Properties

Label 144.4.l.a.107.14
Level $144$
Weight $4$
Character 144.107
Analytic conductor $8.496$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,4,Mod(35,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.35"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.49627504083\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 107.14
Character \(\chi\) \(=\) 144.107
Dual form 144.4.l.a.35.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.272518 + 2.81527i) q^{2} +(-7.85147 + 1.53442i) q^{4} +(6.30986 - 6.30986i) q^{5} +27.2034 q^{7} +(-6.45947 - 21.6858i) q^{8} +(19.4835 + 16.0444i) q^{10} +(-4.03980 - 4.03980i) q^{11} +(37.9212 - 37.9212i) q^{13} +(7.41340 + 76.5848i) q^{14} +(59.2911 - 24.0949i) q^{16} +79.8655i q^{17} +(75.2269 + 75.2269i) q^{19} +(-39.8597 + 59.2236i) q^{20} +(10.2722 - 12.4740i) q^{22} +25.2124i q^{23} +45.3714i q^{25} +(117.093 + 96.4241i) q^{26} +(-213.586 + 41.7414i) q^{28} +(-107.714 - 107.714i) q^{29} -237.126i q^{31} +(83.9916 + 160.354i) q^{32} +(-224.843 + 21.7648i) q^{34} +(171.649 - 171.649i) q^{35} +(210.098 + 210.098i) q^{37} +(-191.283 + 232.285i) q^{38} +(-177.593 - 96.0761i) q^{40} -378.638 q^{41} +(191.327 - 191.327i) q^{43} +(37.9171 + 25.5196i) q^{44} +(-70.9796 + 6.87083i) q^{46} +417.483 q^{47} +397.023 q^{49} +(-127.733 + 12.3645i) q^{50} +(-239.550 + 355.924i) q^{52} +(139.419 - 139.419i) q^{53} -50.9811 q^{55} +(-175.719 - 589.928i) q^{56} +(273.891 - 332.599i) q^{58} +(-282.641 - 282.641i) q^{59} +(-255.821 + 255.821i) q^{61} +(667.574 - 64.6211i) q^{62} +(-428.550 + 280.158i) q^{64} -478.555i q^{65} +(-348.674 - 348.674i) q^{67} +(-122.547 - 627.061i) q^{68} +(530.016 + 436.461i) q^{70} -321.318i q^{71} -135.177i q^{73} +(-534.228 + 648.739i) q^{74} +(-706.072 - 475.212i) q^{76} +(-109.896 - 109.896i) q^{77} +522.058i q^{79} +(222.083 - 526.154i) q^{80} +(-103.186 - 1065.97i) q^{82} +(444.221 - 444.221i) q^{83} +(503.940 + 503.940i) q^{85} +(590.778 + 486.498i) q^{86} +(-61.5114 + 113.701i) q^{88} -1102.27 q^{89} +(1031.58 - 1031.58i) q^{91} +(-38.6864 - 197.954i) q^{92} +(113.772 + 1175.33i) q^{94} +949.342 q^{95} -1069.15 q^{97} +(108.196 + 1117.73i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 120 q^{10} - 144 q^{16} - 48 q^{19} + 72 q^{22} + 72 q^{28} - 984 q^{34} - 1272 q^{40} + 864 q^{43} - 1416 q^{46} + 2352 q^{49} - 648 q^{52} - 576 q^{55} + 1128 q^{58} + 1824 q^{61} + 3024 q^{64}+ \cdots - 11304 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.272518 + 2.81527i 0.0963496 + 0.995348i
\(3\) 0 0
\(4\) −7.85147 + 1.53442i −0.981433 + 0.191803i
\(5\) 6.30986 6.30986i 0.564371 0.564371i −0.366175 0.930546i \(-0.619333\pi\)
0.930546 + 0.366175i \(0.119333\pi\)
\(6\) 0 0
\(7\) 27.2034 1.46884 0.734422 0.678693i \(-0.237453\pi\)
0.734422 + 0.678693i \(0.237453\pi\)
\(8\) −6.45947 21.6858i −0.285471 0.958387i
\(9\) 0 0
\(10\) 19.4835 + 16.0444i 0.616122 + 0.507368i
\(11\) −4.03980 4.03980i −0.110731 0.110731i 0.649570 0.760302i \(-0.274949\pi\)
−0.760302 + 0.649570i \(0.774949\pi\)
\(12\) 0 0
\(13\) 37.9212 37.9212i 0.809034 0.809034i −0.175453 0.984488i \(-0.556139\pi\)
0.984488 + 0.175453i \(0.0561391\pi\)
\(14\) 7.41340 + 76.5848i 0.141523 + 1.46201i
\(15\) 0 0
\(16\) 59.2911 24.0949i 0.926423 0.376483i
\(17\) 79.8655i 1.13943i 0.821844 + 0.569713i \(0.192945\pi\)
−0.821844 + 0.569713i \(0.807055\pi\)
\(18\) 0 0
\(19\) 75.2269 + 75.2269i 0.908328 + 0.908328i 0.996137 0.0878089i \(-0.0279865\pi\)
−0.0878089 + 0.996137i \(0.527986\pi\)
\(20\) −39.8597 + 59.2236i −0.445645 + 0.662140i
\(21\) 0 0
\(22\) 10.2722 12.4740i 0.0995473 0.120885i
\(23\) 25.2124i 0.228572i 0.993448 + 0.114286i \(0.0364580\pi\)
−0.993448 + 0.114286i \(0.963542\pi\)
\(24\) 0 0
\(25\) 45.3714i 0.362971i
\(26\) 117.093 + 96.4241i 0.883221 + 0.727320i
\(27\) 0 0
\(28\) −213.586 + 41.7414i −1.44157 + 0.281728i
\(29\) −107.714 107.714i −0.689726 0.689726i 0.272445 0.962171i \(-0.412168\pi\)
−0.962171 + 0.272445i \(0.912168\pi\)
\(30\) 0 0
\(31\) 237.126i 1.37384i −0.726732 0.686921i \(-0.758962\pi\)
0.726732 0.686921i \(-0.241038\pi\)
\(32\) 83.9916 + 160.354i 0.463992 + 0.885839i
\(33\) 0 0
\(34\) −224.843 + 21.7648i −1.13412 + 0.109783i
\(35\) 171.649 171.649i 0.828973 0.828973i
\(36\) 0 0
\(37\) 210.098 + 210.098i 0.933512 + 0.933512i 0.997923 0.0644112i \(-0.0205169\pi\)
−0.0644112 + 0.997923i \(0.520517\pi\)
\(38\) −191.283 + 232.285i −0.816585 + 0.991620i
\(39\) 0 0
\(40\) −177.593 96.0761i −0.701997 0.379774i
\(41\) −378.638 −1.44228 −0.721139 0.692790i \(-0.756381\pi\)
−0.721139 + 0.692790i \(0.756381\pi\)
\(42\) 0 0
\(43\) 191.327 191.327i 0.678538 0.678538i −0.281131 0.959669i \(-0.590710\pi\)
0.959669 + 0.281131i \(0.0907096\pi\)
\(44\) 37.9171 + 25.5196i 0.129914 + 0.0874369i
\(45\) 0 0
\(46\) −70.9796 + 6.87083i −0.227508 + 0.0220228i
\(47\) 417.483 1.29566 0.647831 0.761784i \(-0.275676\pi\)
0.647831 + 0.761784i \(0.275676\pi\)
\(48\) 0 0
\(49\) 397.023 1.15750
\(50\) −127.733 + 12.3645i −0.361283 + 0.0349721i
\(51\) 0 0
\(52\) −239.550 + 355.924i −0.638838 + 0.949188i
\(53\) 139.419 139.419i 0.361335 0.361335i −0.502970 0.864304i \(-0.667759\pi\)
0.864304 + 0.502970i \(0.167759\pi\)
\(54\) 0 0
\(55\) −50.9811 −0.124987
\(56\) −175.719 589.928i −0.419313 1.40772i
\(57\) 0 0
\(58\) 273.891 332.599i 0.620062 0.752972i
\(59\) −282.641 282.641i −0.623674 0.623674i 0.322795 0.946469i \(-0.395377\pi\)
−0.946469 + 0.322795i \(0.895377\pi\)
\(60\) 0 0
\(61\) −255.821 + 255.821i −0.536960 + 0.536960i −0.922635 0.385675i \(-0.873969\pi\)
0.385675 + 0.922635i \(0.373969\pi\)
\(62\) 667.574 64.6211i 1.36745 0.132369i
\(63\) 0 0
\(64\) −428.550 + 280.158i −0.837012 + 0.547184i
\(65\) 478.555i 0.913191i
\(66\) 0 0
\(67\) −348.674 348.674i −0.635781 0.635781i 0.313731 0.949512i \(-0.398421\pi\)
−0.949512 + 0.313731i \(0.898421\pi\)
\(68\) −122.547 627.061i −0.218545 1.11827i
\(69\) 0 0
