Properties

Label 1152.4.l.a.863.17
Level $1152$
Weight $4$
Character 1152.863
Analytic conductor $67.970$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1152,4,Mod(287,1152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1152.287"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1152, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 863.17
Character \(\chi\) \(=\) 1152.863
Dual form 1152.4.l.a.287.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(6.30986 + 6.30986i) q^{5} -27.2034 q^{7} +(4.03980 - 4.03980i) q^{11} +(-37.9212 - 37.9212i) q^{13} +79.8655i q^{17} +(75.2269 - 75.2269i) q^{19} -25.2124i q^{23} -45.3714i q^{25} +(-107.714 + 107.714i) q^{29} -237.126i q^{31} +(-171.649 - 171.649i) q^{35} +(-210.098 + 210.098i) q^{37} +378.638 q^{41} +(191.327 + 191.327i) q^{43} +417.483 q^{47} +397.023 q^{49} +(139.419 + 139.419i) q^{53} +50.9811 q^{55} +(282.641 - 282.641i) q^{59} +(255.821 + 255.821i) q^{61} -478.555i q^{65} +(-348.674 + 348.674i) q^{67} +321.318i q^{71} +135.177i q^{73} +(-109.896 + 109.896i) q^{77} +522.058i q^{79} +(-444.221 - 444.221i) q^{83} +(-503.940 + 503.940i) q^{85} +1102.27 q^{89} +(1031.58 + 1031.58i) q^{91} +949.342 q^{95} -1069.15 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{19} + 864 q^{43} + 2352 q^{49} + 576 q^{55} - 1824 q^{61} + 816 q^{67} + 480 q^{85} - 3600 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.30986 + 6.30986i 0.564371 + 0.564371i 0.930546 0.366175i \(-0.119333\pi\)
−0.366175 + 0.930546i \(0.619333\pi\)
\(6\) 0 0
\(7\) −27.2034 −1.46884 −0.734422 0.678693i \(-0.762547\pi\)
−0.734422 + 0.678693i \(0.762547\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.03980 4.03980i 0.110731 0.110731i −0.649570 0.760302i \(-0.725051\pi\)
0.760302 + 0.649570i \(0.225051\pi\)
\(12\) 0 0
\(13\) −37.9212 37.9212i −0.809034 0.809034i 0.175453 0.984488i \(-0.443861\pi\)
−0.984488 + 0.175453i \(0.943861\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 79.8655i 1.13943i 0.821844 + 0.569713i \(0.192945\pi\)
−0.821844 + 0.569713i \(0.807055\pi\)
\(18\) 0 0
\(19\) 75.2269 75.2269i 0.908328 0.908328i −0.0878089 0.996137i \(-0.527986\pi\)
0.996137 + 0.0878089i \(0.0279865\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 25.2124i 0.228572i −0.993448 0.114286i \(-0.963542\pi\)
0.993448 0.114286i \(-0.0364580\pi\)
\(24\) 0 0
\(25\) 45.3714i 0.362971i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −107.714 + 107.714i −0.689726 + 0.689726i −0.962171 0.272445i \(-0.912168\pi\)
0.272445 + 0.962171i \(0.412168\pi\)
\(30\) 0 0
\(31\) 237.126i 1.37384i −0.726732 0.686921i \(-0.758962\pi\)
0.726732 0.686921i \(-0.241038\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −171.649 171.649i −0.828973 0.828973i
\(36\) 0 0
\(37\) −210.098 + 210.098i −0.933512 + 0.933512i −0.997923 0.0644112i \(-0.979483\pi\)
0.0644112 + 0.997923i \(0.479483\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 378.638 1.44228 0.721139 0.692790i \(-0.243619\pi\)
0.721139 + 0.692790i \(0.243619\pi\)
\(42\) 0 0
\(43\) 191.327 + 191.327i 0.678538 + 0.678538i 0.959669 0.281131i \(-0.0907096\pi\)
−0.281131 + 0.959669i \(0.590710\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 417.483 1.29566 0.647831 0.761784i \(-0.275676\pi\)
0.647831 + 0.761784i \(0.275676\pi\)
\(48\) 0 0
\(49\) 397.023 1.15750
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 139.419 + 139.419i 0.361335 + 0.361335i 0.864304 0.502970i \(-0.167759\pi\)
−0.502970 + 0.864304i \(0.667759\pi\)
\(54\) 0 0
\(55\) 50.9811 0.124987
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 282.641 282.641i 0.623674 0.623674i −0.322795 0.946469i \(-0.604623\pi\)
0.946469 + 0.322795i \(0.104623\pi\)
\(60\) 0 0
\(61\) 255.821 + 255.821i 0.536960 + 0.536960i 0.922635 0.385675i \(-0.126031\pi\)
−0.385675 + 0.922635i \(0.626031\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 478.555i 0.913191i
\(66\) 0 0
\(67\) −348.674 + 348.674i −0.635781 + 0.635781i −0.949512 0.313731i \(-0.898421\pi\)
0.313731 + 0.949512i \(0.398421\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 321.318i 0.537090i 0.963267 + 0.268545i \(0.0865428\pi\)
−0.963267 + 0.268545i \(0.913457\pi\)
\(72\) 0 0
\(73\) 135.177i 0.216729i 0.994111 + 0.108365i \(0.0345614\pi\)
−0.994111 + 0.108365i \(0.965439\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −109.896 + 109.896i −0.162647 + 0.162647i
\(78\) 0 0
\(79\) 522.058i 0.743495i 0.928334 + 0.371747i \(0.121241\pi\)
