + 0.349479i \(0.886359\pi\)
\(84\) 0 0
\(85\) 503.940 503.940i 0.643058 0.643058i
\(86\) −590.778 + 486.498i −0.740758 + 0.610004i
\(87\) 0 0
\(88\) −61.5114 113.701i −0.0745130 0.137734i
\(89\) 1102.27 1.31281 0.656405 0.754409i \(-0.272076\pi\)
0.656405 + 0.754409i \(0.272076\pi\)
\(90\) 0 0
\(91\) 1031.58 + 1031.58i 1.18835 + 1.18835i
\(92\) 38.6864 197.954i 0.0438407 0.224328i
\(93\) 0 0
\(94\) 113.772 1175.33i 0.124837 1.28963i
\(95\) −949.342 −1.02527
\(96\) 0 0
\(97\) −1069.15 −1.11913 −0.559565 0.828786i \(-0.689032\pi\)
−0.559565 + 0.828786i \(0.689032\pi\)
\(98\) −108.196 + 1117.73i −0.111525 + 1.15212i
\(99\) 0 0
\(100\) −69.6189 + 356.232i −0.0696189 + 0.356232i
\(101\) 1184.31 + 1184.31i 1.16677 + 1.16677i 0.982963 + 0.183805i \(0.0588415\pi\)
0.183805 + 0.982963i \(0.441159\pi\)
\(102\) 0 0
\(103\) −1973.70 −1.88810 −0.944049 0.329806i \(-0.893017\pi\)
−0.944049 + 0.329806i \(0.893017\pi\)
\(104\) 1067.30 577.402i 1.00632 0.544412i
\(105\) 0 0
\(106\) 430.497 354.509i 0.394468 0.324839i
\(107\) −1025.91 + 1025.91i −0.926901 + 0.926901i −0.997504 0.0706038i \(-0.977507\pi\)
0.0706038 + 0.997504i \(0.477507\pi\)
\(108\) 0 0
\(109\) −1201.58 1201.58i −1.05587 1.05587i −0.998344 0.0575281i \(-0.981678\pi\)
−0.0575281 0.998344i \(-0.518322\pi\)
\(110\) 13.8933 143.526i 0.0120425 0.124406i
\(111\) 0 0
\(112\) 1612.92 + 655.463i 1.36077 + 0.552995i
\(113\) 1755.12i 1.46113i 0.682842 + 0.730566i \(0.260744\pi\)
−0.682842 + 0.730566i \(0.739256\pi\)
\(114\) 0 0
\(115\) 159.087 159.087i 0.128999 0.128999i
\(116\) −1011.00 + 680.437i −0.809212 + 0.544629i
\(117\) 0 0
\(118\) 718.686 + 872.735i 0.560681 + 0.680863i
\(119\) 2172.61i 1.67364i
\(120\) 0 0
\(121\) 1298.36i 0.975477i
\(122\) 789.922 650.490i 0.586198 0.482726i
\(123\) 0 0
\(124\) 363.851 1861.79i 0.263507 1.34833i
\(125\) −1075.02 + 1075.02i −0.769221 + 0.769221i
\(126\) 0 0
\(127\) 1185.87i 0.828575i 0.910146 + 0.414288i \(0.135969\pi\)
−0.910146 + 0.414288i \(0.864031\pi\)
\(128\) 905.508 1130.14i 0.625284 0.780397i
\(129\) 0 0
\(130\) 1347.26 + 130.415i 0.908942 + 0.0879856i
\(131\) −1081.59 1081.59i −0.721367 0.721367i 0.247516 0.968884i \(-0.420386\pi\)
−0.968884 + 0.247516i \(0.920386\pi\)
\(132\) 0 0
\(133\) 2046.43 2046.43i 1.33419 1.33419i
\(134\) −886.591 1076.63i −0.571566 0.694080i
\(135\) 0 0
\(136\) 1731.95 + 515.889i 1.09201 + 0.325273i
\(137\) 2165.11 1.35020 0.675101 0.737725i \(-0.264100\pi\)
0.675101 + 0.737725i \(0.264100\pi\)
\(138\) 0 0
\(139\) 342.051 + 342.051i 0.208722 + 0.208722i 0.803724 0.595002i \(-0.202849\pi\)
−0.595002 + 0.803724i \(0.702849\pi\)
\(140\) 1084.32 + 1611.08i 0.654582 + 0.972581i
\(141\) 0 0
\(142\) 904.596 + 87.5649i 0.534591 + 0.0517484i
\(143\) 306.388 0.179171
\(144\) 0 0
\(145\) −1359.32 −0.778522
\(146\) −380.559 36.8381i −0.215721 0.0208818i
\(147\) 0 0
\(148\) −1971.96 + 1327.20i −1.09523 + 0.737130i
\(149\) −1937.50 1937.50i −1.06528 1.06528i −0.997715 0.0675623i \(-0.978478\pi\)
−0.0675623 0.997715i \(-0.521522\pi\)
\(150\) 0 0
\(151\) −2341.03 −1.26166 −0.630828 0.775923i \(-0.717285\pi\)
−0.630828 + 0.775923i \(0.717285\pi\)
\(152\) −1145.43 2117.28i −0.611229 1.12983i
\(153\) 0 0
\(154\) 279.439 + 339.336i 0.146219 + 0.177561i
\(155\) 1496.23 1496.23i 0.775356 0.775356i
\(156\) 0 0
\(157\) 856.893 + 856.893i 0.435589 + 0.435589i 0.890525 0.454935i \(-0.150338\pi\)
−0.454935 + 0.890525i \(0.650338\pi\)
\(158\) 1469.73 + 142.270i 0.740036 + 0.0716354i
\(159\) 0 0
\(160\) 1541.79 481.836i 0.761805 0.238078i
\(161\) 685.862i 0.335736i
\(162\) 0 0
\(163\) 1737.64 1737.64i 0.834982 0.834982i −0.153211 0.988193i \(-0.548961\pi\)
0.988193 + 0.153211i \(0.0489615\pi\)
\(164\) −2972.87 580.991i −1.41550 0.276633i
\(165\) 0 0
\(166\) 1371.66 1129.54i 0.641334 0.528130i
\(167\) 2472.59i 1.14572i 0.819655 + 0.572858i \(0.194165\pi\)
−0.819655 + 0.572858i \(0.805835\pi\)
\(168\) 0 0
\(169\) 679.034i 0.309073i
\(170\) 1281.39 + 1556.06i 0.578108 + 0.702025i
\(171\) 0 0
\(172\) −1208.62 1795.78i −0.535795 0.796086i
\(173\) 1114.69 1114.69i 0.489875 0.489875i −0.418392 0.908267i \(-0.637406\pi\)
0.908267 + 0.418392i \(0.137406\pi\)
\(174\) 0 0
\(175\) 1234.25i 0.533148i
\(176\) 336.863 142.186i 0.144273 0.0608957i
\(177\) 0 0
\(178\) −300.388 + 3103.18i −0.126489 + 1.30670i
\(179\) 1364.12 + 1364.12i 0.569602 + 0.569602i 0.932017 0.362415i \(-0.118048\pi\)
−0.362415 + 0.932017i \(0.618048\pi\)
\(180\) 0 0
\(181\) −443.476 + 443.476i −0.182118 + 0.182118i −0.792278 0.610160i \(-0.791105\pi\)
0.610160 + 0.792278i \(0.291105\pi\)
\(182\) −3185.31 + 2623.06i −1.29731 + 1.06832i
\(183\) 0 0
\(184\) 546.752 + 162.859i 0.219060 + 0.0652506i
\(185\) −2651.38 −1.05369
\(186\) 0 0
\(187\) 322.641 + 322.641i 0.126170 + 0.126170i
\(188\) 3277.85 + 640.595i 1.27161 + 0.248512i
\(189\) 0 0
\(190\) 258.713 2672.65i 0.0987842 1.02050i
\(191\) 642.969 0.243579 0.121790 0.992556i \(-0.461137\pi\)
0.121790 + 0.992556i \(0.461137\pi\)
\(192\) 0 0
\(193\) −1038.09 −0.387168 −0.193584 0.981084i \(-0.562011\pi\)
−0.193584 + 0.981084i \(0.562011\pi\)
\(194\) 291.362 3009.94i 0.107828 1.11392i
\(195\) 0 0
\(196\) −3117.21 609.201i −1.13601 0.222012i