\(70\) 530.016 + 436.461i 0.904987 + 0.745245i
\(71\) 321.318i 0.537090i −0.963267 0.268545i \(-0.913457\pi\)
0.963267 0.268545i \(-0.0865428\pi\)
\(72\) 0 0
\(73\) 135.177i 0.216729i −0.994111 0.108365i \(-0.965439\pi\)
0.994111 0.108365i \(-0.0345614\pi\)
\(74\) −534.228 + 648.739i −0.839226 + 1.01911i
\(75\) 0 0
\(76\) −706.072 475.212i −1.06568 0.717244i
\(77\) −109.896 109.896i −0.162647 0.162647i
\(78\) 0 0
\(79\) 522.058i 0.743495i 0.928334 + 0.371747i \(0.121241\pi\)
−0.928334 + 0.371747i \(0.878759\pi\)
\(80\) 222.083 526.154i 0.310370 0.735322i
\(81\) 0 0
\(82\) −103.186 1065.97i −0.138963 1.43557i
\(83\) 444.221 444.221i 0.587465 0.587465i −0.349479 0.936944i \(-0.613641\pi\)
0.936944 + 0.349479i \(0.113641\pi\)
\(84\) 0 0
\(85\) 503.940 + 503.940i 0.643058 + 0.643058i
\(86\) 590.778 + 486.498i 0.740758 + 0.610004i
\(87\) 0 0
\(88\) −61.5114 + 113.701i −0.0745130 + 0.137734i
\(89\) −1102.27 −1.31281 −0.656405 0.754409i \(-0.727924\pi\)
−0.656405 + 0.754409i \(0.727924\pi\)
\(90\) 0 0
\(91\) 1031.58 1031.58i 1.18835 1.18835i
\(92\) −38.6864 197.954i −0.0438407 0.224328i
\(93\) 0 0
\(94\) 113.772 + 1175.33i 0.124837 + 1.28963i
\(95\) 949.342 1.02527
\(96\) 0 0
\(97\) −1069.15 −1.11913 −0.559565 0.828786i \(-0.689032\pi\)
−0.559565 + 0.828786i \(0.689032\pi\)
\(98\) 108.196 + 1117.73i 0.111525 + 1.15212i
\(99\) 0 0
\(100\) −69.6189 356.232i −0.0696189 0.356232i
\(101\) −1184.31 + 1184.31i −1.16677 + 1.16677i −0.183805 + 0.982963i \(0.558841\pi\)
−0.982963 + 0.183805i \(0.941159\pi\)
\(102\) 0 0
\(103\) −1973.70 −1.88810 −0.944049 0.329806i \(-0.893017\pi\)
−0.944049 + 0.329806i \(0.893017\pi\)
\(104\) −1067.30 577.402i −1.00632 0.544412i
\(105\) 0 0
\(106\) 430.497 + 354.509i 0.394468 + 0.324839i
\(107\) 1025.91 + 1025.91i 0.926901 + 0.926901i 0.997504 0.0706038i \(-0.0224926\pi\)
−0.0706038 + 0.997504i \(0.522493\pi\)
\(108\) 0 0
\(109\) −1201.58 + 1201.58i −1.05587 + 1.05587i −0.0575281 + 0.998344i \(0.518322\pi\)
−0.998344 + 0.0575281i \(0.981678\pi\)
\(110\) −13.8933 143.526i −0.0120425 0.124406i
\(111\) 0 0
\(112\) 1612.92 655.463i 1.36077 0.552995i
\(113\) 1755.12i 1.46113i 0.682842 + 0.730566i \(0.260744\pi\)
−0.682842 + 0.730566i \(0.739256\pi\)
\(114\) 0 0
\(115\) 159.087 + 159.087i 0.128999 + 0.128999i
\(116\) 1011.00 + 680.437i 0.809212 + 0.544629i
\(117\) 0 0
\(118\) 718.686 872.735i 0.560681 0.680863i
\(119\) 2172.61i 1.67364i
\(120\) 0 0
\(121\) 1298.36i 0.975477i
\(122\) −789.922 650.490i −0.586198 0.482726i
\(123\) 0 0
\(124\) 363.851 + 1861.79i 0.263507 + 1.34833i
\(125\) 1075.02 + 1075.02i 0.769221 + 0.769221i
\(126\) 0 0
\(127\) 1185.87i 0.828575i −0.910146 0.414288i \(-0.864031\pi\)
0.910146 0.414288i \(-0.135969\pi\)
\(128\) −905.508 1130.14i −0.625284 0.780397i
\(129\) 0 0
\(130\) 1347.26 130.415i 0.908942 0.0879856i
\(131\) 1081.59 1081.59i 0.721367 0.721367i −0.247516 0.968884i \(-0.579614\pi\)
0.968884 + 0.247516i \(0.0796144\pi\)
\(132\) 0 0
\(133\) 2046.43 + 2046.43i 1.33419 + 1.33419i
\(134\) 886.591 1076.63i 0.571566 0.694080i
\(135\) 0 0
\(136\) 1731.95 515.889i 1.09201 0.325273i
\(137\) −2165.11 −1.35020 −0.675101 0.737725i \(-0.735900\pi\)
−0.675101 + 0.737725i \(0.735900\pi\)
\(138\) 0 0
\(139\) 342.051 342.051i 0.208722 0.208722i −0.595002 0.803724i \(-0.702849\pi\)
0.803724 + 0.595002i \(0.202849\pi\)
\(140\) −1084.32 + 1611.08i −0.654582 + 0.972581i
\(141\) 0 0
\(142\) 904.596 87.5649i 0.534591 0.0517484i
\(143\) −306.388 −0.179171
\(144\) 0 0
\(145\) −1359.32 −0.778522
\(146\) 380.559 36.8381i 0.215721 0.0208818i
\(147\) 0 0
\(148\) −1971.96 1327.20i −1.09523 0.737130i
\(149\) 1937.50 1937.50i 1.06528 1.06528i 0.0675623 0.997715i \(-0.478478\pi\)
0.997715 0.0675623i \(-0.0215222\pi\)
\(150\) 0 0
\(151\) −2341.03 −1.26166 −0.630828 0.775923i \(-0.717285\pi\)
−0.630828 + 0.775923i \(0.717285\pi\)
\(152\) 1145.43 2117.28i 0.611229 1.12983i
\(153\) 0 0
\(154\) 279.439 339.336i 0.146219 0.177561i
\(155\) −1496.23 1496.23i −0.775356 0.775356i
\(156\) 0 0
\(157\) 856.893 856.893i 0.435589 0.435589i −0.454935 0.890525i \(-0.650338\pi\)
0.890525 + 0.454935i \(0.150338\pi\)
\(158\) −1469.73 + 142.270i −0.740036 + 0.0716354i
\(159\) 0 0
\(160\) 1541.79 + 481.836i 0.761805 + 0.238078i
\(161\) 685.862i 0.335736i
\(162\) 0 0
\(163\) 1737.64 + 1737.64i 0.834982 + 0.834982i 0.988193 0.153211i \(-0.0489615\pi\)
−0.153211 + 0.988193i \(0.548961\pi\)
\(164\) 2972.87 580.991i 1.41550 0.276633i
\(165\) 0 0
\(166\) 1371.66 + 1129.54i 0.641334 + 0.528130i
\(167\) 2472.59i 1.14572i 0.819655 + 0.572858i \(0.194165\pi\)
−0.819655 + 0.572858i \(0.805835\pi\)
\(168\) 0 0
\(169\) 679.034i 0.309073i
\(170\) −1281.39 + 1556.06i −0.578108 + 0.702025i
\(171\) 0 0
\(172\) −1208.62 + 1795.78i −0.535795 + 0.796086i
\(173\) −1114.69 1114.69i −0.489875 0.489875i 0.418392 0.908267i \(-0.362594\pi\)
−0.908267 + 0.418392i \(0.862594\pi\)
\(174\) 0 0
\(175\) 1234.25i 0.533148i
\(176\) −336.863 142.186i −0.144273 0.0608957i
\(177\) 0 0
\(178\) −300.388 3103.18i −0.126489 1.30670i
\(179\) −1364.12 + 1364.12i −0.569602 + 0.569602i −0.932017 0.362415i \(-0.881952\pi\)
0.362415 + 0.932017i \(0.381952\pi\)
\(180\) 0 0
\(181\) −443.476 443.476i −0.182118 0.182118i 0.610160 0.792278i \(-0.291105\pi\)
−0.792278 + 0.610160i \(0.791105\pi\)
\(182\) 3185.31 + 2623.06i 1.29731 + 1.06832i
\(183\) 0 0
\(184\) 546.752 162.859i 0.219060 0.0652506i
\(185\) 2651.38 1.05369
\(186\) 0 0
\(187\) 322.641 322.641i 0.126170 0.126170i
\(188\) −3277.85 + 640.595i −1.27161 + 0.248512i
\(189\) 0 0
\(190\) 258.713 + 2672.65i 0.0987842 + 1.02050i
\(191\) −642.969 −0.243579 −0.121790 0.992556i \(-0.538863\pi\)
−0.121790 + 0.992556i \(0.538863\pi\)
\(192\) 0 0
\(193\) −1038.09 −0.387168 −0.193584 0.981084i \(-0.562011\pi\)
−0.193584 + 0.981084i \(0.562011\pi\)
\(194\) −291.362 3009.94i −0.107828 1.11392i
\(195\) 0 0
\(196\) −3117.21 + 609.201i −1.13601 + 0.222012i