−0.928334 + 0.371747i \(0.878759\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −444.221 444.221i −0.587465 0.587465i 0.349479 0.936944i \(-0.386359\pi\)
−0.936944 + 0.349479i \(0.886359\pi\)
\(84\) 0 0
\(85\) −503.940 + 503.940i −0.643058 + 0.643058i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1102.27 1.31281 0.656405 0.754409i \(-0.272076\pi\)
0.656405 + 0.754409i \(0.272076\pi\)
\(90\) 0 0
\(91\) 1031.58 + 1031.58i 1.18835 + 1.18835i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 949.342 1.02527
\(96\) 0 0
\(97\) −1069.15 −1.11913 −0.559565 0.828786i \(-0.689032\pi\)
−0.559565 + 0.828786i \(0.689032\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1184.31 1184.31i −1.16677 1.16677i −0.982963 0.183805i \(-0.941159\pi\)
−0.183805 0.982963i \(-0.558841\pi\)
\(102\) 0 0
\(103\) 1973.70 1.88810 0.944049 0.329806i \(-0.106983\pi\)
0.944049 + 0.329806i \(0.106983\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1025.91 + 1025.91i −0.926901 + 0.926901i −0.997504 0.0706038i \(-0.977507\pi\)
0.0706038 + 0.997504i \(0.477507\pi\)
\(108\) 0 0
\(109\) 1201.58 + 1201.58i 1.05587 + 1.05587i 0.998344 + 0.0575281i \(0.0183219\pi\)
0.0575281 + 0.998344i \(0.481678\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1755.12i 1.46113i 0.682842 + 0.730566i \(0.260744\pi\)
−0.682842 + 0.730566i \(0.739256\pi\)
\(114\) 0 0
\(115\) 159.087 159.087i 0.128999 0.128999i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2172.61i 1.67364i
\(120\) 0 0
\(121\) 1298.36i 0.975477i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1075.02 1075.02i 0.769221 0.769221i
\(126\) 0 0
\(127\) 1185.87i 0.828575i −0.910146 0.414288i \(-0.864031\pi\)
0.910146 0.414288i \(-0.135969\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1081.59 1081.59i −0.721367 0.721367i 0.247516 0.968884i \(-0.420386\pi\)
−0.968884 + 0.247516i \(0.920386\pi\)
\(132\) 0 0
\(133\) −2046.43 + 2046.43i −1.33419 + 1.33419i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2165.11 1.35020 0.675101 0.737725i \(-0.264100\pi\)
0.675101 + 0.737725i \(0.264100\pi\)
\(138\) 0 0
\(139\) 342.051 + 342.051i 0.208722 + 0.208722i 0.803724 0.595002i \(-0.202849\pi\)
−0.595002 + 0.803724i \(0.702849\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −306.388 −0.179171
\(144\) 0 0
\(145\) −1359.32 −0.778522
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1937.50 + 1937.50i 1.06528 + 1.06528i 0.997715 + 0.0675623i \(0.0215222\pi\)
0.0675623 + 0.997715i \(0.478478\pi\)
\(150\) 0 0
\(151\) 2341.03 1.26166 0.630828 0.775923i \(-0.282715\pi\)
0.630828 + 0.775923i \(0.282715\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1496.23 1496.23i 0.775356 0.775356i
\(156\) 0 0
\(157\) −856.893 856.893i −0.435589 0.435589i 0.454935 0.890525i \(-0.349662\pi\)
−0.890525 + 0.454935i \(0.849662\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 685.862i 0.335736i
\(162\) 0 0
\(163\) 1737.64 1737.64i 0.834982 0.834982i −0.153211 0.988193i \(-0.548961\pi\)
0.988193 + 0.153211i \(0.0489615\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2472.59i 1.14572i −0.819655 0.572858i \(-0.805835\pi\)
0.819655 0.572858i \(-0.194165\pi\)
\(168\) 0 0
\(169\) 679.034i 0.309073i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1114.69 + 1114.69i −0.489875 + 0.489875i −0.908267 0.418392i \(-0.862594\pi\)
0.418392 + 0.908267i \(0.362594\pi\)
\(174\) 0 0
\(175\) 1234.25i 0.533148i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1364.12 + 1364.12i 0.569602 + 0.569602i 0.932017 0.362415i \(-0.118048\pi\)
−0.362415 + 0.932017i \(0.618048\pi\)
\(180\) 0 0
\(181\) 443.476 443.476i 0.182118 0.182118i −0.610160 0.792278i \(-0.708895\pi\)
0.792278 + 0.610160i \(0.208895\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2651.38 −1.05369
\(186\) 0 0
\(187\) 322.641 + 322.641i 0.126170 + 0.126170i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −642.969 −0.243579 −0.121790 0.992556i \(-0.538863\pi\)
−0.121790 + 0.992556i \(0.538863\pi\)
\(192\) 0 0
\(193\) −1038.09 −0.387168 −0.193584 0.981084i \(-0.562011\pi\)
−0.193584 + 0.981084i \(0.562011\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2641.47 + 2641.47i 0.955315 + 0.955315i 0.999043 0.0437288i \(-0.0139238\pi\)
−0.0437288 + 0.999043i \(0.513924\pi\)
\(198\) 0 0
\(199\) 2547.50 0.907476 0.453738 0.891135i \(-0.350090\pi\)
0.453738 + 0.891135i \(0.350090\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2930.19 2930.19i 1.01310 1.01310i
\(204\) 0 0
\(205\) 2389.15 + 2389.15i 0.813980 + 0.813980i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 607.804i 0.201161i
\(210\) 0 0