\(197\) −2641.47 2641.47i −0.955315 0.955315i 0.0437288 0.999043i \(-0.486076\pi\)
−0.999043 + 0.0437288i \(0.986076\pi\)
\(198\) 0 0
\(199\) −2547.50 −0.907476 −0.453738 0.891135i \(-0.649910\pi\)
−0.453738 + 0.891135i \(0.649910\pi\)
\(200\) −983.916 293.075i −0.347867 0.103618i
\(201\) 0 0
\(202\) −3656.90 + 3011.41i −1.27376 + 1.04892i
\(203\) 2930.19 2930.19i 1.01310 1.01310i
\(204\) 0 0
\(205\) −2389.15 2389.15i −0.813980 0.813980i
\(206\) 537.867 5556.48i 0.181917 1.87931i
\(207\) 0 0
\(208\) 1334.68 + 3162.10i 0.444920 + 1.05410i
\(209\) 607.804i 0.201161i
\(210\) 0 0
\(211\) −1159.93 + 1159.93i −0.378448 + 0.378448i −0.870542 0.492094i \(-0.836232\pi\)
0.492094 + 0.870542i \(0.336232\pi\)
\(212\) 880.719 + 1308.58i 0.285321 + 0.423931i
\(213\) 0 0
\(214\) −2608.63 3167.79i −0.833282 1.01189i
\(215\) 2414.50i 0.765894i
\(216\) 0 0
\(217\) 6450.63i 2.01796i
\(218\) 3710.21 3055.31i 1.15269 0.949227i
\(219\) 0 0
\(220\) 400.277 + 78.2266i 0.122667 + 0.0239729i
\(221\) −3028.59 + 3028.59i −0.921834 + 0.921834i
\(222\) 0 0
\(223\) 3613.80i 1.08519i −0.839994 0.542596i \(-0.817441\pi\)
0.839994 0.542596i \(-0.182559\pi\)
\(224\) −2284.85 + 4362.17i −0.681532 + 1.30116i
\(225\) 0 0
\(226\) −4941.14 478.302i −1.45433 0.140780i
\(227\) −444.232 444.232i −0.129889 0.129889i 0.639174 0.769062i \(-0.279276\pi\)
−0.769062 + 0.639174i \(0.779276\pi\)
\(228\) 0 0
\(229\) −188.918 + 188.918i −0.0545154 + 0.0545154i −0.733839 0.679324i \(-0.762273\pi\)
0.679324 + 0.733839i \(0.262273\pi\)
\(230\) 404.517 + 491.225i 0.115970 + 0.140828i
\(231\) 0 0
\(232\) −1640.10 3031.65i −0.464128 0.857922i
\(233\) 6015.55 1.69138 0.845691 0.533673i \(-0.179189\pi\)
0.845691 + 0.533673i \(0.179189\pi\)
\(234\) 0 0
\(235\) 2634.26 + 2634.26i 0.731234 + 0.731234i
\(236\) −2652.84 + 1785.46i −0.731716 + 0.492472i
\(237\) 0 0
\(238\) −6116.48 592.075i −1.66585 0.161254i
\(239\) −3866.73 −1.04652 −0.523260 0.852173i \(-0.675284\pi\)
−0.523260 + 0.852173i \(0.675284\pi\)
\(240\) 0 0
\(241\) 6049.74 1.61700 0.808501 0.588494i \(-0.200279\pi\)
0.808501 + 0.588494i \(0.200279\pi\)
\(242\) −3655.23 353.826i −0.970939 0.0939869i
\(243\) 0 0
\(244\) 1616.04 + 2401.11i 0.424000 + 0.629981i
\(245\) −2505.16 2505.16i −0.653260 0.653260i
\(246\) 0 0
\(247\) 5705.39 1.46974
\(248\) 5142.28 + 1531.71i 1.31667 + 0.392192i
\(249\) 0 0
\(250\) −2733.51 3319.43i −0.691528 0.839757i
\(251\) 3748.61 3748.61i 0.942670 0.942670i −0.0557730 0.998443i \(-0.517762\pi\)
0.998443 + 0.0557730i \(0.0177623\pi\)
\(252\) 0 0
\(253\) 101.853 + 101.853i 0.0253101 + 0.0253101i
\(254\) −3338.55 323.171i −0.824721 0.0798329i
\(255\) 0 0
\(256\) 2934.87 + 2857.23i 0.716521 + 0.697566i
\(257\) 4593.31i 1.11488i −0.830219 0.557438i \(-0.811785\pi\)
0.830219 0.557438i \(-0.188215\pi\)
\(258\) 0 0
\(259\) 5715.38 5715.38i 1.37118 1.37118i
\(260\) −734.305 + 3757.36i −0.175152 + 0.896236i
\(261\) 0 0
\(262\) 3339.72 2750.22i 0.787515 0.648508i
\(263\) 3477.14i 0.815246i 0.913150 + 0.407623i \(0.133642\pi\)
−0.913150 + 0.407623i \(0.866358\pi\)
\(264\) 0 0
\(265\) 1759.43i 0.407853i
\(266\) 5203.55 + 6318.92i 1.19944 + 1.45653i
\(267\) 0 0
\(268\) 3272.62 2202.59i 0.745921 0.502032i
\(269\) 115.440 115.440i 0.0261654 0.0261654i −0.693903 0.720068i \(-0.744110\pi\)
0.720068 + 0.693903i \(0.244110\pi\)
\(270\) 0 0
\(271\) 2252.96i 0.505009i −0.967596 0.252504i \(-0.918746\pi\)
0.967596 0.252504i \(-0.0812542\pi\)
\(272\) −1924.35 + 4735.31i −0.428974 + 1.05559i
\(273\) 0 0
\(274\) −590.031 + 6095.36i −0.130091 + 1.34392i
\(275\) −183.291 183.291i −0.0401923 0.0401923i
\(276\) 0 0
\(277\) 1423.92 1423.92i 0.308864 0.308864i −0.535605 0.844469i \(-0.679916\pi\)
0.844469 + 0.535605i \(0.179916\pi\)
\(278\) −1056.18 + 869.749i −0.227861 + 0.187641i
\(279\) 0 0
\(280\) −4831.12 + 2613.59i −1.03112 + 0.557829i
\(281\) −5780.83 −1.22724 −0.613621 0.789600i \(-0.710288\pi\)
−0.613621 + 0.789600i \(0.710288\pi\)
\(282\) 0 0
\(283\) 2544.53 + 2544.53i 0.534476 + 0.534476i 0.921901 0.387425i \(-0.126635\pi\)
−0.387425 + 0.921901i \(0.626635\pi\)
\(284\) −493.037 + 2522.82i −0.103015 + 0.527118i
\(285\) 0 0
\(286\) −83.4963 + 862.565i −0.0172631 + 0.178337i
\(287\) 10300.2 2.11848
\(288\) 0 0
\(289\) −1465.50 −0.298289
\(290\) 370.440 3826.86i 0.0750104 0.774900i
\(291\) 0 0
\(292\) 207.418 1061.34i 0.0415693 0.212705i
\(293\) −423.704 423.704i −0.0844815 0.0844815i 0.663603 0.748085i \(-0.269026\pi\)
−0.748085 + 0.663603i \(0.769026\pi\)
\(294\) 0 0
\(295\) −3566.85 −0.703966
\(296\) −3199.03 5913.28i −0.628175 1.16116i
\(297\) 0 0
\(298\) 5982.59 4926.58i 1.16296 0.957682i
\(299\) −956.084 + 956.084i −0.184922 + 0.184922i
\(300\) 0 0
\(301\) 5204.75 + 5204.75i 0.996667 + 0.996667i
\(302\) 637.971 6590.62i 0.121560 1.25579i
\(303\) 0 0
\(304\) 6272.87 2647.70i 1.18347 0.499526i
\(305\) 3228.39i 0.606089i
\(306\) 0 0
\(307\) 687.135 687.135i 0.127742 0.127742i −0.640345 0.768087i \(-0.721209\pi\)
0.768087 + 0.640345i \(0.221209\pi\)
\(308\) −1031.47 + 694.219i −0.190824 + 0.128431i
\(309\) 0 0
\(310\) 3804.54 + 4620.04i 0.697044 + 0.846454i
\(311\) 441.970i 0.0805846i −0.999188 0.0402923i \(-0.987171\pi\)
0.999188 0.0402923i \(-0.0128289\pi\)