\(197\) 2641.47 2641.47i 0.955315 0.955315i −0.0437288 0.999043i \(-0.513924\pi\)
0.999043 + 0.0437288i \(0.0139238\pi\)
\(198\) 0 0
\(199\) −2547.50 −0.907476 −0.453738 0.891135i \(-0.649910\pi\)
−0.453738 + 0.891135i \(0.649910\pi\)
\(200\) 983.916 293.075i 0.347867 0.103618i
\(201\) 0 0
\(202\) −3656.90 3011.41i −1.27376 1.04892i
\(203\) −2930.19 2930.19i −1.01310 1.01310i
\(204\) 0 0
\(205\) −2389.15 + 2389.15i −0.813980 + 0.813980i
\(206\) −537.867 5556.48i −0.181917 1.87931i
\(207\) 0 0
\(208\) 1334.68 3162.10i 0.444920 1.05410i
\(209\) 607.804i 0.201161i
\(210\) 0 0
\(211\) −1159.93 1159.93i −0.378448 0.378448i 0.492094 0.870542i \(-0.336232\pi\)
−0.870542 + 0.492094i \(0.836232\pi\)
\(212\) −880.719 + 1308.58i −0.285321 + 0.423931i
\(213\) 0 0
\(214\) −2608.63 + 3167.79i −0.833282 + 1.01189i
\(215\) 2414.50i 0.765894i
\(216\) 0 0
\(217\) 6450.63i 2.01796i
\(218\) −3710.21 3055.31i −1.15269 0.949227i
\(219\) 0 0
\(220\) 400.277 78.2266i 0.122667 0.0239729i
\(221\) 3028.59 + 3028.59i 0.921834 + 0.921834i
\(222\) 0 0
\(223\) 3613.80i 1.08519i 0.839994 + 0.542596i \(0.182559\pi\)
−0.839994 + 0.542596i \(0.817441\pi\)
\(224\) 2284.85 + 4362.17i 0.681532 + 1.30116i
\(225\) 0 0
\(226\) −4941.14 + 478.302i −1.45433 + 0.140780i
\(227\) 444.232 444.232i 0.129889 0.129889i −0.639174 0.769062i \(-0.720724\pi\)
0.769062 + 0.639174i \(0.220724\pi\)
\(228\) 0 0
\(229\) −188.918 188.918i −0.0545154 0.0545154i 0.679324 0.733839i \(-0.262273\pi\)
−0.733839 + 0.679324i \(0.762273\pi\)
\(230\) −404.517 + 491.225i −0.115970 + 0.140828i
\(231\) 0 0
\(232\) −1640.10 + 3031.65i −0.464128 + 0.857922i
\(233\) −6015.55 −1.69138 −0.845691 0.533673i \(-0.820811\pi\)
−0.845691 + 0.533673i \(0.820811\pi\)
\(234\) 0 0
\(235\) 2634.26 2634.26i 0.731234 0.731234i
\(236\) 2652.84 + 1785.46i 0.731716 + 0.492472i
\(237\) 0 0
\(238\) −6116.48 + 592.075i −1.66585 + 0.161254i
\(239\) 3866.73 1.04652 0.523260 0.852173i \(-0.324716\pi\)
0.523260 + 0.852173i \(0.324716\pi\)
\(240\) 0 0
\(241\) 6049.74 1.61700 0.808501 0.588494i \(-0.200279\pi\)
0.808501 + 0.588494i \(0.200279\pi\)
\(242\) 3655.23 353.826i 0.970939 0.0939869i
\(243\) 0 0
\(244\) 1616.04 2401.11i 0.424000 0.629981i
\(245\) 2505.16 2505.16i 0.653260 0.653260i
\(246\) 0 0
\(247\) 5705.39 1.46974
\(248\) −5142.28 + 1531.71i −1.31667 + 0.392192i
\(249\) 0 0
\(250\) −2733.51 + 3319.43i −0.691528 + 0.839757i
\(251\) −3748.61 3748.61i −0.942670 0.942670i 0.0557730 0.998443i \(-0.482238\pi\)
−0.998443 + 0.0557730i \(0.982238\pi\)
\(252\) 0 0
\(253\) 101.853 101.853i 0.0253101 0.0253101i
\(254\) 3338.55 323.171i 0.824721 0.0798329i
\(255\) 0 0
\(256\) 2934.87 2857.23i 0.716521 0.697566i
\(257\) 4593.31i 1.11488i −0.830219 0.557438i \(-0.811785\pi\)
0.830219 0.557438i \(-0.188215\pi\)
\(258\) 0 0
\(259\) 5715.38 + 5715.38i 1.37118 + 1.37118i
\(260\) 734.305 + 3757.36i 0.175152 + 0.896236i
\(261\) 0 0
\(262\) 3339.72 + 2750.22i 0.787515 + 0.648508i
\(263\) 3477.14i 0.815246i 0.913150 + 0.407623i \(0.133642\pi\)
−0.913150 + 0.407623i \(0.866358\pi\)
\(264\) 0 0
\(265\) 1759.43i 0.407853i
\(266\) −5203.55 + 6318.92i −1.19944 + 1.45653i
\(267\) 0 0
\(268\) 3272.62 + 2202.59i 0.745921 + 0.502032i
\(269\) −115.440 115.440i −0.0261654 0.0261654i 0.693903 0.720068i \(-0.255890\pi\)
−0.720068 + 0.693903i \(0.755890\pi\)
\(270\) 0 0
\(271\) 2252.96i 0.505009i 0.967596 + 0.252504i \(0.0812542\pi\)
−0.967596 + 0.252504i \(0.918746\pi\)
\(272\) 1924.35 + 4735.31i 0.428974 + 1.05559i
\(273\) 0 0
\(274\) −590.031 6095.36i −0.130091 1.34392i
\(275\) 183.291 183.291i 0.0401923 0.0401923i
\(276\) 0 0
\(277\) 1423.92 + 1423.92i 0.308864 + 0.308864i 0.844469 0.535605i \(-0.179916\pi\)
−0.535605 + 0.844469i \(0.679916\pi\)
\(278\) 1056.18 + 869.749i 0.227861 + 0.187641i
\(279\) 0 0
\(280\) −4831.12 2613.59i −1.03112 0.557829i
\(281\) 5780.83 1.22724 0.613621 0.789600i \(-0.289712\pi\)
0.613621 + 0.789600i \(0.289712\pi\)
\(282\) 0 0
\(283\) 2544.53 2544.53i 0.534476 0.534476i −0.387425 0.921901i \(-0.626635\pi\)
0.921901 + 0.387425i \(0.126635\pi\)
\(284\) 493.037 + 2522.82i 0.103015 + 0.527118i
\(285\) 0 0
\(286\) −83.4963 862.565i −0.0172631 0.178337i
\(287\) −10300.2 −2.11848
\(288\) 0 0
\(289\) −1465.50 −0.298289
\(290\) −370.440 3826.86i −0.0750104 0.774900i
\(291\) 0 0
\(292\) 207.418 + 1061.34i 0.0415693 + 0.212705i
\(293\) 423.704 423.704i 0.0844815 0.0844815i −0.663603 0.748085i \(-0.730974\pi\)
0.748085 + 0.663603i \(0.230974\pi\)
\(294\) 0 0
\(295\) −3566.85 −0.703966
\(296\) 3199.03 5913.28i 0.628175 1.16116i
\(297\) 0 0
\(298\) 5982.59 + 4926.58i 1.16296 + 0.957682i
\(299\) 956.084 + 956.084i 0.184922 + 0.184922i
\(300\) 0 0
\(301\) 5204.75 5204.75i 0.996667 0.996667i
\(302\) −637.971 6590.62i −0.121560 1.25579i
\(303\) 0 0
\(304\) 6272.87 + 2647.70i 1.18347 + 0.499526i
\(305\) 3228.39i 0.606089i
\(306\) 0 0
\(307\) 687.135 + 687.135i 0.127742 + 0.127742i 0.768087 0.640345i \(-0.221209\pi\)
−0.640345 + 0.768087i \(0.721209\pi\)
\(308\) 1031.47 + 694.219i 0.190824 + 0.128431i
\(309\) 0 0
\(310\) 3804.54 4620.04i 0.697044 0.846454i
\(311\) 441.970i 0.0805846i −0.999188 0.0402923i \(-0.987171\pi\)
0.999188 0.0402923i \(-0.0128289\pi\)
\(312\) 0 0
\(313\) 1949.31i 0.352018i −0.984389 0.176009i \(-0.943681\pi\)
0.984389 0.176009i \(-0.0563188\pi\)
\(314\) 2645.90 + 2178.87i 0.475532 + 0.391594i
\(315\) 0 0
\(316\) −801.057 4098.92i −0.142604 0.729691i
\(317\) 1627.66 + 1627.66i 0.288386 + 0.288386i 0.836442 0.548056i \(-0.184632\pi\)
−0.548056 + 0.836442i \(0.684632\pi\)
\(318\) 0 0
\(319\) 870.289i 0.152749i
\(320\) −936.334 + 4471.85i −0.163571 + 0.781200i
\(321\) 0 0
\(322\) −1930.89 + 186.910i −0.334174 + 0.0323480i
\(323\) −6008.03 + 6008.03i −1.03497 + 1.03497i
\(324\) 0 0
\(325\) 1720.54 + 1720.54i 0.293656 + 0.293656i
\(326\) −4418.37 + 5365.45i −0.750647 + 0.911548i
\(327\) 0 0
\(328\) 2445.81 + 8211.09i 0.411729 + 1.38226i
\(329\) 11356.9 1.90313