\(211\) −1159.93 + 1159.93i −0.378448 + 0.378448i −0.870542 0.492094i \(-0.836232\pi\)
0.492094 + 0.870542i \(0.336232\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2414.50i 0.765894i
\(216\) 0 0
\(217\) 6450.63i 2.01796i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3028.59 3028.59i 0.921834 0.921834i
\(222\) 0 0
\(223\) 3613.80i 1.08519i 0.839994 + 0.542596i \(0.182559\pi\)
−0.839994 + 0.542596i \(0.817441\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −444.232 444.232i −0.129889 0.129889i 0.639174 0.769062i \(-0.279276\pi\)
−0.769062 + 0.639174i \(0.779276\pi\)
\(228\) 0 0
\(229\) 188.918 188.918i 0.0545154 0.0545154i −0.679324 0.733839i \(-0.737727\pi\)
0.733839 + 0.679324i \(0.237727\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6015.55 1.69138 0.845691 0.533673i \(-0.179189\pi\)
0.845691 + 0.533673i \(0.179189\pi\)
\(234\) 0 0
\(235\) 2634.26 + 2634.26i 0.731234 + 0.731234i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3866.73 1.04652 0.523260 0.852173i \(-0.324716\pi\)
0.523260 + 0.852173i \(0.324716\pi\)
\(240\) 0 0
\(241\) 6049.74 1.61700 0.808501 0.588494i \(-0.200279\pi\)
0.808501 + 0.588494i \(0.200279\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2505.16 + 2505.16i 0.653260 + 0.653260i
\(246\) 0 0
\(247\) −5705.39 −1.46974
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3748.61 3748.61i 0.942670 0.942670i −0.0557730 0.998443i \(-0.517762\pi\)
0.998443 + 0.0557730i \(0.0177623\pi\)
\(252\) 0 0
\(253\) −101.853 101.853i −0.0253101 0.0253101i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4593.31i 1.11488i −0.830219 0.557438i \(-0.811785\pi\)
0.830219 0.557438i \(-0.188215\pi\)
\(258\) 0 0
\(259\) 5715.38 5715.38i 1.37118 1.37118i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3477.14i 0.815246i −0.913150 0.407623i \(-0.866358\pi\)
0.913150 0.407623i \(-0.133642\pi\)
\(264\) 0 0
\(265\) 1759.43i 0.407853i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −115.440 + 115.440i −0.0261654 + 0.0261654i −0.720068 0.693903i \(-0.755890\pi\)
0.693903 + 0.720068i \(0.255890\pi\)
\(270\) 0 0
\(271\) 2252.96i 0.505009i 0.967596 + 0.252504i \(0.0812542\pi\)
−0.967596 + 0.252504i \(0.918746\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −183.291 183.291i −0.0401923 0.0401923i
\(276\) 0 0
\(277\) −1423.92 + 1423.92i −0.308864 + 0.308864i −0.844469 0.535605i \(-0.820084\pi\)
0.535605 + 0.844469i \(0.320084\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5780.83 −1.22724 −0.613621 0.789600i \(-0.710288\pi\)
−0.613621 + 0.789600i \(0.710288\pi\)
\(282\) 0 0
\(283\) 2544.53 + 2544.53i 0.534476 + 0.534476i 0.921901 0.387425i \(-0.126635\pi\)
−0.387425 + 0.921901i \(0.626635\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10300.2 −2.11848
\(288\) 0 0
\(289\) −1465.50 −0.298289
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 423.704 + 423.704i 0.0844815 + 0.0844815i 0.748085 0.663603i \(-0.230974\pi\)
−0.663603 + 0.748085i \(0.730974\pi\)
\(294\) 0 0
\(295\) 3566.85 0.703966
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −956.084 + 956.084i −0.184922 + 0.184922i
\(300\) 0 0
\(301\) −5204.75 5204.75i −0.996667 0.996667i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3228.39i 0.606089i
\(306\) 0 0
\(307\) 687.135 687.135i 0.127742 0.127742i −0.640345 0.768087i \(-0.721209\pi\)
0.768087 + 0.640345i \(0.221209\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 441.970i 0.0805846i 0.999188 + 0.0402923i \(0.0128289\pi\)
−0.999188 + 0.0402923i \(0.987171\pi\)
\(312\) 0 0
\(313\) 1949.31i 0.352018i 0.984389 + 0.176009i \(0.0563188\pi\)
−0.984389 + 0.176009i \(0.943681\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1627.66 1627.66i 0.288386 0.288386i −0.548056 0.836442i \(-0.684632\pi\)
0.836442 + 0.548056i \(0.184632\pi\)
\(318\) 0 0
\(319\) 870.289i 0.152749i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6008.03 + 6008.03i 1.03497 + 1.03497i
\(324\) 0 0
\(325\) −1720.54 + 1720.54i −0.293656 + 0.293656i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −11356.9 −1.90313
\(330\) 0 0
\(331\) −5461.11 5461.11i −0.906857 0.906857i 0.0891603 0.996017i \(-0.471582\pi\)
−0.996017 + 0.0891603i \(0.971582\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4400.17 −0.717632
\(336\) 0 0
\(337\) −7450.74 −1.20436 −0.602178 0.798362i \(-0.705700\pi\)
−0.602178 + 0.798362i \(0.705700\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −957.942 957.942i −0.152128 0.152128i
\(342\) 0 0
\(343\) −1469.61 −0.231346