\(312\) 0 0
\(313\) 1949.31i 0.352018i 0.984389 + 0.176009i \(0.0563188\pi\)
−0.984389 + 0.176009i \(0.943681\pi\)
\(314\) −2645.90 + 2178.87i −0.475532 + 0.391594i
\(315\) 0 0
\(316\) −801.057 + 4098.92i −0.142604 + 0.729691i
\(317\) −1627.66 + 1627.66i −0.288386 + 0.288386i −0.836442 0.548056i \(-0.815368\pi\)
0.548056 + 0.836442i \(0.315368\pi\)
\(318\) 0 0
\(319\) 870.289i 0.152749i
\(320\) 936.334 + 4471.85i 0.163571 + 0.781200i
\(321\) 0 0
\(322\) −1930.89 186.910i −0.334174 0.0323480i
\(323\) 6008.03 + 6008.03i 1.03497 + 1.03497i
\(324\) 0 0
\(325\) 1720.54 1720.54i 0.293656 0.293656i
\(326\) 4418.37 + 5365.45i 0.750647 + 0.911548i
\(327\) 0 0
\(328\) 2445.81 8211.09i 0.411729 1.38226i
\(329\) −11356.9 −1.90313
\(330\) 0 0
\(331\) −5461.11 5461.11i −0.906857 0.906857i 0.0891603 0.996017i \(-0.471582\pi\)
−0.996017 + 0.0891603i \(0.971582\pi\)
\(332\) 2806.17 + 4169.41i 0.463881 + 0.689236i
\(333\) 0 0
\(334\) −6960.99 673.824i −1.14038 0.110389i
\(335\) 4400.17 0.717632
\(336\) 0 0
\(337\) −7450.74 −1.20436 −0.602178 0.798362i \(-0.705700\pi\)
−0.602178 + 0.798362i \(0.705700\pi\)
\(338\) −1911.66 185.049i −0.307635 0.0297791i
\(339\) 0 0
\(340\) −4729.92 + 3183.41i −0.754459 + 0.507779i
\(341\) 957.942 + 957.942i 0.152128 + 0.152128i
\(342\) 0 0
\(343\) 1469.61 0.231346
\(344\) 5384.97 2913.22i 0.844006 0.456599i
\(345\) 0 0
\(346\) 2834.38 + 3441.92i 0.440396 + 0.534795i
\(347\) −7071.55 + 7071.55i −1.09401 + 1.09401i −0.0989122 + 0.995096i \(0.531536\pi\)
−0.995096 + 0.0989122i \(0.968464\pi\)
\(348\) 0 0
\(349\) 3300.15 + 3300.15i 0.506170 + 0.506170i 0.913348 0.407179i \(-0.133487\pi\)
−0.407179 + 0.913348i \(0.633487\pi\)
\(350\) 3474.76 + 336.357i 0.530668 + 0.0513686i
\(351\) 0 0
\(352\) 308.489 + 987.108i 0.0467117 + 0.149469i
\(353\) 18.3891i 0.00277268i 0.999999 + 0.00138634i \(0.000441285\pi\)
−0.999999 + 0.00138634i \(0.999559\pi\)
\(354\) 0 0
\(355\) −2027.47 + 2027.47i −0.303118 + 0.303118i
\(356\) −8654.42 1691.34i −1.28844 0.251801i
\(357\) 0 0
\(358\) −4212.10 + 3468.61i −0.621833 + 0.512071i
\(359\) 670.681i 0.0985995i −0.998784 0.0492997i \(-0.984301\pi\)
0.998784 0.0492997i \(-0.0156990\pi\)
\(360\) 0 0
\(361\) 4459.18i 0.650121i
\(362\) −1127.65 1369.36i −0.163723 0.198817i
\(363\) 0 0
\(364\) −6516.56 9682.34i −0.938354 1.39421i
\(365\) 852.946 852.946i 0.122316 0.122316i
\(366\) 0 0
\(367\) 5038.40i 0.716627i 0.933601 + 0.358314i \(0.116648\pi\)
−0.933601 + 0.358314i \(0.883352\pi\)
\(368\) −607.491 + 1494.87i −0.0860534 + 0.211754i
\(369\) 0 0
\(370\) 722.549 7464.35i 0.101523 1.04879i
\(371\) −3792.68 3792.68i −0.530744 0.530744i
\(372\) 0 0
\(373\) −3151.66 + 3151.66i −0.437498 + 0.437498i −0.891169 0.453671i \(-0.850114\pi\)
0.453671 + 0.891169i \(0.350114\pi\)
\(374\) −996.245 + 820.395i −0.137740 + 0.113427i
\(375\) 0 0
\(376\) −2696.72 + 9053.47i −0.369874 + 1.24175i
\(377\) 8169.31 1.11602
\(378\) 0 0
\(379\) −1494.63 1494.63i −0.202570 0.202570i 0.598530 0.801100i \(-0.295752\pi\)
−0.801100 + 0.598530i \(0.795752\pi\)
\(380\) 7453.73 + 1456.69i 1.00623 + 0.196649i
\(381\) 0 0
\(382\) −175.221 + 1810.13i −0.0234688 + 0.242446i
\(383\) −2530.45 −0.337598 −0.168799 0.985650i \(-0.553989\pi\)
−0.168799 + 0.985650i \(0.553989\pi\)
\(384\) 0 0
\(385\) −1386.86 −0.183587
\(386\) 282.899 2922.51i 0.0373035 0.385367i
\(387\) 0 0
\(388\) 8394.39 + 1640.53i 1.09835 + 0.214652i
\(389\) 6128.44 + 6128.44i 0.798776 + 0.798776i 0.982903 0.184126i \(-0.0589455\pi\)
−0.184126 + 0.982903i \(0.558945\pi\)
\(390\) 0 0
\(391\) −2013.60 −0.260440
\(392\) 2564.56 8609.78i 0.330433 1.10934i
\(393\) 0 0
\(394\) 8156.30 6716.60i 1.04291 0.858826i
\(395\) −3294.11 + 3294.11i −0.419607 + 0.419607i
\(396\) 0 0
\(397\) −6952.91 6952.91i −0.878983 0.878983i 0.114446 0.993429i \(-0.463491\pi\)
−0.993429 + 0.114446i \(0.963491\pi\)
\(398\) 694.240 7171.90i 0.0874350 0.903254i
\(399\) 0 0
\(400\) 1093.22 2690.12i 0.136653 0.336265i
\(401\) 845.400i 0.105280i 0.998614 + 0.0526399i \(0.0167636\pi\)
−0.998614 + 0.0526399i \(0.983236\pi\)
\(402\) 0 0
\(403\) −8992.10 + 8992.10i −1.11149 + 1.11149i
\(404\) −7481.36 11115.8i −0.921316 1.36889i
\(405\) 0 0
\(406\) 7450.75 + 9047.81i 0.910775 + 1.10600i
\(407\) 1697.51i 0.206738i
\(408\) 0 0
\(409\) 14578.4i 1.76249i −0.472662 0.881244i \(-0.656707\pi\)
0.472662 0.881244i \(-0.343293\pi\)
\(410\) 7377.20 6075.02i 0.888619 0.731766i
\(411\) 0 0
\(412\) 15496.4 + 3028.48i 1.85304 + 0.362142i
\(413\) 7688.79 7688.79i 0.916079 0.916079i
\(414\) 0 0
\(415\) 5605.95i 0.663097i
\(416\) −9265.88 + 2895.76i −1.09206 + 0.341289i
\(417\) 0 0
\(418\) 1711.13 + 165.637i 0.200225 + 0.0193818i
\(419\) −4924.02 4924.02i −0.574115 0.574115i 0.359161 0.933276i \(-0.383063\pi\)
−0.933276 + 0.359161i \(0.883063\pi\)
\(420\) 0 0
\(421\) −6264.27 + 6264.27i −0.725182 + 0.725182i −0.969656 0.244474i \(-0.921385\pi\)
0.244474 + 0.969656i \(0.421385\pi\)
\(422\) −2949.40 3581.60i −0.340224 0.413151i
\(423\) 0 0
\(424\) −3924.00 + 2122.85i −0.449449 + 0.243148i
\(425\) 3623.61 0.413578
\(426\) 0 0
\(427\) −6959.20 6959.20i −0.788711 0.788711i
\(428\) 9629.07 6480.71i 1.08747 0.731909i
\(429\) 0 0