\(330\) 0 0
\(331\) −5461.11 + 5461.11i −0.906857 + 0.906857i −0.996017 0.0891603i \(-0.971582\pi\)
0.0891603 + 0.996017i \(0.471582\pi\)
\(332\) −2806.17 + 4169.41i −0.463881 + 0.689236i
\(333\) 0 0
\(334\) −6960.99 + 673.824i −1.14038 + 0.110389i
\(335\) −4400.17 −0.717632
\(336\) 0 0
\(337\) −7450.74 −1.20436 −0.602178 0.798362i \(-0.705700\pi\)
−0.602178 + 0.798362i \(0.705700\pi\)
\(338\) 1911.66 185.049i 0.307635 0.0297791i
\(339\) 0 0
\(340\) −4729.92 3183.41i −0.754459 0.507779i
\(341\) −957.942 + 957.942i −0.152128 + 0.152128i
\(342\) 0 0
\(343\) 1469.61 0.231346
\(344\) −5384.97 2913.22i −0.844006 0.456599i
\(345\) 0 0
\(346\) 2834.38 3441.92i 0.440396 0.534795i
\(347\) 7071.55 + 7071.55i 1.09401 + 1.09401i 0.995096 + 0.0989122i \(0.0315363\pi\)
0.0989122 + 0.995096i \(0.468464\pi\)
\(348\) 0 0
\(349\) 3300.15 3300.15i 0.506170 0.506170i −0.407179 0.913348i \(-0.633487\pi\)
0.913348 + 0.407179i \(0.133487\pi\)
\(350\) −3474.76 + 336.357i −0.530668 + 0.0513686i
\(351\) 0 0
\(352\) 308.489 987.108i 0.0467117 0.149469i
\(353\) 18.3891i 0.00277268i 0.999999 + 0.00138634i \(0.000441285\pi\)
−0.999999 + 0.00138634i \(0.999559\pi\)
\(354\) 0 0
\(355\) −2027.47 2027.47i −0.303118 0.303118i
\(356\) 8654.42 1691.34i 1.28844 0.251801i
\(357\) 0 0
\(358\) −4212.10 3468.61i −0.621833 0.512071i
\(359\) 670.681i 0.0985995i −0.998784 0.0492997i \(-0.984301\pi\)
0.998784 0.0492997i \(-0.0156990\pi\)
\(360\) 0 0
\(361\) 4459.18i 0.650121i
\(362\) 1127.65 1369.36i 0.163723 0.198817i
\(363\) 0 0
\(364\) −6516.56 + 9682.34i −0.938354 + 1.39421i
\(365\) −852.946 852.946i −0.122316 0.122316i
\(366\) 0 0
\(367\) 5038.40i 0.716627i −0.933601 0.358314i \(-0.883352\pi\)
0.933601 0.358314i \(-0.116648\pi\)
\(368\) 607.491 + 1494.87i 0.0860534 + 0.211754i
\(369\) 0 0
\(370\) 722.549 + 7464.35i 0.101523 + 1.04879i
\(371\) 3792.68 3792.68i 0.530744 0.530744i
\(372\) 0 0
\(373\) −3151.66 3151.66i −0.437498 0.437498i 0.453671 0.891169i \(-0.350114\pi\)
−0.891169 + 0.453671i \(0.850114\pi\)
\(374\) 996.245 + 820.395i 0.137740 + 0.113427i
\(375\) 0 0
\(376\) −2696.72 9053.47i −0.369874 1.24175i
\(377\) −8169.31 −1.11602
\(378\) 0 0
\(379\) −1494.63 + 1494.63i −0.202570 + 0.202570i −0.801100 0.598530i \(-0.795752\pi\)
0.598530 + 0.801100i \(0.295752\pi\)
\(380\) −7453.73 + 1456.69i −1.00623 + 0.196649i
\(381\) 0 0
\(382\) −175.221 1810.13i −0.0234688 0.242446i
\(383\) 2530.45 0.337598 0.168799 0.985650i \(-0.446011\pi\)
0.168799 + 0.985650i \(0.446011\pi\)
\(384\) 0 0
\(385\) −1386.86 −0.183587
\(386\) −282.899 2922.51i −0.0373035 0.385367i
\(387\) 0 0
\(388\) 8394.39 1640.53i 1.09835 0.214652i
\(389\) −6128.44 + 6128.44i −0.798776 + 0.798776i −0.982903 0.184126i \(-0.941055\pi\)
0.184126 + 0.982903i \(0.441055\pi\)
\(390\) 0 0
\(391\) −2013.60 −0.260440
\(392\) −2564.56 8609.78i −0.330433 1.10934i
\(393\) 0 0
\(394\) 8156.30 + 6716.60i 1.04291 + 0.858826i
\(395\) 3294.11 + 3294.11i 0.419607 + 0.419607i
\(396\) 0 0
\(397\) −6952.91 + 6952.91i −0.878983 + 0.878983i −0.993429 0.114446i \(-0.963491\pi\)
0.114446 + 0.993429i \(0.463491\pi\)
\(398\) −694.240 7171.90i −0.0874350 0.903254i
\(399\) 0 0
\(400\) 1093.22 + 2690.12i 0.136653 + 0.336265i
\(401\) 845.400i 0.105280i 0.998614 + 0.0526399i \(0.0167636\pi\)
−0.998614 + 0.0526399i \(0.983236\pi\)
\(402\) 0 0
\(403\) −8992.10 8992.10i −1.11149 1.11149i
\(404\) 7481.36 11115.8i 0.921316 1.36889i
\(405\) 0 0
\(406\) 7450.75 9047.81i 0.910775 1.10600i
\(407\) 1697.51i 0.206738i
\(408\) 0 0
\(409\) 14578.4i 1.76249i 0.472662 + 0.881244i \(0.343293\pi\)
−0.472662 + 0.881244i \(0.656707\pi\)
\(410\) −7377.20 6075.02i −0.888619 0.731766i
\(411\) 0 0
\(412\) 15496.4 3028.48i 1.85304 0.362142i
\(413\) −7688.79 7688.79i −0.916079 0.916079i
\(414\) 0 0
\(415\) 5605.95i 0.663097i
\(416\) 9265.88 + 2895.76i 1.09206 + 0.341289i
\(417\) 0 0
\(418\) 1711.13 165.637i 0.200225 0.0193818i
\(419\) 4924.02 4924.02i 0.574115 0.574115i −0.359161 0.933276i \(-0.616937\pi\)
0.933276 + 0.359161i \(0.116937\pi\)
\(420\) 0 0
\(421\) −6264.27 6264.27i −0.725182 0.725182i 0.244474 0.969656i \(-0.421385\pi\)
−0.969656 + 0.244474i \(0.921385\pi\)
\(422\) 2949.40 3581.60i 0.340224 0.413151i
\(423\) 0 0
\(424\) −3924.00 2122.85i −0.449449 0.243148i
\(425\) −3623.61 −0.413578
\(426\) 0 0
\(427\) −6959.20 + 6959.20i −0.788711 + 0.788711i
\(428\) −9629.07 6480.71i −1.08747 0.731909i
\(429\) 0 0
\(430\) 6797.45 657.994i 0.762331 0.0737936i
\(431\) 14200.7 1.58707 0.793533 0.608527i \(-0.208239\pi\)
0.793533 + 0.608527i \(0.208239\pi\)
\(432\) 0 0
\(433\) −1574.27 −0.174722 −0.0873611 0.996177i \(-0.527843\pi\)
−0.0873611 + 0.996177i \(0.527843\pi\)
\(434\) 18160.2 1757.91i 2.00857 0.194430i
\(435\) 0 0
\(436\) 7590.41 11277.9i 0.833749 1.23879i
\(437\) −1896.65 + 1896.65i −0.207618 + 0.207618i
\(438\) 0 0
\(439\) −1716.76 −0.186644 −0.0933220 0.995636i \(-0.529749\pi\)
−0.0933220 + 0.995636i \(0.529749\pi\)
\(440\) 329.311 + 1105.57i 0.0356802 + 0.119786i
\(441\) 0 0
\(442\) −7700.96 + 9351.65i −0.828727 + 1.00636i
\(443\) −6531.76 6531.76i −0.700527 0.700527i 0.263997 0.964524i \(-0.414959\pi\)
−0.964524 + 0.263997i \(0.914959\pi\)
\(444\) 0 0
\(445\) −6955.15 + 6955.15i −0.740912 + 0.740912i
\(446\) −10173.8 + 984.825i −1.08014 + 0.104558i
\(447\) 0 0
\(448\) −11658.0 + 7621.24i −1.22944 + 0.803728i
\(449\) 2179.52i 0.229082i 0.993419 + 0.114541i \(0.0365397\pi\)
−0.993419 + 0.114541i \(0.963460\pi\)
\(450\) 0 0
\(451\) 1529.62 + 1529.62i 0.159706 + 0.159706i
\(452\) −2693.10 13780.3i −0.280249 1.43400i
\(453\) 0 0
\(454\) 1371.69 + 1129.57i 0.141799 + 0.116770i
\(455\) 13018.3i 1.34133i
\(456\) 0 0
\(457\) 833.132i 0.0852785i −0.999091 0.0426392i \(-0.986423\pi\)
0.999091 0.0426392i \(-0.0135766\pi\)
\(458\) 480.370 583.337i 0.0490092 0.0595143i
\(459\) 0 0
\(460\) −1493.17 1004.96i −0.151346 0.101862i