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7071.55 + 7071.55i −1.09401 + 1.09401i −0.0989122 + 0.995096i \(0.531536\pi\)
−0.995096 + 0.0989122i \(0.968464\pi\)
\(348\) 0 0
\(349\) −3300.15 3300.15i −0.506170 0.506170i 0.407179 0.913348i \(-0.366513\pi\)
−0.913348 + 0.407179i \(0.866513\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.3891i 0.00277268i 0.999999 + 0.00138634i \(0.000441285\pi\)
−0.999999 + 0.00138634i \(0.999559\pi\)
\(354\) 0 0
\(355\) −2027.47 + 2027.47i −0.303118 + 0.303118i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 670.681i 0.0985995i 0.998784 + 0.0492997i \(0.0156990\pi\)
−0.998784 + 0.0492997i \(0.984301\pi\)
\(360\) 0 0
\(361\) 4459.18i 0.650121i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −852.946 + 852.946i −0.122316 + 0.122316i
\(366\) 0 0
\(367\) 5038.40i 0.716627i −0.933601 0.358314i \(-0.883352\pi\)
0.933601 0.358314i \(-0.116648\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3792.68 3792.68i −0.530744 0.530744i
\(372\) 0 0
\(373\) 3151.66 3151.66i 0.437498 0.437498i −0.453671 0.891169i \(-0.649886\pi\)
0.891169 + 0.453671i \(0.149886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8169.31 1.11602
\(378\) 0 0
\(379\) −1494.63 1494.63i −0.202570 0.202570i 0.598530 0.801100i \(-0.295752\pi\)
−0.801100 + 0.598530i \(0.795752\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2530.45 0.337598 0.168799 0.985650i \(-0.446011\pi\)
0.168799 + 0.985650i \(0.446011\pi\)
\(384\) 0 0
\(385\) −1386.86 −0.183587
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6128.44 6128.44i −0.798776 0.798776i 0.184126 0.982903i \(-0.441055\pi\)
−0.982903 + 0.184126i \(0.941055\pi\)
\(390\) 0 0
\(391\) 2013.60 0.260440
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3294.11 + 3294.11i −0.419607 + 0.419607i
\(396\) 0 0
\(397\) 6952.91 + 6952.91i 0.878983 + 0.878983i 0.993429 0.114446i \(-0.0365093\pi\)
−0.114446 + 0.993429i \(0.536509\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 845.400i 0.105280i 0.998614 + 0.0526399i \(0.0167636\pi\)
−0.998614 + 0.0526399i \(0.983236\pi\)
\(402\) 0 0
\(403\) −8992.10 + 8992.10i −1.11149 + 1.11149i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1697.51i 0.206738i
\(408\) 0 0
\(409\) 14578.4i 1.76249i −0.472662 0.881244i \(-0.656707\pi\)
0.472662 0.881244i \(-0.343293\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7688.79 + 7688.79i −0.916079 + 0.916079i
\(414\) 0 0
\(415\) 5605.95i 0.663097i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4924.02 4924.02i −0.574115 0.574115i 0.359161 0.933276i \(-0.383063\pi\)
−0.933276 + 0.359161i \(0.883063\pi\)
\(420\) 0 0
\(421\) 6264.27 6264.27i 0.725182 0.725182i −0.244474 0.969656i \(-0.578615\pi\)
0.969656 + 0.244474i \(0.0786152\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3623.61 0.413578
\(426\) 0 0
\(427\) −6959.20 6959.20i −0.788711 0.788711i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14200.7 1.58707 0.793533 0.608527i \(-0.208239\pi\)
0.793533 + 0.608527i \(0.208239\pi\)
\(432\) 0 0
\(433\) −1574.27 −0.174722 −0.0873611 0.996177i \(-0.527843\pi\)
−0.0873611 + 0.996177i \(0.527843\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1896.65 1896.65i −0.207618 0.207618i
\(438\) 0 0
\(439\) 1716.76 0.186644 0.0933220 0.995636i \(-0.470251\pi\)
0.0933220 + 0.995636i \(0.470251\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6531.76 6531.76i 0.700527 0.700527i −0.263997 0.964524i \(-0.585041\pi\)
0.964524 + 0.263997i \(0.0850408\pi\)
\(444\) 0 0
\(445\) 6955.15 + 6955.15i 0.740912 + 0.740912i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2179.52i 0.229082i 0.993419 + 0.114541i \(0.0365397\pi\)
−0.993419 + 0.114541i \(0.963460\pi\)
\(450\) 0 0
\(451\) 1529.62 1529.62i 0.159706 0.159706i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 13018.3i 1.34133i
\(456\) 0 0
\(457\) 833.132i 0.0852785i 0.999091 + 0.0426392i \(0.0135766\pi\)
−0.999091 + 0.0426392i \(0.986423\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6435.20 6435.20i 0.650146 0.650146i −0.302882 0.953028i \(-0.597949\pi\)
0.953028 + 0.302882i \(0.0979488\pi\)
\(462\) 0 0
\(463\) 2144.06i 0.215211i 0.994194 + 0.107606i \(0.0343184\pi\)
−0.994194 + 0.107606i \(0.965682\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1590.87 + 1590.87i 0.157638 + 0.157638i 0.781519 0.623881i \(-0.214445\pi\)
−0.623881 + 0.781519i \(0.714445\pi\)
\(468\) 0 0
\(469\) 9485.11 9485.11i 0.933863 0.933863i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1545.85 0.150271
\(474\) 0 0