\(430\) 6797.45 + 657.994i 0.762331 + 0.0737936i
\(431\) −14200.7 −1.58707 −0.793533 0.608527i \(-0.791761\pi\)
−0.793533 + 0.608527i \(0.791761\pi\)
\(432\) 0 0
\(433\) −1574.27 −0.174722 −0.0873611 0.996177i \(-0.527843\pi\)
−0.0873611 + 0.996177i \(0.527843\pi\)
\(434\) −18160.2 1757.91i −2.00857 0.194430i
\(435\) 0 0
\(436\) 7590.41 + 11277.9i 0.833749 + 1.23879i
\(437\) 1896.65 + 1896.65i 0.207618 + 0.207618i
\(438\) 0 0
\(439\) −1716.76 −0.186644 −0.0933220 0.995636i \(-0.529749\pi\)
−0.0933220 + 0.995636i \(0.529749\pi\)
\(440\) −329.311 + 1105.57i −0.0356802 + 0.119786i
\(441\) 0 0
\(442\) −7700.96 9351.65i −0.828727 1.00636i
\(443\) 6531.76 6531.76i 0.700527 0.700527i −0.263997 0.964524i \(-0.585041\pi\)
0.964524 + 0.263997i \(0.0850408\pi\)
\(444\) 0 0
\(445\) −6955.15 6955.15i −0.740912 0.740912i
\(446\) 10173.8 + 984.825i 1.08014 + 0.104558i
\(447\) 0 0
\(448\) −11658.0 7621.24i −1.22944 0.803728i
\(449\) 2179.52i 0.229082i 0.993419 + 0.114541i \(0.0365397\pi\)
−0.993419 + 0.114541i \(0.963460\pi\)
\(450\) 0 0
\(451\) 1529.62 1529.62i 0.159706 0.159706i
\(452\) 2693.10 13780.3i 0.280249 1.43400i
\(453\) 0 0
\(454\) 1371.69 1129.57i 0.141799 0.116770i
\(455\) 13018.3i 1.34133i
\(456\) 0 0
\(457\) 833.132i 0.0852785i 0.999091 + 0.0426392i \(0.0135766\pi\)
−0.999091 + 0.0426392i \(0.986423\pi\)
\(458\) −480.370 583.337i −0.0490092 0.0595143i
\(459\) 0 0
\(460\) −1493.17 + 1004.96i −0.151346 + 0.101862i
\(461\) −6435.20 + 6435.20i −0.650146 + 0.650146i −0.953028 0.302882i \(-0.902051\pi\)
0.302882 + 0.953028i \(0.402051\pi\)
\(462\) 0 0
\(463\) 2144.06i 0.215211i −0.994194 0.107606i \(-0.965682\pi\)
0.994194 0.107606i \(-0.0343184\pi\)
\(464\) 8981.87 3791.13i 0.898649 0.379308i
\(465\) 0 0
\(466\) −1639.35 + 16935.4i −0.162964 + 1.68351i
\(467\) 1590.87 + 1590.87i 0.157638 + 0.157638i 0.781519 0.623881i \(-0.214445\pi\)
−0.623881 + 0.781519i \(0.714445\pi\)
\(468\) 0 0
\(469\) −9485.11 + 9485.11i −0.933863 + 0.933863i
\(470\) −8134.03 + 6698.26i −0.798286 + 0.657378i
\(471\) 0 0
\(472\) −4303.59 7955.02i −0.419680 0.775762i
\(473\) 1545.85 0.150271
\(474\) 0 0
\(475\) −3413.15 3413.15i −0.329697 0.329697i
\(476\) 3333.70 17058.2i 0.321008 1.64256i
\(477\) 0 0
\(478\) 1053.75 10885.9i 0.100832 1.04165i
\(479\) 3087.11 0.294475 0.147238 0.989101i \(-0.452962\pi\)
0.147238 + 0.989101i \(0.452962\pi\)
\(480\) 0 0
\(481\) 15934.4 1.51049
\(482\) −1648.66 + 17031.6i −0.155798 + 1.60948i
\(483\) 0 0
\(484\) 1992.23 10194.0i 0.187099 0.957366i
\(485\) 6746.18 + 6746.18i 0.631604 + 0.631604i
\(486\) 0 0
\(487\) 20640.5 1.92055 0.960276 0.279051i \(-0.0900198\pi\)
0.960276 + 0.279051i \(0.0900198\pi\)
\(488\) −7200.17 + 3895.23i −0.667903 + 0.361329i
\(489\) 0 0
\(490\) 7735.40 6369.99i 0.713162 0.587280i
\(491\) −13880.9 + 13880.9i −1.27584 + 1.27584i −0.332861 + 0.942976i \(0.608014\pi\)
−0.942976 + 0.332861i \(0.891986\pi\)
\(492\) 0 0
\(493\) 8602.66 + 8602.66i 0.785891 + 0.785891i
\(494\) −1554.82 + 16062.2i −0.141609 + 1.46290i
\(495\) 0 0
\(496\) −5713.54 + 14059.5i −0.517229 + 1.27276i
\(497\) 8740.93i 0.788902i
\(498\) 0 0
\(499\) −8527.15 + 8527.15i −0.764985 + 0.764985i −0.977219 0.212234i \(-0.931926\pi\)
0.212234 + 0.977219i \(0.431926\pi\)
\(500\) 10090.0 6790.95i 0.902478 0.607401i
\(501\) 0 0
\(502\) 9531.78 + 11574.9i 0.847459 + 1.02911i
\(503\) 6352.16i 0.563079i 0.959550 + 0.281540i \(0.0908451\pi\)
−0.959550 + 0.281540i \(0.909155\pi\)
\(504\) 0 0
\(505\) 14945.7i 1.31698i
\(506\) −314.500 + 258.987i −0.0276309 + 0.0227537i
\(507\) 0 0
\(508\) 1819.63 9310.83i 0.158923 0.813192i
\(509\) 6383.68 6383.68i 0.555897 0.555897i −0.372239 0.928137i \(-0.621410\pi\)
0.928137 + 0.372239i \(0.121410\pi\)
\(510\) 0 0
\(511\) 3677.26i 0.318342i
\(512\) −8843.67 + 7483.80i −0.763357 + 0.645977i
\(513\) 0 0
\(514\) 12931.4 + 1251.76i 1.10969 + 0.107418i
\(515\) 12453.7 + 12453.7i 1.06559 + 1.06559i
\(516\) 0 0
\(517\) −1686.55 + 1686.55i −0.143471 + 0.143471i
\(518\) 14532.8 + 17647.9i 1.23269 + 1.49692i
\(519\) 0 0
\(520\) −10377.9 3091.21i −0.875190 0.260690i
\(521\) −14655.6 −1.23238 −0.616192 0.787596i \(-0.711326\pi\)
−0.616192 + 0.787596i \(0.711326\pi\)
\(522\) 0 0
\(523\) 5288.73 + 5288.73i 0.442180 + 0.442180i 0.892744 0.450564i \(-0.148777\pi\)
−0.450564 + 0.892744i \(0.648777\pi\)
\(524\) 6832.47 + 10151.7i 0.569614 + 0.846334i
\(525\) 0 0
\(526\) −9789.08 947.583i −0.811453 0.0785486i
\(527\) −18938.2 −1.56539
\(528\) 0 0
\(529\) 11531.3 0.947755
\(530\) −4953.28 479.477i −0.405956 0.0392965i
\(531\) 0 0
\(532\) −19207.5 + 12927.4i −1.56532 + 1.05352i
\(533\) 14358.4 + 14358.4i 1.16685 + 1.16685i
\(534\) 0 0
\(535\) 12946.7 1.04623
\(536\) 5309.03 + 9813.54i 0.427827 + 0.790821i
\(537\) 0 0
\(538\) 293.535 + 356.454i 0.0235226 + 0.0285647i
\(539\) 1603.89 1603.89i 0.128172 0.128172i
\(540\) 0 0
\(541\) −5155.04 5155.04i −0.409672 0.409672i 0.471952 0.881624i \(-0.343550\pi\)
−0.881624 + 0.471952i \(0.843550\pi\)
\(542\) 6342.68 + 613.971i 0.502659 + 0.0486574i
\(543\) 0 0
\(544\) −12806.8 6708.03i −1.00935 0.528684i
\(545\) 15163.5i 1.19181i
\(546\) 0 0
\(547\) −15716.4 + 15716.4i −1.22849 + 1.22849i −0.263956 + 0.964535i \(0.585027\pi\)