\(461\) 6435.20 + 6435.20i 0.650146 + 0.650146i 0.953028 0.302882i \(-0.0979488\pi\)
−0.302882 + 0.953028i \(0.597949\pi\)
\(462\) 0 0
\(463\) 2144.06i 0.215211i 0.994194 + 0.107606i \(0.0343184\pi\)
−0.994194 + 0.107606i \(0.965682\pi\)
\(464\) −8981.87 3791.13i −0.898649 0.379308i
\(465\) 0 0
\(466\) −1639.35 16935.4i −0.162964 1.68351i
\(467\) −1590.87 + 1590.87i −0.157638 + 0.157638i −0.781519 0.623881i \(-0.785555\pi\)
0.623881 + 0.781519i \(0.285555\pi\)
\(468\) 0 0
\(469\) −9485.11 9485.11i −0.933863 0.933863i
\(470\) 8134.03 + 6698.26i 0.798286 + 0.657378i
\(471\) 0 0
\(472\) −4303.59 + 7955.02i −0.419680 + 0.775762i
\(473\) −1545.85 −0.150271
\(474\) 0 0
\(475\) −3413.15 + 3413.15i −0.329697 + 0.329697i
\(476\) −3333.70 17058.2i −0.321008 1.64256i
\(477\) 0 0
\(478\) 1053.75 + 10885.9i 0.100832 + 1.04165i
\(479\) −3087.11 −0.294475 −0.147238 0.989101i \(-0.547038\pi\)
−0.147238 + 0.989101i \(0.547038\pi\)
\(480\) 0 0
\(481\) 15934.4 1.51049
\(482\) 1648.66 + 17031.6i 0.155798 + 1.60948i
\(483\) 0 0
\(484\) 1992.23 + 10194.0i 0.187099 + 0.957366i
\(485\) −6746.18 + 6746.18i −0.631604 + 0.631604i
\(486\) 0 0
\(487\) 20640.5 1.92055 0.960276 0.279051i \(-0.0900198\pi\)
0.960276 + 0.279051i \(0.0900198\pi\)
\(488\) 7200.17 + 3895.23i 0.667903 + 0.361329i
\(489\) 0 0
\(490\) 7735.40 + 6369.99i 0.713162 + 0.587280i
\(491\) 13880.9 + 13880.9i 1.27584 + 1.27584i 0.942976 + 0.332861i \(0.108014\pi\)
0.332861 + 0.942976i \(0.391986\pi\)
\(492\) 0 0
\(493\) 8602.66 8602.66i 0.785891 0.785891i
\(494\) 1554.82 + 16062.2i 0.141609 + 1.46290i
\(495\) 0 0
\(496\) −5713.54 14059.5i −0.517229 1.27276i
\(497\) 8740.93i 0.788902i
\(498\) 0 0
\(499\) −8527.15 8527.15i −0.764985 0.764985i 0.212234 0.977219i \(-0.431926\pi\)
−0.977219 + 0.212234i \(0.931926\pi\)
\(500\) −10090.0 6790.95i −0.902478 0.607401i
\(501\) 0 0
\(502\) 9531.78 11574.9i 0.847459 1.02911i
\(503\) 6352.16i 0.563079i 0.959550 + 0.281540i \(0.0908451\pi\)
−0.959550 + 0.281540i \(0.909155\pi\)
\(504\) 0 0
\(505\) 14945.7i 1.31698i
\(506\) 314.500 + 258.987i 0.0276309 + 0.0227537i
\(507\) 0 0
\(508\) 1819.63 + 9310.83i 0.158923 + 0.813192i
\(509\) −6383.68 6383.68i −0.555897 0.555897i 0.372239 0.928137i \(-0.378590\pi\)
−0.928137 + 0.372239i \(0.878590\pi\)
\(510\) 0 0
\(511\) 3677.26i 0.318342i
\(512\) 8843.67 + 7483.80i 0.763357 + 0.645977i
\(513\) 0 0
\(514\) 12931.4 1251.76i 1.10969 0.107418i
\(515\) −12453.7 + 12453.7i −1.06559 + 1.06559i
\(516\) 0 0
\(517\) −1686.55 1686.55i −0.143471 0.143471i
\(518\) −14532.8 + 17647.9i −1.23269 + 1.49692i
\(519\) 0 0
\(520\) −10377.9 + 3091.21i −0.875190 + 0.260690i
\(521\) 14655.6 1.23238 0.616192 0.787596i \(-0.288674\pi\)
0.616192 + 0.787596i \(0.288674\pi\)
\(522\) 0 0
\(523\) 5288.73 5288.73i 0.442180 0.442180i −0.450564 0.892744i \(-0.648777\pi\)
0.892744 + 0.450564i \(0.148777\pi\)
\(524\) −6832.47 + 10151.7i −0.569614 + 0.846334i
\(525\) 0 0
\(526\) −9789.08 + 947.583i −0.811453 + 0.0785486i
\(527\) 18938.2 1.56539
\(528\) 0 0
\(529\) 11531.3 0.947755
\(530\) 4953.28 479.477i 0.405956 0.0392965i
\(531\) 0 0
\(532\) −19207.5 12927.4i −1.56532 1.05352i
\(533\) −14358.4 + 14358.4i −1.16685 + 1.16685i
\(534\) 0 0
\(535\) 12946.7 1.04623
\(536\) −5309.03 + 9813.54i −0.427827 + 0.790821i
\(537\) 0 0
\(538\) 293.535 356.454i 0.0235226 0.0285647i
\(539\) −1603.89 1603.89i −0.128172 0.128172i
\(540\) 0 0
\(541\) −5155.04 + 5155.04i −0.409672 + 0.409672i −0.881624 0.471952i \(-0.843550\pi\)
0.471952 + 0.881624i \(0.343550\pi\)
\(542\) −6342.68 + 613.971i −0.502659 + 0.0486574i
\(543\) 0 0
\(544\) −12806.8 + 6708.03i −1.00935 + 0.528684i
\(545\) 15163.5i 1.19181i
\(546\) 0 0
\(547\) −15716.4 15716.4i −1.22849 1.22849i −0.964535 0.263956i \(-0.914973\pi\)
−0.263956 0.964535i \(-0.585027\pi\)
\(548\) 16999.3 3322.19i 1.32513 0.258972i
\(549\) 0 0
\(550\) 565.965 + 466.064i 0.0438778 + 0.0361328i
\(551\) 16206.0i 1.25300i
\(552\) 0 0
\(553\) 14201.7i 1.09208i
\(554\) −3620.68 + 4396.77i −0.277668 + 0.337186i
\(555\) 0 0
\(556\) −2160.75 + 3210.45i −0.164813 + 0.244880i
\(557\) −6521.03 6521.03i −0.496059 0.496059i 0.414150 0.910209i \(-0.364079\pi\)
−0.910209 + 0.414150i \(0.864079\pi\)
\(558\) 0 0
\(559\) 14510.7i 1.09792i
\(560\) 6041.40 14313.2i 0.455885 1.08007i
\(561\) 0 0
\(562\) 1575.38 + 16274.6i 0.118244 + 1.22153i
\(563\) 3081.99 3081.99i 0.230711 0.230711i −0.582278 0.812989i \(-0.697839\pi\)
0.812989 + 0.582278i \(0.197839\pi\)
\(564\) 0 0
\(565\) 11074.6 + 11074.6i 0.824620 + 0.824620i
\(566\) 7856.97 + 6470.11i 0.583486 + 0.480493i
\(567\) 0 0
\(568\) −6968.04 + 2075.54i −0.514740 + 0.153324i
\(569\) −15731.8 −1.15907 −0.579535 0.814948i \(-0.696766\pi\)
−0.579535 + 0.814948i \(0.696766\pi\)
\(570\) 0 0
\(571\) −15369.5 + 15369.5i −1.12643 + 1.12643i −0.135680 + 0.990753i \(0.543322\pi\)
−0.990753 + 0.135680i \(0.956678\pi\)
\(572\) 2405.60 470.129i 0.175844 0.0343655i
\(573\) 0 0
\(574\) −2807.00 28997.9i −0.204115 2.10862i
\(575\) −1143.92 −0.0829649
\(576\) 0 0
\(577\) −3414.08 −0.246326 −0.123163 0.992386i \(-0.539304\pi\)
−0.123163 + 0.992386i \(0.539304\pi\)
\(578\) −399.374 4125.76i −0.0287401 0.296902i
\(579\) 0 0
\(580\) 10672.7 2085.78i 0.764068 0.149323i
\(581\) 12084.3 12084.3i 0.862895 0.862895i
\(582\) 0 0
\(583\) −1126.45 −0.0800222
\(584\) −2931.42 + 873.171i −0.207711 + 0.0618700i
\(585\) 0 0
\(586\) 1308.31 + 1077.37i 0.0922282 + 0.0759487i
\(587\) 14858.9 + 14858.9i 1.04479 + 1.04479i 0.998949 + 0.0458432i \(0.0145975\pi\)
0.0458432 + 0.998949i \(0.485403\pi\)
\(588\) 0 0
\(589\) 17838.3 17838.3i 1.24790 1.24790i
\(590\) −972.031 10041.6i −0.0678269 0.700691i
\(591\) 0 0
\(592\) 17519.3 + 7394.66i 1.21628 + 0.513376i
\(593\) 10177.1i 0.704765i −0.935856 0.352382i \(-0.885372\pi\)
0.935856 0.352382i \(-0.114628\pi\)
\(594\) 0 0
\(595\) 13708.9 + 13708.9i 0.944552 + 0.944552i
\(596\) −12239.3 + 18185.2i −0.841176 + 1.24982i
\(597\) 0 0