\(475\) −3413.15 3413.15i −0.329697 0.329697i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3087.11 −0.294475 −0.147238 0.989101i \(-0.547038\pi\)
−0.147238 + 0.989101i \(0.547038\pi\)
\(480\) 0 0
\(481\) 15934.4 1.51049
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6746.18 6746.18i −0.631604 0.631604i
\(486\) 0 0
\(487\) −20640.5 −1.92055 −0.960276 0.279051i \(-0.909980\pi\)
−0.960276 + 0.279051i \(0.909980\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −13880.9 + 13880.9i −1.27584 + 1.27584i −0.332861 + 0.942976i \(0.608014\pi\)
−0.942976 + 0.332861i \(0.891986\pi\)
\(492\) 0 0
\(493\) −8602.66 8602.66i −0.785891 0.785891i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8740.93i 0.788902i
\(498\) 0 0
\(499\) −8527.15 + 8527.15i −0.764985 + 0.764985i −0.977219 0.212234i \(-0.931926\pi\)
0.212234 + 0.977219i \(0.431926\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6352.16i 0.563079i −0.959550 0.281540i \(-0.909155\pi\)
0.959550 0.281540i \(-0.0908451\pi\)
\(504\) 0 0
\(505\) 14945.7i 1.31698i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6383.68 + 6383.68i −0.555897 + 0.555897i −0.928137 0.372239i \(-0.878590\pi\)
0.372239 + 0.928137i \(0.378590\pi\)
\(510\) 0 0
\(511\) 3677.26i 0.318342i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 12453.7 + 12453.7i 1.06559 + 1.06559i
\(516\) 0 0
\(517\) 1686.55 1686.55i 0.143471 0.143471i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14655.6 −1.23238 −0.616192 0.787596i \(-0.711326\pi\)
−0.616192 + 0.787596i \(0.711326\pi\)
\(522\) 0 0
\(523\) 5288.73 + 5288.73i 0.442180 + 0.442180i 0.892744 0.450564i \(-0.148777\pi\)
−0.450564 + 0.892744i \(0.648777\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18938.2 1.56539
\(528\) 0 0
\(529\) 11531.3 0.947755
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −14358.4 14358.4i −1.16685 1.16685i
\(534\) 0 0
\(535\) −12946.7 −1.04623
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1603.89 1603.89i 0.128172 0.128172i
\(540\) 0 0
\(541\) 5155.04 + 5155.04i 0.409672 + 0.409672i 0.881624 0.471952i \(-0.156450\pi\)
−0.471952 + 0.881624i \(0.656450\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 15163.5i 1.19181i
\(546\) 0 0
\(547\) −15716.4 + 15716.4i −1.22849 + 1.22849i −0.263956 + 0.964535i \(0.585027\pi\)
−0.964535 + 0.263956i \(0.914973\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 16206.0i 1.25300i
\(552\) 0 0
\(553\) 14201.7i 1.09208i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6521.03 + 6521.03i −0.496059 + 0.496059i −0.910209 0.414150i \(-0.864079\pi\)
0.414150 + 0.910209i \(0.364079\pi\)
\(558\) 0 0
\(559\) 14510.7i 1.09792i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3081.99 3081.99i −0.230711 0.230711i 0.582278 0.812989i \(-0.302161\pi\)
−0.812989 + 0.582278i \(0.802161\pi\)
\(564\) 0 0
\(565\) −11074.6 + 11074.6i −0.824620 + 0.824620i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15731.8 1.15907 0.579535 0.814948i \(-0.303234\pi\)
0.579535 + 0.814948i \(0.303234\pi\)
\(570\) 0 0
\(571\) −15369.5 15369.5i −1.12643 1.12643i −0.990753 0.135680i \(-0.956678\pi\)
−0.135680 0.990753i \(-0.543322\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1143.92 −0.0829649
\(576\) 0 0
\(577\) −3414.08 −0.246326 −0.123163 0.992386i \(-0.539304\pi\)
−0.123163 + 0.992386i \(0.539304\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12084.3 + 12084.3i 0.862895 + 0.862895i
\(582\) 0 0
\(583\) 1126.45 0.0800222
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14858.9 + 14858.9i −1.04479 + 1.04479i −0.0458432 + 0.998949i \(0.514597\pi\)
−0.998949 + 0.0458432i \(0.985403\pi\)
\(588\) 0 0
\(589\) −17838.3 17838.3i −1.24790 1.24790i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 10177.1i 0.704765i −0.935856 0.352382i \(-0.885372\pi\)
0.935856 0.352382i \(-0.114628\pi\)
\(594\) 0 0
\(595\) 13708.9 13708.9i 0.944552 0.944552i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3301.30i 0.225188i −0.993641 0.112594i \(-0.964084\pi\)
0.993641 0.112594i \(-0.0359159\pi\)
\(600\) 0 0
\(601\) 15622.6i 1.06033i −0.847894 0.530166i \(-0.822130\pi\)
0.847894 0.530166i \(-0.177870\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8192.47 + 8192.47i −0.550531 + 0.550531i
\(606\) 0 0
\(607\) 8352.28i 0.558499i −0.960219 0.279249i \(-0.909914\pi\)
0.960219 0.279249i \(-0.0900856\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −15831.5 15831.5i −1.04824 1.04824i
\(612\) 0 0
\(613\) 4415.12 4415.12i 0.290906 0.290906i −0.546532 0.837438i \(-0.684052\pi\)