−0.964535 + 0.263956i \(0.914973\pi\)
\(548\) −16999.3 3322.19i −1.32513 0.258972i
\(549\) 0 0
\(550\) 565.965 466.064i 0.0438778 0.0361328i
\(551\) 16206.0i 1.25300i
\(552\) 0 0
\(553\) 14201.7i 1.09208i
\(554\) 3620.68 + 4396.77i 0.277668 + 0.337186i
\(555\) 0 0
\(556\) −2160.75 3210.45i −0.164813 0.244880i
\(557\) 6521.03 6521.03i 0.496059 0.496059i −0.414150 0.910209i \(-0.635921\pi\)
0.910209 + 0.414150i \(0.135921\pi\)
\(558\) 0 0
\(559\) 14510.7i 1.09792i
\(560\) −6041.40 14313.2i −0.455885 1.08007i
\(561\) 0 0
\(562\) 1575.38 16274.6i 0.118244 1.22153i
\(563\) −3081.99 3081.99i −0.230711 0.230711i 0.582278 0.812989i \(-0.302161\pi\)
−0.812989 + 0.582278i \(0.802161\pi\)
\(564\) 0 0
\(565\) 11074.6 11074.6i 0.824620 0.824620i
\(566\) −7856.97 + 6470.11i −0.583486 + 0.480493i
\(567\) 0 0
\(568\) −6968.04 2075.54i −0.514740 0.153324i
\(569\) 15731.8 1.15907 0.579535 0.814948i \(-0.303234\pi\)
0.579535 + 0.814948i \(0.303234\pi\)
\(570\) 0 0
\(571\) −15369.5 15369.5i −1.12643 1.12643i −0.990753 0.135680i \(-0.956678\pi\)
−0.135680 0.990753i \(-0.543322\pi\)
\(572\) −2405.60 470.129i −0.175844 0.0343655i
\(573\) 0 0
\(574\) −2807.00 + 28997.9i −0.204115 + 2.10862i
\(575\) 1143.92 0.0829649
\(576\) 0 0
\(577\) −3414.08 −0.246326 −0.123163 0.992386i \(-0.539304\pi\)
−0.123163 + 0.992386i \(0.539304\pi\)
\(578\) 399.374 4125.76i 0.0287401 0.296902i
\(579\) 0 0
\(580\) 10672.7 + 2085.78i 0.764068 + 0.149323i
\(581\) −12084.3 12084.3i −0.862895 0.862895i
\(582\) 0 0
\(583\) −1126.45 −0.0800222
\(584\) 2931.42 + 873.171i 0.207711 + 0.0618700i
\(585\) 0 0
\(586\) 1308.31 1077.37i 0.0922282 0.0759487i
\(587\) −14858.9 + 14858.9i −1.04479 + 1.04479i −0.0458432 + 0.998949i \(0.514597\pi\)
−0.998949 + 0.0458432i \(0.985403\pi\)
\(588\) 0 0
\(589\) 17838.3 + 17838.3i 1.24790 + 1.24790i
\(590\) 972.031 10041.6i 0.0678269 0.700691i
\(591\) 0 0
\(592\) 17519.3 7394.66i 1.21628 0.513376i
\(593\) 10177.1i 0.704765i −0.935856 0.352382i \(-0.885372\pi\)
0.935856 0.352382i \(-0.114628\pi\)
\(594\) 0 0
\(595\) 13708.9 13708.9i 0.944552 0.944552i
\(596\) 12239.3 + 18185.2i 0.841176 + 1.24982i
\(597\) 0 0
\(598\) −2431.08 2952.18i −0.166245 0.201879i
\(599\) 3301.30i 0.225188i 0.993641 + 0.112594i \(0.0359159\pi\)
−0.993641 + 0.112594i \(0.964084\pi\)
\(600\) 0 0
\(601\) 15622.6i 1.06033i −0.847894 0.530166i \(-0.822130\pi\)
0.847894 0.530166i \(-0.177870\pi\)
\(602\) −16071.1 + 13234.4i −1.08806 + 0.896001i
\(603\) 0 0
\(604\) 18380.5 + 3592.12i 1.23823 + 0.241989i
\(605\) 8192.47 8192.47i 0.550531 0.550531i
\(606\) 0 0
\(607\) 8352.28i 0.558499i 0.960219 + 0.279249i \(0.0900856\pi\)
−0.960219 + 0.279249i \(0.909914\pi\)
\(608\) 5744.51 + 18381.4i 0.383176 + 1.22609i
\(609\) 0 0
\(610\) −9088.79 879.795i −0.603270 0.0583965i
\(611\) −15831.5 15831.5i −1.04824 1.04824i
\(612\) 0 0
\(613\) −4415.12 + 4415.12i −0.290906 + 0.290906i −0.837438 0.546532i \(-0.815948\pi\)
0.546532 + 0.837438i \(0.315948\pi\)
\(614\) 1747.21 + 2121.72i 0.114840 + 0.139456i
\(615\) 0 0
\(616\) −1673.32 3093.06i −0.109448 0.202310i
\(617\) 908.905 0.0593049 0.0296525 0.999560i \(-0.490560\pi\)
0.0296525 + 0.999560i \(0.490560\pi\)
\(618\) 0 0
\(619\) 12163.4 + 12163.4i 0.789804 + 0.789804i 0.981462 0.191658i \(-0.0613863\pi\)
−0.191658 + 0.981462i \(0.561386\pi\)
\(620\) −14043.5 + 9451.77i −0.909676 + 0.612245i
\(621\) 0 0
\(622\) 1244.26 + 120.445i 0.0802097 + 0.00776430i
\(623\) 29985.4 1.92831
\(624\) 0 0
\(625\) 7895.01 0.505281
\(626\) −5487.84 531.223i −0.350380 0.0339168i
\(627\) 0 0
\(628\) −5413.03 8042.71i −0.343955 0.511049i
\(629\) 16779.6 + 16779.6i 1.06367 + 1.06367i
\(630\) 0 0
\(631\) 26228.8 1.65476 0.827380 0.561643i \(-0.189830\pi\)
0.827380 + 0.561643i \(0.189830\pi\)
\(632\) −11321.3 3372.22i −0.712556 0.212246i
\(633\) 0 0
\(634\) −4138.72 5025.85i −0.259258 0.314830i
\(635\) 7482.68 7482.68i 0.467624 0.467624i
\(636\) 0 0
\(637\) 15055.6 + 15055.6i 0.936459 + 0.936459i
\(638\) 2450.10 + 237.169i 0.152038 + 0.0147173i
\(639\) 0 0
\(640\) −12844.6 + 1417.37i −0.793325 + 0.0875415i
\(641\) 9142.35i 0.563340i −0.959511 0.281670i \(-0.909112\pi\)
0.959511 0.281670i \(-0.0908883\pi\)
\(642\) 0 0
\(643\) 14128.8 14128.8i 0.866541 0.866541i −0.125547 0.992088i \(-0.540069\pi\)
0.992088 + 0.125547i \(0.0400686\pi\)
\(644\) 1052.40 5385.02i 0.0643951 0.329503i
\(645\) 0 0
\(646\) −18551.5 + 15276.9i −1.12988 + 0.930438i
\(647\) 16153.8i 0.981566i −0.871282 0.490783i \(-0.836711\pi\)
0.871282 0.490783i \(-0.163289\pi\)
\(648\) 0 0
\(649\) 2283.63i 0.138121i
\(650\) 4374.90 + 5312.65i 0.263996 + 0.320584i
\(651\) 0 0
\(652\) −16309.3 + 10976.7i −0.979632 + 0.659328i
\(653\) 4351.77 4351.77i 0.260793 0.260793i −0.564583 0.825376i \(-0.690963\pi\)
0.825376 + 0.564583i \(0.190963\pi\)
\(654\) 0 0
\(655\) 13649.4i 0.814237i
\(656\) 22449.9 + 9123.27i 1.33616 + 0.542994i
\(657\) 0 0
\(658\) 3094.97 31972.8i 0.183366 1.89427i
\(659\) −21049.5 21049.5i −1.24427 1.24427i −0.958213 0.286056i \(-0.907656\pi\)
−0.286056 0.958213i \(-0.592344\pi\)
\(660\) 0 0
\(661\) 14180.5 14180.5i 0.834428 0.834428i −0.153691 0.988119i \(-0.549116\pi\)
0.988119 + 0.153691i \(0.0491159\pi\)