\(598\) −2431.08 + 2952.18i −0.166245 + 0.201879i
\(599\) 3301.30i 0.225188i 0.993641 + 0.112594i \(0.0359159\pi\)
−0.993641 + 0.112594i \(0.964084\pi\)
\(600\) 0 0
\(601\) 15622.6i 1.06033i 0.847894 + 0.530166i \(0.177870\pi\)
−0.847894 + 0.530166i \(0.822130\pi\)
\(602\) 16071.1 + 13234.4i 1.08806 + 0.896001i
\(603\) 0 0
\(604\) 18380.5 3592.12i 1.23823 0.241989i
\(605\) −8192.47 8192.47i −0.550531 0.550531i
\(606\) 0 0
\(607\) 8352.28i 0.558499i −0.960219 0.279249i \(-0.909914\pi\)
0.960219 0.279249i \(-0.0900856\pi\)
\(608\) −5744.51 + 18381.4i −0.383176 + 1.22609i
\(609\) 0 0
\(610\) −9088.79 + 879.795i −0.603270 + 0.0583965i
\(611\) 15831.5 15831.5i 1.04824 1.04824i
\(612\) 0 0
\(613\) −4415.12 4415.12i −0.290906 0.290906i 0.546532 0.837438i \(-0.315948\pi\)
−0.837438 + 0.546532i \(0.815948\pi\)
\(614\) −1747.21 + 2121.72i −0.114840 + 0.139456i
\(615\) 0 0
\(616\) −1673.32 + 3093.06i −0.109448 + 0.202310i
\(617\) −908.905 −0.0593049 −0.0296525 0.999560i \(-0.509440\pi\)
−0.0296525 + 0.999560i \(0.509440\pi\)
\(618\) 0 0
\(619\) 12163.4 12163.4i 0.789804 0.789804i −0.191658 0.981462i \(-0.561386\pi\)
0.981462 + 0.191658i \(0.0613863\pi\)
\(620\) 14043.5 + 9451.77i 0.909676 + 0.612245i
\(621\) 0 0
\(622\) 1244.26 120.445i 0.0802097 0.00776430i
\(623\) −29985.4 −1.92831
\(624\) 0 0
\(625\) 7895.01 0.505281
\(626\) 5487.84 531.223i 0.350380 0.0339168i
\(627\) 0 0
\(628\) −5413.03 + 8042.71i −0.343955 + 0.511049i
\(629\) −16779.6 + 16779.6i −1.06367 + 1.06367i
\(630\) 0 0
\(631\) 26228.8 1.65476 0.827380 0.561643i \(-0.189830\pi\)
0.827380 + 0.561643i \(0.189830\pi\)
\(632\) 11321.3 3372.22i 0.712556 0.212246i
\(633\) 0 0
\(634\) −4138.72 + 5025.85i −0.259258 + 0.314830i
\(635\) −7482.68 7482.68i −0.467624 0.467624i
\(636\) 0 0
\(637\) 15055.6 15055.6i 0.936459 0.936459i
\(638\) −2450.10 + 237.169i −0.152038 + 0.0147173i
\(639\) 0 0
\(640\) −12844.6 1417.37i −0.793325 0.0875415i
\(641\) 9142.35i 0.563340i −0.959511 0.281670i \(-0.909112\pi\)
0.959511 0.281670i \(-0.0908883\pi\)
\(642\) 0 0
\(643\) 14128.8 + 14128.8i 0.866541 + 0.866541i 0.992088 0.125547i \(-0.0400686\pi\)
−0.125547 + 0.992088i \(0.540069\pi\)
\(644\) −1052.40 5385.02i −0.0643951 0.329503i
\(645\) 0 0
\(646\) −18551.5 15276.9i −1.12988 0.930438i
\(647\) 16153.8i 0.981566i −0.871282 0.490783i \(-0.836711\pi\)
0.871282 0.490783i \(-0.163289\pi\)
\(648\) 0 0
\(649\) 2283.63i 0.138121i
\(650\) −4374.90 + 5312.65i −0.263996 + 0.320584i
\(651\) 0 0
\(652\) −16309.3 10976.7i −0.979632 0.659328i
\(653\) −4351.77 4351.77i −0.260793 0.260793i 0.564583 0.825376i \(-0.309037\pi\)
−0.825376 + 0.564583i \(0.809037\pi\)
\(654\) 0 0
\(655\) 13649.4i 0.814237i
\(656\) −22449.9 + 9123.27i −1.33616 + 0.542994i
\(657\) 0 0
\(658\) 3094.97 + 31972.8i 0.183366 + 1.89427i
\(659\) 21049.5 21049.5i 1.24427 1.24427i 0.286056 0.958213i \(-0.407656\pi\)
0.958213 0.286056i \(-0.0923444\pi\)
\(660\) 0 0
\(661\) 14180.5 + 14180.5i 0.834428 + 0.834428i 0.988119 0.153691i \(-0.0491159\pi\)
−0.153691 + 0.988119i \(0.549116\pi\)
\(662\) −16862.7 13886.2i −0.990013 0.815263i
\(663\) 0 0
\(664\) −12502.7 6763.87i −0.730724 0.395315i
\(665\) 25825.3 1.50596
\(666\) 0 0
\(667\) 2715.74 2715.74i 0.157652 0.157652i
\(668\) −3793.99 19413.4i −0.219751 1.12444i
\(669\) 0 0
\(670\) −1199.12 12387.6i −0.0691436 0.714293i
\(671\) 2066.94 0.118917
\(672\) 0 0
\(673\) 2224.60 0.127418 0.0637089 0.997969i \(-0.479707\pi\)
0.0637089 + 0.997969i \(0.479707\pi\)
\(674\) −2030.46 20975.8i −0.116039 1.19875i
\(675\) 0 0
\(676\) 1041.92 + 5331.41i 0.0592811 + 0.303335i
\(677\) 11483.6 11483.6i 0.651919 0.651919i −0.301536 0.953455i \(-0.597499\pi\)
0.953455 + 0.301536i \(0.0974993\pi\)
\(678\) 0 0
\(679\) −29084.5 −1.64383
\(680\) 7673.17 14183.5i 0.432724 0.799873i
\(681\) 0 0
\(682\) −2957.92 2435.81i −0.166077 0.136762i
\(683\) −1941.72 1941.72i −0.108781 0.108781i 0.650621 0.759403i \(-0.274509\pi\)
−0.759403 + 0.650621i \(0.774509\pi\)
\(684\) 0 0
\(685\) −13661.5 + 13661.5i −0.762014 + 0.762014i
\(686\) 400.496 + 4137.35i 0.0222901 + 0.230269i
\(687\) 0 0
\(688\) 6733.99 15954.0i 0.373155 0.884072i
\(689\) 10573.9i 0.584664i
\(690\) 0 0
\(691\) −203.904 203.904i −0.0112256 0.0112256i 0.701472 0.712697i \(-0.252527\pi\)
−0.712697 + 0.701472i \(0.752527\pi\)
\(692\) 10462.4 + 7041.55i 0.574739 + 0.386820i
\(693\) 0 0
\(694\) −17981.2 + 21835.4i −0.983511 + 1.19433i
\(695\) 4316.58i 0.235593i
\(696\) 0 0
\(697\) 30240.1i 1.64337i
\(698\) 10190.2 + 8391.47i 0.552584 + 0.455045i
\(699\) 0 0
\(700\) −1893.87 9690.71i −0.102259 0.523249i
\(701\) −62.5193 62.5193i −0.00336850 0.00336850i 0.705421 0.708789i \(-0.250758\pi\)
−0.708789 + 0.705421i \(0.750758\pi\)
\(702\) 0 0
\(703\) 31610.1i 1.69587i
\(704\) 2863.04 + 599.475i 0.153274 + 0.0320931i
\(705\) 0 0
\(706\) −51.7703 + 5.01137i −0.00275978 + 0.000267146i
\(707\) −32217.3 + 32217.3i −1.71380 + 1.71380i
\(708\) 0 0
\(709\) −19068.4 19068.4i −1.01005 1.01005i −0.999949 0.0101050i \(-0.996783\pi\)
−0.0101050 0.999949i \(-0.503217\pi\)
\(710\) 5155.35 6260.39i 0.272502 0.330913i
\(711\) 0 0
\(712\) 7120.07 + 23903.6i 0.374769 + 1.25818i
\(713\) 5978.52 0.314021
\(714\) 0 0
\(715\) −1933.27 + 1933.27i −0.101119 + 0.101119i
\(716\) 8617.18 12803.4i 0.449776 0.668278i
\(717\) 0 0
\(718\) 1888.15 182.773i 0.0981407 0.00950002i
\(719\) −4219.83 −0.218878 −0.109439 0.993994i \(-0.534905\pi\)
−0.109439 + 0.993994i \(0.534905\pi\)
\(720\) 0 0
\(721\) −53691.2 −2.77332
\(722\) −12553.8 + 1215.21i −0.647096 + 0.0626389i
\(723\) 0 0
\(724\) 4162.42 + 2801.46i 0.213667 + 0.143806i
\(725\) 4887.15 4887.15i 0.250351 0.250351i
\(726\) 0 0
\(727\) 3771.74 0.192415 0.0962077 0.995361i \(-0.469329\pi\)
0.0962077 + 0.995361i \(0.469329\pi\)
\(728\) −29034.2 15707.3i −1.47813 0.799657i
\(729\) 0 0
\(730\) 2168.83 2633.72i 0.109962 0.133532i
\(731\) 15280.5 + 15280.5i 0.773143 + 0.773143i
\(732\) 0 0