0.837438 + 0.546532i \(0.184052\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 908.905 0.0593049 0.0296525 0.999560i \(-0.490560\pi\)
0.0296525 + 0.999560i \(0.490560\pi\)
\(618\) 0 0
\(619\) 12163.4 + 12163.4i 0.789804 + 0.789804i 0.981462 0.191658i \(-0.0613863\pi\)
−0.191658 + 0.981462i \(0.561386\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −29985.4 −1.92831
\(624\) 0 0
\(625\) 7895.01 0.505281
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −16779.6 16779.6i −1.06367 1.06367i
\(630\) 0 0
\(631\) −26228.8 −1.65476 −0.827380 0.561643i \(-0.810170\pi\)
−0.827380 + 0.561643i \(0.810170\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7482.68 7482.68i 0.467624 0.467624i
\(636\) 0 0
\(637\) −15055.6 15055.6i −0.936459 0.936459i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9142.35i 0.563340i −0.959511 0.281670i \(-0.909112\pi\)
0.959511 0.281670i \(-0.0908883\pi\)
\(642\) 0 0
\(643\) 14128.8 14128.8i 0.866541 0.866541i −0.125547 0.992088i \(-0.540069\pi\)
0.992088 + 0.125547i \(0.0400686\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16153.8i 0.981566i 0.871282 + 0.490783i \(0.163289\pi\)
−0.871282 + 0.490783i \(0.836711\pi\)
\(648\) 0 0
\(649\) 2283.63i 0.138121i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4351.77 + 4351.77i −0.260793 + 0.260793i −0.825376 0.564583i \(-0.809037\pi\)
0.564583 + 0.825376i \(0.309037\pi\)
\(654\) 0 0
\(655\) 13649.4i 0.814237i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −21049.5 21049.5i −1.24427 1.24427i −0.958213 0.286056i \(-0.907656\pi\)
−0.286056 0.958213i \(-0.592344\pi\)
\(660\) 0 0
\(661\) −14180.5 + 14180.5i −0.834428 + 0.834428i −0.988119 0.153691i \(-0.950884\pi\)
0.153691 + 0.988119i \(0.450884\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −25825.3 −1.50596
\(666\) 0 0
\(667\) 2715.74 + 2715.74i 0.157652 + 0.157652i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2066.94 0.118917
\(672\) 0 0
\(673\) 2224.60 0.127418 0.0637089 0.997969i \(-0.479707\pi\)
0.0637089 + 0.997969i \(0.479707\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11483.6 + 11483.6i 0.651919 + 0.651919i 0.953455 0.301536i \(-0.0974993\pi\)
−0.301536 + 0.953455i \(0.597499\pi\)
\(678\) 0 0
\(679\) 29084.5 1.64383
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1941.72 1941.72i 0.108781 0.108781i −0.650621 0.759403i \(-0.725491\pi\)
0.759403 + 0.650621i \(0.225491\pi\)
\(684\) 0 0
\(685\) 13661.5 + 13661.5i 0.762014 + 0.762014i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 10573.9i 0.584664i
\(690\) 0 0
\(691\) −203.904 + 203.904i −0.0112256 + 0.0112256i −0.712697 0.701472i \(-0.752527\pi\)
0.701472 + 0.712697i \(0.252527\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4316.58i 0.235593i
\(696\) 0 0
\(697\) 30240.1i 1.64337i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −62.5193 + 62.5193i −0.00336850 + 0.00336850i −0.708789 0.705421i \(-0.750758\pi\)
0.705421 + 0.708789i \(0.250758\pi\)
\(702\) 0 0
\(703\) 31610.1i 1.69587i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 32217.3 + 32217.3i 1.71380 + 1.71380i
\(708\) 0 0
\(709\) 19068.4 19068.4i 1.01005 1.01005i 0.0101050 0.999949i \(-0.496783\pi\)
0.999949 0.0101050i \(-0.00321657\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −5978.52 −0.314021
\(714\) 0 0
\(715\) −1933.27 1933.27i −0.101119 0.101119i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4219.83 −0.218878 −0.109439 0.993994i \(-0.534905\pi\)
−0.109439 + 0.993994i \(0.534905\pi\)
\(720\) 0 0
\(721\) −53691.2 −2.77332
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4887.15 + 4887.15i 0.250351 + 0.250351i
\(726\) 0 0
\(727\) −3771.74 −0.192415 −0.0962077 0.995361i \(-0.530671\pi\)
−0.0962077 + 0.995361i \(0.530671\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −15280.5 + 15280.5i −0.773143 + 0.773143i
\(732\) 0 0
\(733\) 5607.56 + 5607.56i 0.282565 + 0.282565i 0.834131 0.551566i \(-0.185970\pi\)
−0.551566 + 0.834131i \(0.685970\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2817.15i 0.140802i
\(738\) 0 0
\(739\) −7137.31 + 7137.31i −0.355277 + 0.355277i −0.862069 0.506791i \(-0.830831\pi\)
0.506791 + 0.862069i \(0.330831\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 17134.1i 0.846016i 0.906126 + 0.423008i \(0.139026\pi\)
−0.906126 + 0.423008i \(0.860974\pi\)
\(744\) 0 0
\(745\) 24450.7i 1.20242i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 27908.2 27908.2i 1.36147 1.36147i
\(750\) 0 0
\(751\) 17533.1i 0.851922i 0.904742 + 0.425961i \(0.140064\pi\)