\(662\) 16862.7 13886.2i 0.990013 0.815263i
\(663\) 0 0
\(664\) −12502.7 + 6763.87i −0.730724 + 0.395315i
\(665\) −25825.3 −1.50596
\(666\) 0 0
\(667\) 2715.74 + 2715.74i 0.157652 + 0.157652i
\(668\) 3793.99 19413.4i 0.219751 1.12444i
\(669\) 0 0
\(670\) −1199.12 + 12387.6i −0.0691436 + 0.714293i
\(671\) −2066.94 −0.118917
\(672\) 0 0
\(673\) 2224.60 0.127418 0.0637089 0.997969i \(-0.479707\pi\)
0.0637089 + 0.997969i \(0.479707\pi\)
\(674\) 2030.46 20975.8i 0.116039 1.19875i
\(675\) 0 0
\(676\) 1041.92 5331.41i 0.0592811 0.303335i
\(677\) −11483.6 11483.6i −0.651919 0.651919i 0.301536 0.953455i \(-0.402501\pi\)
−0.953455 + 0.301536i \(0.902501\pi\)
\(678\) 0 0
\(679\) −29084.5 −1.64383
\(680\) −7673.17 14183.5i −0.432724 0.799873i
\(681\) 0 0
\(682\) −2957.92 + 2435.81i −0.166077 + 0.136762i
\(683\) 1941.72 1941.72i 0.108781 0.108781i −0.650621 0.759403i \(-0.725491\pi\)
0.759403 + 0.650621i \(0.225491\pi\)
\(684\) 0 0
\(685\) −13661.5 13661.5i −0.762014 0.762014i
\(686\) −400.496 + 4137.35i −0.0222901 + 0.230269i
\(687\) 0 0
\(688\) 6733.99 + 15954.0i 0.373155 + 0.884072i
\(689\) 10573.9i 0.584664i
\(690\) 0 0
\(691\) −203.904 + 203.904i −0.0112256 + 0.0112256i −0.712697 0.701472i \(-0.752527\pi\)
0.701472 + 0.712697i \(0.252527\pi\)
\(692\) −10462.4 + 7041.55i −0.574739 + 0.386820i
\(693\) 0 0
\(694\) −17981.2 21835.4i −0.983511 1.19433i
\(695\) 4316.58i 0.235593i
\(696\) 0 0
\(697\) 30240.1i 1.64337i
\(698\) −10190.2 + 8391.47i −0.552584 + 0.455045i
\(699\) 0 0
\(700\) −1893.87 + 9690.71i −0.102259 + 0.523249i
\(701\) 62.5193 62.5193i 0.00336850 0.00336850i −0.705421 0.708789i \(-0.749242\pi\)
0.708789 + 0.705421i \(0.249242\pi\)
\(702\) 0 0
\(703\) 31610.1i 1.69587i
\(704\) −2863.04 + 599.475i −0.153274 + 0.0320931i
\(705\) 0 0
\(706\) −51.7703 5.01137i −0.00275978 0.000267146i
\(707\) 32217.3 + 32217.3i 1.71380 + 1.71380i
\(708\) 0 0
\(709\) −19068.4 + 19068.4i −1.01005 + 1.01005i −0.0101050 + 0.999949i \(0.503217\pi\)
−0.999949 + 0.0101050i \(0.996783\pi\)
\(710\) −5155.35 6260.39i −0.272502 0.330913i
\(711\) 0 0
\(712\) 7120.07 23903.6i 0.374769 1.25818i
\(713\) −5978.52 −0.314021
\(714\) 0 0
\(715\) −1933.27 1933.27i −0.101119 0.101119i
\(716\) −8617.18 12803.4i −0.449776 0.668278i
\(717\) 0 0
\(718\) 1888.15 + 182.773i 0.0981407 + 0.00950002i
\(719\) 4219.83 0.218878 0.109439 0.993994i \(-0.465095\pi\)
0.109439 + 0.993994i \(0.465095\pi\)
\(720\) 0 0
\(721\) −53691.2 −2.77332
\(722\) 12553.8 + 1215.21i 0.647096 + 0.0626389i
\(723\) 0 0
\(724\) 4162.42 2801.46i 0.213667 0.143806i
\(725\) −4887.15 4887.15i −0.250351 0.250351i
\(726\) 0 0
\(727\) 3771.74 0.192415 0.0962077 0.995361i \(-0.469329\pi\)
0.0962077 + 0.995361i \(0.469329\pi\)
\(728\) 29034.2 15707.3i 1.47813 0.799657i
\(729\) 0 0
\(730\) 2168.83 + 2633.72i 0.109962 + 0.133532i
\(731\) −15280.5 + 15280.5i −0.773143 + 0.773143i
\(732\) 0 0
\(733\) −5607.56 5607.56i −0.282565 0.282565i 0.551566 0.834131i \(-0.314030\pi\)
−0.834131 + 0.551566i \(0.814030\pi\)
\(734\) −14184.4 1373.05i −0.713293 0.0690468i
\(735\) 0 0
\(736\) −4042.91 2117.63i −0.202478 0.106055i
\(737\) 2817.15i 0.140802i
\(738\) 0 0
\(739\) −7137.31 + 7137.31i −0.355277 + 0.355277i −0.862069 0.506791i \(-0.830831\pi\)
0.506791 + 0.862069i \(0.330831\pi\)
\(740\) 20817.2 + 4068.34i 1.03413 + 0.202101i
\(741\) 0 0
\(742\) 11711.0 9643.83i 0.579412 0.477138i
\(743\) 17134.1i 0.846016i −0.906126 0.423008i \(-0.860974\pi\)
0.906126 0.423008i \(-0.139026\pi\)
\(744\) 0 0
\(745\) 24450.7i 1.20242i
\(746\) −8013.88 9731.65i −0.393310 0.477615i
\(747\) 0 0
\(748\) −2038.14 3028.27i −0.0996278 0.148027i
\(749\) −27908.2 + 27908.2i −1.36147 + 1.36147i
\(750\) 0 0
\(751\) 17533.1i 0.851922i −0.904742 0.425961i \(-0.859936\pi\)
0.904742 0.425961i \(-0.140064\pi\)
\(752\) −24753.0 10059.2i −1.20033 0.487795i
\(753\) 0 0
\(754\) −2226.28 + 22998.8i −0.107529 + 1.11083i
\(755\) 14771.5 + 14771.5i 0.712042 + 0.712042i
\(756\) 0 0
\(757\) −19568.4 + 19568.4i −0.939532 + 0.939532i −0.998273 0.0587408i \(-0.981291\pi\)
0.0587408 + 0.998273i \(0.481291\pi\)
\(758\) 4615.09 3800.47i 0.221145 0.182110i
\(759\) 0 0
\(760\) −6132.25 + 20587.3i −0.292684 + 0.982604i
\(761\) −4059.70 −0.193383 −0.0966913 0.995314i \(-0.530826\pi\)
−0.0966913 + 0.995314i \(0.530826\pi\)
\(762\) 0 0
\(763\) −32686.9 32686.9i −1.55091 1.55091i
\(764\) −5048.25 986.586i −0.239057 0.0467192i
\(765\) 0 0
\(766\) 689.593 7123.90i 0.0325274 0.336027i
\(767\) 21436.2 1.00915
\(768\) 0 0
\(769\) 21167.3 0.992602 0.496301 0.868150i \(-0.334691\pi\)
0.496301 + 0.868150i \(0.334691\pi\)
\(770\) 377.944 3904.38i 0.0176885 0.182733i
\(771\) 0 0
\(772\) 8150.54 + 1592.87i 0.379980 + 0.0742599i
\(773\) 1992.49 + 1992.49i 0.0927102 + 0.0927102i 0.751941 0.659231i \(-0.229118\pi\)
−0.659231 + 0.751941i \(0.729118\pi\)
\(774\) 0 0
\(775\) 10758.7 0.498665
\(776\) −6906.14 + 23185.4i −0.319479 + 1.07256i
\(777\) 0 0
\(778\) −18923.3 + 15583.1i −0.872022 + 0.718098i
\(779\) 28483.8 28483.8i 1.31006 1.31006i
\(780\) 0 0
\(781\) −1298.06 1298.06i −0.0594728 0.0594728i
\(782\) 548.742 5668.82i 0.0250933 0.259229i
\(783\) 0 0
\(784\) 23539.9 + 9566.25i 1.07234 + 0.435780i