\(733\) −5607.56 + 5607.56i −0.282565 + 0.282565i −0.834131 0.551566i \(-0.814030\pi\)
0.551566 + 0.834131i \(0.314030\pi\)
\(734\) 14184.4 1373.05i 0.713293 0.0690468i
\(735\) 0 0
\(736\) −4042.91 + 2117.63i −0.202478 + 0.106055i
\(737\) 2817.15i 0.140802i
\(738\) 0 0
\(739\) −7137.31 7137.31i −0.355277 0.355277i 0.506791 0.862069i \(-0.330831\pi\)
−0.862069 + 0.506791i \(0.830831\pi\)
\(740\) −20817.2 + 4068.34i −1.03413 + 0.202101i
\(741\) 0 0
\(742\) 11711.0 + 9643.83i 0.579412 + 0.477138i
\(743\) 17134.1i 0.846016i −0.906126 0.423008i \(-0.860974\pi\)
0.906126 0.423008i \(-0.139026\pi\)
\(744\) 0 0
\(745\) 24450.7i 1.20242i
\(746\) 8013.88 9731.65i 0.393310 0.477615i
\(747\) 0 0
\(748\) −2038.14 + 3028.27i −0.0996278 + 0.148027i
\(749\) 27908.2 + 27908.2i 1.36147 + 1.36147i
\(750\) 0 0
\(751\) 17533.1i 0.851922i 0.904742 + 0.425961i \(0.140064\pi\)
−0.904742 + 0.425961i \(0.859936\pi\)
\(752\) 24753.0 10059.2i 1.20033 0.487795i
\(753\) 0 0
\(754\) −2226.28 22998.8i −0.107529 1.11083i
\(755\) −14771.5 + 14771.5i −0.712042 + 0.712042i
\(756\) 0 0
\(757\) −19568.4 19568.4i −0.939532 0.939532i 0.0587408 0.998273i \(-0.481291\pi\)
−0.998273 + 0.0587408i \(0.981291\pi\)
\(758\) −4615.09 3800.47i −0.221145 0.182110i
\(759\) 0 0
\(760\) −6132.25 20587.3i −0.292684 0.982604i
\(761\) 4059.70 0.193383 0.0966913 0.995314i \(-0.469174\pi\)
0.0966913 + 0.995314i \(0.469174\pi\)
\(762\) 0 0
\(763\) −32686.9 + 32686.9i −1.55091 + 1.55091i
\(764\) 5048.25 986.586i 0.239057 0.0467192i
\(765\) 0 0
\(766\) 689.593 + 7123.90i 0.0325274 + 0.336027i
\(767\) −21436.2 −1.00915
\(768\) 0 0
\(769\) 21167.3 0.992602 0.496301 0.868150i \(-0.334691\pi\)
0.496301 + 0.868150i \(0.334691\pi\)
\(770\) −377.944 3904.38i −0.0176885 0.182733i
\(771\) 0 0
\(772\) 8150.54 1592.87i 0.379980 0.0742599i
\(773\) −1992.49 + 1992.49i −0.0927102 + 0.0927102i −0.751941 0.659231i \(-0.770882\pi\)
0.659231 + 0.751941i \(0.270882\pi\)
\(774\) 0 0
\(775\) 10758.7 0.498665
\(776\) 6906.14 + 23185.4i 0.319479 + 1.07256i
\(777\) 0 0
\(778\) −18923.3 15583.1i −0.872022 0.718098i
\(779\) −28483.8 28483.8i −1.31006 1.31006i
\(780\) 0 0
\(781\) −1298.06 + 1298.06i −0.0594728 + 0.0594728i
\(782\) −548.742 5668.82i −0.0250933 0.259229i
\(783\) 0 0
\(784\) 23539.9 9566.25i 1.07234 0.435780i
\(785\) 10813.7i 0.491668i
\(786\) 0 0
\(787\) −17873.4 17873.4i −0.809551 0.809551i 0.175015 0.984566i \(-0.444003\pi\)
−0.984566 + 0.175015i \(0.944003\pi\)
\(788\) −16686.3 + 24792.6i −0.754346 + 1.12081i
\(789\) 0 0
\(790\) −8376.10 + 10171.5i −0.377226 + 0.458083i
\(791\) 47745.2i 2.14617i
\(792\) 0 0
\(793\) 19402.1i 0.868839i
\(794\) −21469.1 17679.5i −0.959584 0.790204i
\(795\) 0 0
\(796\) 20001.6 3908.95i 0.890627 0.174056i
\(797\) 4327.93 + 4327.93i 0.192350 + 0.192350i 0.796711 0.604361i \(-0.206571\pi\)
−0.604361 + 0.796711i \(0.706571\pi\)
\(798\) 0 0
\(799\) 33342.5i 1.47631i
\(800\) −7275.49 + 3810.82i −0.321534 + 0.168416i
\(801\) 0 0
\(802\) −2380.03 + 230.387i −0.104790 + 0.0101437i
\(803\) −546.087 + 546.087i −0.0239988 + 0.0239988i
\(804\) 0 0
\(805\) 4327.69 + 4327.69i 0.189480 + 0.189480i
\(806\) 22864.7 27765.7i 0.999223 1.21341i
\(807\) 0 0
\(808\) 33332.8 + 18032.8i 1.45129 + 0.785137i
\(809\) 7284.89 0.316592 0.158296 0.987392i \(-0.449400\pi\)
0.158296 + 0.987392i \(0.449400\pi\)
\(810\) 0 0
\(811\) 28534.9 28534.9i 1.23551 1.23551i 0.273688 0.961819i \(-0.411756\pi\)
0.961819 0.273688i \(-0.0882435\pi\)
\(812\) 27502.5 + 18510.2i 1.18861 + 0.799975i
\(813\) 0 0
\(814\) 4778.95 462.602i 0.205776 0.0199192i
\(815\) 21928.5 0.942479
\(816\) 0 0
\(817\) 28785.9 1.23267
\(818\) −41042.2 + 3972.89i −1.75429 + 0.169815i
\(819\) 0 0
\(820\) 15092.4 22424.3i 0.642743 0.954990i
\(821\) 17928.4 17928.4i 0.762128 0.762128i −0.214579 0.976707i \(-0.568838\pi\)
0.976707 + 0.214579i \(0.0688380\pi\)
\(822\) 0 0
\(823\) −25241.2 −1.06908 −0.534540 0.845143i \(-0.679515\pi\)
−0.534540 + 0.845143i \(0.679515\pi\)
\(824\) 12749.0 + 42801.2i 0.538997 + 1.80953i
\(825\) 0 0
\(826\) 19550.7 23741.3i 0.823553 1.00008i
\(827\) −27181.2 27181.2i −1.14291 1.14291i −0.987916 0.154990i \(-0.950466\pi\)
−0.154990 0.987916i \(-0.549534\pi\)
\(828\) 0 0
\(829\) −2755.03 + 2755.03i −0.115424 + 0.115424i −0.762460 0.647036i \(-0.776008\pi\)
0.647036 + 0.762460i \(0.276008\pi\)
\(830\) 15782.2 1527.72i 0.660012 0.0638891i
\(831\) 0 0
\(832\) −5627.21 + 26875.1i −0.234481 + 1.11986i
\(833\) 31708.4i 1.31889i
\(834\) 0 0
\(835\) 15601.7 + 15601.7i 0.646608 + 0.646608i
\(836\) 932.627 + 4772.15i 0.0385832 + 0.197426i
\(837\) 0 0
\(838\) 15204.3 + 12520.6i 0.626760 + 0.516128i
\(839\) 20544.0i 0.845361i 0.906279 + 0.422681i \(0.138911\pi\)
−0.906279 + 0.422681i \(0.861089\pi\)
\(840\) 0 0
\(841\) 1184.24i 0.0485561i
\(842\) 15928.5 19342.7i 0.651937 0.791679i
\(843\) 0 0
\(844\) 10886.9 + 7327.31i 0.444009 + 0.298835i
\(845\) −4284.61 4284.61i −0.174432 0.174432i
\(846\) 0 0
\(847\) 35319.8i 1.43282i
\(848\) 4907.03 11625.6i 0.198712 0.470785i
\(849\) 0 0
\(850\) −987.498 10201.4i −0.0398481 0.411654i
\(851\) −5297.08 + 5297.08i −0.213374 + 0.213374i
\(852\) 0 0
\(853\) 9553.45 + 9553.45i 0.383475 + 0.383475i 0.872352 0.488878i \(-0.162594\pi\)
−0.488878 + 0.872352i \(0.662594\pi\)
\(854\) −21488.5 17695.5i −0.861033 0.709049i
\(855\) 0 0
\(856\) 15620.9 28874.5i 0.623726 1.15293i
\(857\) −21465.0 −0.855578 −0.427789 0.903879i \(-0.640707\pi\)
−0.427789 + 0.903879i \(0.640707\pi\)
\(858\) 0 0
\(859\) 4252.94 4252.94i 0.168927 0.168927i −0.617580 0.786508i \(-0.711887\pi\)
0.786508 + 0.617580i \(0.211887\pi\)
\(860\) 3704.86 + 18957.3i 0.146901 + 0.751674i
\(861\) 0 0
\(862\) 3869.96 + 39978.9i 0.152913 + 1.57968i
\(863\) 7487.36 0.295333 0.147667 0.989037i \(-0.452824\pi\)
0.147667 + 0.989037i \(0.452824\pi\)
\(864\) 0 0
\(865\) −14067.1 −0.552942
\(866\) −429.018 4432.00i −0.0168344 0.173909i
\(867\) 0 0
\(868\) 9897.99 + 50646.9i 0.387050 + 1.98049i