−0.904742 + 0.425961i \(0.859936\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14771.5 + 14771.5i 0.712042 + 0.712042i
\(756\) 0 0
\(757\) 19568.4 19568.4i 0.939532 0.939532i −0.0587408 0.998273i \(-0.518709\pi\)
0.998273 + 0.0587408i \(0.0187086\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4059.70 −0.193383 −0.0966913 0.995314i \(-0.530826\pi\)
−0.0966913 + 0.995314i \(0.530826\pi\)
\(762\) 0 0
\(763\) −32686.9 32686.9i −1.55091 1.55091i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −21436.2 −1.00915
\(768\) 0 0
\(769\) 21167.3 0.992602 0.496301 0.868150i \(-0.334691\pi\)
0.496301 + 0.868150i \(0.334691\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1992.49 1992.49i −0.0927102 0.0927102i 0.659231 0.751941i \(-0.270882\pi\)
−0.751941 + 0.659231i \(0.770882\pi\)
\(774\) 0 0
\(775\) −10758.7 −0.498665
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 28483.8 28483.8i 1.31006 1.31006i
\(780\) 0 0
\(781\) 1298.06 + 1298.06i 0.0594728 + 0.0594728i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 10813.7i 0.491668i
\(786\) 0 0
\(787\) −17873.4 + 17873.4i −0.809551 + 0.809551i −0.984566 0.175015i \(-0.944003\pi\)
0.175015 + 0.984566i \(0.444003\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 47745.2i 2.14617i
\(792\) 0 0
\(793\) 19402.1i 0.868839i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4327.93 4327.93i 0.192350 0.192350i −0.604361 0.796711i \(-0.706571\pi\)
0.796711 + 0.604361i \(0.206571\pi\)
\(798\) 0 0
\(799\) 33342.5i 1.47631i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 546.087 + 546.087i 0.0239988 + 0.0239988i
\(804\) 0 0
\(805\) −4327.69 + 4327.69i −0.189480 + 0.189480i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −7284.89 −0.316592 −0.158296 0.987392i \(-0.550600\pi\)
−0.158296 + 0.987392i \(0.550600\pi\)
\(810\) 0 0
\(811\) 28534.9 + 28534.9i 1.23551 + 1.23551i 0.961819 + 0.273688i \(0.0882435\pi\)
0.273688 + 0.961819i \(0.411756\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 21928.5 0.942479
\(816\) 0 0
\(817\) 28785.9 1.23267
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 17928.4 + 17928.4i 0.762128 + 0.762128i 0.976707 0.214579i \(-0.0688380\pi\)
−0.214579 + 0.976707i \(0.568838\pi\)
\(822\) 0 0
\(823\) 25241.2 1.06908 0.534540 0.845143i \(-0.320485\pi\)
0.534540 + 0.845143i \(0.320485\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27181.2 27181.2i 1.14291 1.14291i 0.154990 0.987916i \(-0.450466\pi\)
0.987916 0.154990i \(-0.0495344\pi\)
\(828\) 0 0
\(829\) 2755.03 + 2755.03i 0.115424 + 0.115424i 0.762460 0.647036i \(-0.223992\pi\)
−0.647036 + 0.762460i \(0.723992\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 31708.4i 1.31889i
\(834\) 0 0
\(835\) 15601.7 15601.7i 0.646608 0.646608i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 20544.0i 0.845361i −0.906279 0.422681i \(-0.861089\pi\)
0.906279 0.422681i \(-0.138911\pi\)
\(840\) 0 0
\(841\) 1184.24i 0.0485561i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −4284.61 + 4284.61i −0.174432 + 0.174432i
\(846\) 0 0
\(847\) 35319.8i 1.43282i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5297.08 + 5297.08i 0.213374 + 0.213374i
\(852\) 0 0
\(853\) −9553.45 + 9553.45i −0.383475 + 0.383475i −0.872352 0.488878i \(-0.837406\pi\)
0.488878 + 0.872352i \(0.337406\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21465.0 0.855578 0.427789 0.903879i \(-0.359293\pi\)
0.427789 + 0.903879i \(0.359293\pi\)
\(858\) 0 0
\(859\) 4252.94 + 4252.94i 0.168927 + 0.168927i 0.786508 0.617580i \(-0.211887\pi\)
−0.617580 + 0.786508i \(0.711887\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7487.36 0.295333 0.147667 0.989037i \(-0.452824\pi\)
0.147667 + 0.989037i \(0.452824\pi\)
\(864\) 0 0
\(865\) −14067.1 −0.552942
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2109.01 + 2109.01i 0.0823282 + 0.0823282i
\(870\) 0 0
\(871\) 26444.3 1.02874
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −29244.1 + 29244.1i −1.12987 + 1.12987i
\(876\) 0 0
\(877\) 14348.4 + 14348.4i 0.552465 + 0.552465i 0.927152 0.374686i \(-0.122250\pi\)
−0.374686 + 0.927152i \(0.622250\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 17497.5i 0.669131i 0.942372 + 0.334566i \(0.108590\pi\)
−0.942372 + 0.334566i \(0.891410\pi\)
\(882\) 0 0
\(883\) 5399.20 5399.20i 0.205773 0.205773i −0.596695 0.802468i \(-0.703520\pi\)
0.802468 + 0.596695i \(0.203520\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 32588.2i 1.23360i −0.787119 0.616801i \(-0.788428\pi\)
0.787119 0.616801i \(-0.211572\pi\)
\(888\) 0 0