\(785\) 10813.7i 0.491668i
\(786\) 0 0
\(787\) −17873.4 + 17873.4i −0.809551 + 0.809551i −0.984566 0.175015i \(-0.944003\pi\)
0.175015 + 0.984566i \(0.444003\pi\)
\(788\) 16686.3 + 24792.6i 0.754346 + 1.12081i
\(789\) 0 0
\(790\) −8376.10 10171.5i −0.377226 0.458083i
\(791\) 47745.2i 2.14617i
\(792\) 0 0
\(793\) 19402.1i 0.868839i
\(794\) 21469.1 17679.5i 0.959584 0.790204i
\(795\) 0 0
\(796\) 20001.6 + 3908.95i 0.890627 + 0.174056i
\(797\) −4327.93 + 4327.93i −0.192350 + 0.192350i −0.796711 0.604361i \(-0.793429\pi\)
0.604361 + 0.796711i \(0.293429\pi\)
\(798\) 0 0
\(799\) 33342.5i 1.47631i
\(800\) 7275.49 + 3810.82i 0.321534 + 0.168416i
\(801\) 0 0
\(802\) −2380.03 230.387i −0.104790 0.0101437i
\(803\) 546.087 + 546.087i 0.0239988 + 0.0239988i
\(804\) 0 0
\(805\) 4327.69 4327.69i 0.189480 0.189480i
\(806\) −22864.7 27765.7i −0.999223 1.21341i
\(807\) 0 0
\(808\) 33332.8 18032.8i 1.45129 0.785137i
\(809\) −7284.89 −0.316592 −0.158296 0.987392i \(-0.550600\pi\)
−0.158296 + 0.987392i \(0.550600\pi\)
\(810\) 0 0
\(811\) 28534.9 + 28534.9i 1.23551 + 1.23551i 0.961819 + 0.273688i \(0.0882435\pi\)
0.273688 + 0.961819i \(0.411756\pi\)
\(812\) −27502.5 + 18510.2i −1.18861 + 0.799975i
\(813\) 0 0
\(814\) 4778.95 + 462.602i 0.205776 + 0.0199192i
\(815\) −21928.5 −0.942479
\(816\) 0 0
\(817\) 28785.9 1.23267
\(818\) 41042.2 + 3972.89i 1.75429 + 0.169815i
\(819\) 0 0
\(820\) 15092.4 + 22424.3i 0.642743 + 0.954990i
\(821\) −17928.4 17928.4i −0.762128 0.762128i 0.214579 0.976707i \(-0.431162\pi\)
−0.976707 + 0.214579i \(0.931162\pi\)
\(822\) 0 0
\(823\) −25241.2 −1.06908 −0.534540 0.845143i \(-0.679515\pi\)
−0.534540 + 0.845143i \(0.679515\pi\)
\(824\) −12749.0 + 42801.2i −0.538997 + 1.80953i
\(825\) 0 0
\(826\) 19550.7 + 23741.3i 0.823553 + 1.00008i
\(827\) 27181.2 27181.2i 1.14291 1.14291i 0.154990 0.987916i \(-0.450466\pi\)
0.987916 0.154990i \(-0.0495344\pi\)
\(828\) 0 0
\(829\) −2755.03 2755.03i −0.115424 0.115424i 0.647036 0.762460i \(-0.276008\pi\)
−0.762460 + 0.647036i \(0.776008\pi\)
\(830\) −15782.2 1527.72i −0.660012 0.0638891i
\(831\) 0 0
\(832\) −5627.21 26875.1i −0.234481 1.11986i
\(833\) 31708.4i 1.31889i
\(834\) 0 0
\(835\) 15601.7 15601.7i 0.646608 0.646608i
\(836\) −932.627 + 4772.15i −0.0385832 + 0.197426i
\(837\) 0 0
\(838\) 15204.3 12520.6i 0.626760 0.516128i
\(839\) 20544.0i 0.845361i 0.906279 + 0.422681i \(0.138911\pi\)
−0.906279 + 0.422681i \(0.861089\pi\)
\(840\) 0 0
\(841\) 1184.24i 0.0485561i
\(842\) −15928.5 19342.7i −0.651937 0.791679i
\(843\) 0 0
\(844\) 10886.9 7327.31i 0.444009 0.298835i
\(845\) 4284.61 4284.61i 0.174432 0.174432i
\(846\) 0 0
\(847\) 35319.8i 1.43282i
\(848\) −4907.03 11625.6i −0.198712 0.470785i
\(849\) 0 0
\(850\) −987.498 + 10201.4i −0.0398481 + 0.411654i
\(851\) 5297.08 + 5297.08i 0.213374 + 0.213374i
\(852\) 0 0
\(853\) 9553.45 9553.45i 0.383475 0.383475i −0.488878 0.872352i \(-0.662594\pi\)
0.872352 + 0.488878i \(0.162594\pi\)
\(854\) 21488.5 17695.5i 0.861033 0.709049i
\(855\) 0 0
\(856\) 15620.9 + 28874.5i 0.623726 + 1.15293i
\(857\) 21465.0 0.855578 0.427789 0.903879i \(-0.359293\pi\)
0.427789 + 0.903879i \(0.359293\pi\)
\(858\) 0 0
\(859\) 4252.94 + 4252.94i 0.168927 + 0.168927i 0.786508 0.617580i \(-0.211887\pi\)
−0.617580 + 0.786508i \(0.711887\pi\)
\(860\) −3704.86 + 18957.3i −0.146901 + 0.751674i
\(861\) 0 0
\(862\) 3869.96 39978.9i 0.152913 1.57968i
\(863\) −7487.36 −0.295333 −0.147667 0.989037i \(-0.547176\pi\)
−0.147667 + 0.989037i \(0.547176\pi\)
\(864\) 0 0
\(865\) −14067.1 −0.552942
\(866\) 429.018 4432.00i 0.0168344 0.173909i
\(867\) 0 0
\(868\) 9897.99 50646.9i 0.387050 1.98049i
\(869\) −2109.01 2109.01i −0.0823282 0.0823282i
\(870\) 0 0
\(871\) −26444.3 −1.02874
\(872\) −33818.7 + 18295.6i −1.31336 + 0.710513i
\(873\) 0 0
\(874\) −5856.45 + 4822.71i −0.226656 + 0.186648i
\(875\) −29244.1 + 29244.1i −1.12987 + 1.12987i
\(876\) 0 0
\(877\) −14348.4 14348.4i −0.552465 0.552465i 0.374686 0.927152i \(-0.377750\pi\)
−0.927152 + 0.374686i \(0.877750\pi\)
\(878\) 467.849 4833.15i 0.0179831 0.185776i
\(879\) 0 0
\(880\) −3022.73 1228.39i −0.115791 0.0470556i
\(881\) 17497.5i 0.669131i 0.942372 + 0.334566i \(0.108590\pi\)
−0.942372 + 0.334566i \(0.891410\pi\)
\(882\) 0 0
\(883\) 5399.20 5399.20i 0.205773 0.205773i −0.596695 0.802468i \(-0.703520\pi\)
0.802468 + 0.596695i \(0.203520\pi\)
\(884\) 28426.1 19131.8i 1.08153 0.727908i
\(885\) 0 0
\(886\) 16608.6 + 20168.7i 0.629772 + 0.764763i
\(887\) 32588.2i 1.23360i 0.787119 + 0.616801i \(0.211572\pi\)
−0.787119 + 0.616801i \(0.788428\pi\)
\(888\) 0 0
\(889\) 32259.7i 1.21705i
\(890\) 21476.0 17685.2i 0.808851 0.666078i
\(891\) 0 0
\(892\) −5545.10 + 28373.6i −0.208143 + 1.06504i
\(893\) −31406.0 + 31406.0i −1.17689 + 1.17689i
\(894\) 0 0
\(895\) 17214.8i 0.642934i
\(896\) 24632.9 30743.5i 0.918444 1.14628i
\(897\) 0 0
\(898\) −6135.92 593.957i −0.228016 0.0220720i
\(899\) 25541.9 + 25541.9i 0.947575 + 0.947575i
\(900\) 0 0
\(901\) 11134.8 11134.8i 0.411714 0.411714i
\(902\) 3889.45 + 4723.15i 0.143575 + 0.174350i
\(903\) 0 0
\(904\) 38061.3 + 11337.2i 1.40033 + 0.417111i
\(905\) 5596.54 0.205564
\(906\) 0 0