\(889\) 32259.7i 1.21705i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 31406.0 31406.0i 1.17689 1.17689i
\(894\) 0 0
\(895\) 17214.8i 0.642934i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 25541.9 + 25541.9i 0.947575 + 0.947575i
\(900\) 0 0
\(901\) −11134.8 + 11134.8i −0.411714 + 0.411714i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5596.54 0.205564
\(906\) 0 0
\(907\) 175.952 + 175.952i 0.00644145 + 0.00644145i 0.710320 0.703879i \(-0.248550\pi\)
−0.703879 + 0.710320i \(0.748550\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 13051.9 0.474676 0.237338 0.971427i \(-0.423725\pi\)
0.237338 + 0.971427i \(0.423725\pi\)
\(912\) 0 0
\(913\) −3589.13 −0.130102
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 29422.9 + 29422.9i 1.05958 + 1.05958i
\(918\) 0 0
\(919\) 8004.68 0.287323 0.143662 0.989627i \(-0.454112\pi\)
0.143662 + 0.989627i \(0.454112\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12184.8 12184.8i 0.434524 0.434524i
\(924\) 0 0
\(925\) 9532.46 + 9532.46i 0.338838 + 0.338838i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 19953.1i 0.704672i −0.935874 0.352336i \(-0.885387\pi\)
0.935874 0.352336i \(-0.114613\pi\)
\(930\) 0 0
\(931\) 29866.8 29866.8i 1.05139 1.05139i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4071.63i 0.142414i
\(936\) 0 0
\(937\) 47079.0i 1.64141i 0.571351 + 0.820706i \(0.306420\pi\)
−0.571351 + 0.820706i \(0.693580\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4612.54 + 4612.54i −0.159792 + 0.159792i −0.782475 0.622682i \(-0.786043\pi\)
0.622682 + 0.782475i \(0.286043\pi\)
\(942\) 0 0
\(943\) 9546.38i 0.329664i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −35884.4 35884.4i −1.23135 1.23135i −0.963447 0.267899i \(-0.913671\pi\)
−0.267899 0.963447i \(-0.586329\pi\)
\(948\) 0 0
\(949\) 5126.07 5126.07i 0.175342 0.175342i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −2274.82 −0.0773228 −0.0386614 0.999252i \(-0.512309\pi\)
−0.0386614 + 0.999252i \(0.512309\pi\)
\(954\) 0 0
\(955\) −4057.04 4057.04i −0.137469 0.137469i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −58898.2 −1.98324
\(960\) 0 0
\(961\) −26437.8 −0.887442
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6550.21 6550.21i −0.218506 0.218506i
\(966\) 0 0
\(967\) 11693.6 0.388874 0.194437 0.980915i \(-0.437712\pi\)
0.194437 + 0.980915i \(0.437712\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 13147.9 13147.9i 0.434537 0.434537i −0.455632 0.890168i \(-0.650587\pi\)
0.890168 + 0.455632i \(0.150587\pi\)
\(972\) 0 0
\(973\) −9304.93 9304.93i −0.306580 0.306580i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 57554.9i 1.88469i 0.334642 + 0.942345i \(0.391385\pi\)
−0.334642 + 0.942345i \(0.608615\pi\)
\(978\) 0 0
\(979\) 4452.94 4452.94i 0.145369 0.145369i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 29857.4i 0.968773i −0.874854 0.484386i \(-0.839043\pi\)
0.874854 0.484386i \(-0.160957\pi\)
\(984\) 0 0
\(985\) 33334.6i 1.07830i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4823.82 4823.82i 0.155095 0.155095i
\(990\) 0 0
\(991\) 37310.0i 1.19596i 0.801513 + 0.597978i \(0.204029\pi\)
−0.801513 + 0.597978i \(0.795971\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 16074.4 + 16074.4i 0.512153 + 0.512153i
\(996\) 0 0
\(997\) −31495.0 + 31495.0i −1.00046 + 1.00046i −0.000458156 1.00000i \(0.500146\pi\)
−1.00000 0.000458156i \(0.999854\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.4.l.a.863.17 48
3.2 odd 2 inner 1152.4.l.a.863.8 48
4.3 odd 2 1152.4.l.b.863.17 48
8.3 odd 2 144.4.l.a.35.11 48
8.5 even 2 576.4.l.a.431.8 48
12.11 even 2 1152.4.l.b.863.8 48
16.3 odd 4 576.4.l.a.143.17 48
16.5 even 4 1152.4.l.b.287.8 48
16.11 odd 4 inner 1152.4.l.a.287.8 48
16.13 even 4 144.4.l.a.107.14 yes 48
24.5 odd 2 576.4.l.a.431.17 48
24.11 even 2 144.4.l.a.35.14 yes 48
48.5 odd 4 1152.4.l.b.287.17 48
48.11 even 4 inner 1152.4.l.a.287.17 48
48.29 odd 4 144.4.l.a.107.11 yes 48
48.35 even 4 576.4.l.a.143.8 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.11 48 8.3 odd 2
144.4.l.a.35.14 yes 48 24.11 even 2
144.4.l.a.107.11 yes 48 48.29 odd 4
144.4.l.a.107.14 yes 48 16.13 even 4
576.4.l.a.143.8 48 48.35 even 4
576.4.l.a.143.17 48 16.3 odd 4
576.4.l.a.431.8 48 8.5 even 2
576.4.l.a.431.17 48 24.5 odd 2
1152.4.l.a.287.8 48 16.11 odd 4 inner
1152.4.l.a.287.17 48 48.11 even 4 inner
1152.4.l.a.863.8 48 3.2 odd 2 inner
1152.4.l.a.863.17 48 1.1 even 1 trivial
1152.4.l.b.287.8 48 16.5 even 4
1152.4.l.b.287.17 48 48.5 odd 4
1152.4.l.b.863.8 48 12.11 even 2
1152.4.l.b.863.17 48 4.3 odd 2