\(907\) 175.952 + 175.952i 0.00644145 + 0.00644145i 0.710320 0.703879i \(-0.248550\pi\)
−0.703879 + 0.710320i \(0.748550\pi\)
\(908\) 2806.23 + 4169.51i 0.102564 + 0.152390i
\(909\) 0 0
\(910\) 36650.0 + 3547.72i 1.33509 + 0.129237i
\(911\) −13051.9 −0.474676 −0.237338 0.971427i \(-0.576275\pi\)
−0.237338 + 0.971427i \(0.576275\pi\)
\(912\) 0 0
\(913\) −3589.13 −0.130102
\(914\) −2345.49 227.043i −0.0848817 0.00821655i
\(915\) 0 0
\(916\) 1773.16 1193.40i 0.0639595 0.0430470i
\(917\) −29422.9 29422.9i −1.05958 1.05958i
\(918\) 0 0
\(919\) −8004.68 −0.287323 −0.143662 0.989627i \(-0.545888\pi\)
−0.143662 + 0.989627i \(0.545888\pi\)
\(920\) −2422.31 4477.54i −0.0868056 0.160457i
\(921\) 0 0
\(922\) −16363.1 19870.5i −0.584480 0.709763i
\(923\) 12184.8 12184.8i 0.434524 0.434524i
\(924\) 0 0
\(925\) −9532.46 9532.46i −0.338838 0.338838i
\(926\) 6036.09 + 584.294i 0.214210 + 0.0207355i
\(927\) 0 0
\(928\) 8225.33 + 26319.5i 0.290959 + 0.931014i
\(929\) 19953.1i 0.704672i −0.935874 0.352336i \(-0.885387\pi\)
0.935874 0.352336i \(-0.114613\pi\)
\(930\) 0 0
\(931\) 29866.8 29866.8i 1.05139 1.05139i
\(932\) −47230.9 9230.40i −1.65998 0.324412i
\(933\) 0 0
\(934\) −4912.27 + 4045.19i −0.172093 + 0.141716i
\(935\) 4071.63i 0.142414i
\(936\) 0 0
\(937\) 47079.0i 1.64141i 0.571351 + 0.820706i \(0.306420\pi\)
−0.571351 + 0.820706i \(0.693580\pi\)
\(938\) −24118.3 29288.0i −0.839540 1.01950i
\(939\) 0 0
\(940\) −16640.7 24724.9i −0.577405 0.857911i
\(941\) 4612.54 4612.54i 0.159792 0.159792i −0.622682 0.782475i \(-0.713957\pi\)
0.782475 + 0.622682i \(0.213957\pi\)
\(942\) 0 0
\(943\) 9546.38i 0.329664i
\(944\) 23568.3 9947.88i 0.812588 0.342983i
\(945\) 0 0
\(946\) −421.271 + 4351.98i −0.0144786 + 0.149572i
\(947\) −35884.4 35884.4i −1.23135 1.23135i −0.963447 0.267899i \(-0.913671\pi\)
−0.267899 0.963447i \(-0.586329\pi\)
\(948\) 0 0
\(949\) −5126.07 + 5126.07i −0.175342 + 0.175342i
\(950\) 10539.1 8678.79i 0.359929 0.296397i
\(951\) 0 0
\(952\) 47114.9 + 14033.9i 1.60399 + 0.477775i
\(953\) −2274.82 −0.0773228 −0.0386614 0.999252i \(-0.512309\pi\)
−0.0386614 + 0.999252i \(0.512309\pi\)
\(954\) 0 0
\(955\) −4057.04 4057.04i −0.137469 0.137469i
\(956\) 30359.5 + 5933.20i 1.02709 + 0.200725i
\(957\) 0 0
\(958\) −841.293 + 8691.04i −0.0283726 + 0.293105i
\(959\) 58898.2 1.98324
\(960\) 0 0
\(961\) −26437.8 −0.887442
\(962\) −4342.40 + 44859.5i −0.145535 + 1.50346i
\(963\) 0 0
\(964\) −47499.3 9282.85i −1.58698 0.310146i
\(965\) 6550.21 + 6550.21i 0.218506 + 0.218506i
\(966\) 0 0
\(967\) −11693.6 −0.388874 −0.194437 0.980915i \(-0.562288\pi\)
−0.194437 + 0.980915i \(0.562288\pi\)
\(968\) 28156.0 + 8386.72i 0.934885 + 0.278471i
\(969\) 0 0
\(970\) −20830.8 + 17153.8i −0.689521 + 0.567811i
\(971\) 13147.9 13147.9i 0.434537 0.434537i −0.455632 0.890168i \(-0.650587\pi\)
0.890168 + 0.455632i \(0.150587\pi\)
\(972\) 0 0
\(973\) 9304.93 + 9304.93i 0.306580 + 0.306580i
\(974\) −5624.90 + 58108.5i −0.185045 + 1.91162i
\(975\) 0 0
\(976\) −9003.93 21331.9i −0.295296 0.699609i
\(977\) 57554.9i 1.88469i 0.334642 + 0.942345i \(0.391385\pi\)
−0.334642 + 0.942345i \(0.608615\pi\)
\(978\) 0 0
\(979\) 4452.94 4452.94i 0.145369 0.145369i
\(980\) 15825.2 + 23513.2i 0.515834 + 0.766429i
\(981\) 0 0
\(982\) −35295.6 42861.2i −1.14697 1.39283i
\(983\) 29857.4i 0.968773i 0.874854 + 0.484386i \(0.160957\pi\)
−0.874854 + 0.484386i \(0.839043\pi\)
\(984\) 0 0
\(985\) 33334.6i 1.07830i
\(986\) −26563.2 + 21874.4i −0.857955 + 0.706514i
\(987\) 0 0
\(988\) −44795.7 8754.48i −1.44245 0.281900i
\(989\) −4823.82 + 4823.82i −0.155095 + 0.155095i
\(990\) 0 0
\(991\) 37310.0i 1.19596i −0.801513 0.597978i \(-0.795971\pi\)
0.801513 0.597978i \(-0.204029\pi\)
\(992\) −38024.1 19916.6i −1.21700 0.637452i
\(993\) 0 0
\(994\) 24608.0 + 2382.06i 0.785231 + 0.0760104i
\(995\) 16074.4 + 16074.4i 0.512153 + 0.512153i
\(996\) 0 0
\(997\) 31495.0 31495.0i 1.00046 1.00046i 0.000458156 1.00000i \(-0.499854\pi\)
1.00000 0.000458156i \(-0.000145836\pi\)
\(998\) −21682.4 26330.0i −0.687720 0.835132i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.4.l.a.35.11 48
3.2 odd 2 inner 144.4.l.a.35.14 yes 48
4.3 odd 2 576.4.l.a.431.8 48
8.3 odd 2 1152.4.l.a.863.17 48
8.5 even 2 1152.4.l.b.863.17 48
12.11 even 2 576.4.l.a.431.17 48
16.3 odd 4 1152.4.l.b.287.8 48
16.5 even 4 576.4.l.a.143.17 48
16.11 odd 4 inner 144.4.l.a.107.14 yes 48
16.13 even 4 1152.4.l.a.287.8 48
24.5 odd 2 1152.4.l.b.863.8 48
24.11 even 2 1152.4.l.a.863.8 48
48.5 odd 4 576.4.l.a.143.8 48
48.11 even 4 inner 144.4.l.a.107.11 yes 48
48.29 odd 4 1152.4.l.a.287.17 48
48.35 even 4 1152.4.l.b.287.17 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.11 48 1.1 even 1 trivial
144.4.l.a.35.14 yes 48 3.2 odd 2 inner
144.4.l.a.107.11 yes 48 48.11 even 4 inner
144.4.l.a.107.14 yes 48 16.11 odd 4 inner
576.4.l.a.143.8 48 48.5 odd 4
576.4.l.a.143.17 48 16.5 even 4
576.4.l.a.431.8 48 4.3 odd 2
576.4.l.a.431.17 48 12.11 even 2
1152.4.l.a.287.8 48 16.13 even 4
1152.4.l.a.287.17 48 48.29 odd 4
1152.4.l.a.863.8 48 24.11 even 2
1152.4.l.a.863.17 48 8.3 odd 2
1152.4.l.b.287.8 48 16.3 odd 4
1152.4.l.b.287.17 48 48.35 even 4
1152.4.l.b.863.8 48 24.5 odd 2
1152.4.l.b.863.17 48 8.5 even 2