\(869\) 2109.01 2109.01i 0.0823282 0.0823282i
\(870\) 0 0
\(871\) −26444.3 −1.02874
\(872\) 33818.7 + 18295.6i 1.31336 + 0.710513i
\(873\) 0 0
\(874\) −5856.45 4822.71i −0.226656 0.186648i
\(875\) 29244.1 + 29244.1i 1.12987 + 1.12987i
\(876\) 0 0
\(877\) −14348.4 + 14348.4i −0.552465 + 0.552465i −0.927152 0.374686i \(-0.877750\pi\)
0.374686 + 0.927152i \(0.377750\pi\)
\(878\) −467.849 4833.15i −0.0179831 0.185776i
\(879\) 0 0
\(880\) −3022.73 + 1228.39i −0.115791 + 0.0470556i
\(881\) 17497.5i 0.669131i 0.942372 + 0.334566i \(0.108590\pi\)
−0.942372 + 0.334566i \(0.891410\pi\)
\(882\) 0 0
\(883\) 5399.20 + 5399.20i 0.205773 + 0.205773i 0.802468 0.596695i \(-0.203520\pi\)
−0.596695 + 0.802468i \(0.703520\pi\)
\(884\) −28426.1 19131.8i −1.08153 0.727908i
\(885\) 0 0
\(886\) 16608.6 20168.7i 0.629772 0.764763i
\(887\) 32588.2i 1.23360i 0.787119 + 0.616801i \(0.211572\pi\)
−0.787119 + 0.616801i \(0.788428\pi\)
\(888\) 0 0
\(889\) 32259.7i 1.21705i
\(890\) −21476.0 17685.2i −0.808851 0.666078i
\(891\) 0 0
\(892\) −5545.10 28373.6i −0.208143 1.06504i
\(893\) 31406.0 + 31406.0i 1.17689 + 1.17689i
\(894\) 0 0
\(895\) 17214.8i 0.642934i
\(896\) −24632.9 30743.5i −0.918444 1.14628i
\(897\) 0 0
\(898\) −6135.92 + 593.957i −0.228016 + 0.0220720i
\(899\) −25541.9 + 25541.9i −0.947575 + 0.947575i
\(900\) 0 0
\(901\) 11134.8 + 11134.8i 0.411714 + 0.411714i
\(902\) −3889.45 + 4723.15i −0.143575 + 0.174350i
\(903\) 0 0
\(904\) 38061.3 11337.2i 1.40033 0.417111i
\(905\) −5596.54 −0.205564
\(906\) 0 0
\(907\) 175.952 175.952i 0.00644145 0.00644145i −0.703879 0.710320i \(-0.748550\pi\)
0.710320 + 0.703879i \(0.248550\pi\)
\(908\) −2806.23 + 4169.51i −0.102564 + 0.152390i
\(909\) 0 0
\(910\) 36650.0 3547.72i 1.33509 0.129237i
\(911\) 13051.9 0.474676 0.237338 0.971427i \(-0.423725\pi\)
0.237338 + 0.971427i \(0.423725\pi\)
\(912\) 0 0
\(913\) −3589.13 −0.130102
\(914\) 2345.49 227.043i 0.0848817 0.00821655i
\(915\) 0 0
\(916\) 1773.16 + 1193.40i 0.0639595 + 0.0430470i
\(917\) 29422.9 29422.9i 1.05958 1.05958i
\(918\) 0 0
\(919\) −8004.68 −0.287323 −0.143662 0.989627i \(-0.545888\pi\)
−0.143662 + 0.989627i \(0.545888\pi\)
\(920\) 2422.31 4477.54i 0.0868056 0.160457i
\(921\) 0 0
\(922\) −16363.1 + 19870.5i −0.584480 + 0.709763i
\(923\) −12184.8 12184.8i −0.434524 0.434524i
\(924\) 0 0
\(925\) −9532.46 + 9532.46i −0.338838 + 0.338838i
\(926\) −6036.09 + 584.294i −0.214210 + 0.0207355i
\(927\) 0 0
\(928\) 8225.33 26319.5i 0.290959 0.931014i
\(929\) 19953.1i 0.704672i −0.935874 0.352336i \(-0.885387\pi\)
0.935874 0.352336i \(-0.114613\pi\)
\(930\) 0 0
\(931\) 29866.8 + 29866.8i 1.05139 + 1.05139i
\(932\) 47230.9 9230.40i 1.65998 0.324412i
\(933\) 0 0
\(934\) −4912.27 4045.19i −0.172093 0.141716i
\(935\) 4071.63i 0.142414i
\(936\) 0 0
\(937\) 47079.0i 1.64141i −0.571351 0.820706i \(-0.693580\pi\)
0.571351 0.820706i \(-0.306420\pi\)
\(938\) 24118.3 29288.0i 0.839540 1.01950i
\(939\) 0 0
\(940\) −16640.7 + 24724.9i −0.577405 + 0.857911i
\(941\) −4612.54 4612.54i −0.159792 0.159792i 0.622682 0.782475i \(-0.286043\pi\)
−0.782475 + 0.622682i \(0.786043\pi\)
\(942\) 0 0
\(943\) 9546.38i 0.329664i
\(944\) −23568.3 9947.88i −0.812588 0.342983i
\(945\) 0 0
\(946\) −421.271 4351.98i −0.0144786 0.149572i
\(947\) 35884.4 35884.4i 1.23135 1.23135i 0.267899 0.963447i \(-0.413671\pi\)
0.963447 0.267899i \(-0.0863294\pi\)
\(948\) 0 0
\(949\) −5126.07 5126.07i −0.175342 0.175342i
\(950\) −10539.1 8678.79i −0.359929 0.296397i
\(951\) 0 0
\(952\) 47114.9 14033.9i 1.60399 0.477775i
\(953\) 2274.82 0.0773228 0.0386614 0.999252i \(-0.487691\pi\)
0.0386614 + 0.999252i \(0.487691\pi\)
\(954\) 0 0
\(955\) −4057.04 + 4057.04i −0.137469 + 0.137469i
\(956\) −30359.5 + 5933.20i −1.02709 + 0.200725i
\(957\) 0 0
\(958\) −841.293 8691.04i −0.0283726 0.293105i
\(959\) −58898.2 −1.98324
\(960\) 0 0
\(961\) −26437.8 −0.887442
\(962\) 4342.40 + 44859.5i 0.145535 + 1.50346i
\(963\) 0 0
\(964\) −47499.3 + 9282.85i −1.58698 + 0.310146i
\(965\) −6550.21 + 6550.21i −0.218506 + 0.218506i
\(966\) 0 0
\(967\) −11693.6 −0.388874 −0.194437 0.980915i \(-0.562288\pi\)
−0.194437 + 0.980915i \(0.562288\pi\)
\(968\) −28156.0 + 8386.72i −0.934885 + 0.278471i
\(969\) 0 0
\(970\) −20830.8 17153.8i −0.689521 0.567811i
\(971\) −13147.9 13147.9i −0.434537 0.434537i 0.455632 0.890168i \(-0.349413\pi\)
−0.890168 + 0.455632i \(0.849413\pi\)
\(972\) 0 0
\(973\) 9304.93 9304.93i 0.306580 0.306580i
\(974\) 5624.90 + 58108.5i 0.185045 + 1.91162i
\(975\) 0 0
\(976\) −9003.93 + 21331.9i −0.295296 + 0.699609i
\(977\) 57554.9i 1.88469i 0.334642 + 0.942345i \(0.391385\pi\)
−0.334642 + 0.942345i \(0.608615\pi\)
\(978\) 0 0
\(979\) 4452.94 + 4452.94i 0.145369 + 0.145369i
\(980\) −15825.2 + 23513.2i −0.515834 + 0.766429i
\(981\) 0 0
\(982\) −35295.6 + 42861.2i −1.14697 + 1.39283i
\(983\) 29857.4i 0.968773i 0.874854 + 0.484386i \(0.160957\pi\)
−0.874854 + 0.484386i \(0.839043\pi\)
\(984\) 0 0
\(985\) 33334.6i 1.07830i
\(986\) 26563.2 + 21874.4i 0.857955 + 0.706514i
\(987\) 0 0
\(988\) −44795.7 + 8754.48i −1.44245 + 0.281900i
\(989\) 4823.82 + 4823.82i 0.155095 + 0.155095i
\(990\) 0 0
\(991\) 37310.0i 1.19596i 0.801513 + 0.597978i \(0.204029\pi\)
−0.801513 + 0.597978i \(0.795971\pi\)
\(992\) 38024.1 19916.6i 1.21700 0.637452i
\(993\) 0 0
\(994\) 24608.0 2382.06i 0.785231 0.0760104i
\(995\) −16074.4 + 16074.4i −0.512153 + 0.512153i
\(996\) 0 0
\(997\) 31495.0 + 31495.0i 1.00046 + 1.00046i 1.00000 0.000458156i \(0.000145836\pi\)
0.000458156 1.00000i \(0.499854\pi\)
\(998\) 21682.4 26330.0i 0.687720 0.835132i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.4.l.a.107.14 yes 48
3.2 odd 2 inner 144.4.l.a.107.11 yes 48
4.3 odd 2 576.4.l.a.143.17 48
8.3 odd 2 1152.4.l.a.287.8 48
8.5 even 2 1152.4.l.b.287.8 48
12.11 even 2 576.4.l.a.143.8 48
16.3 odd 4 inner 144.4.l.a.35.11 48
16.5 even 4 1152.4.l.a.863.17 48
16.11 odd 4 1152.4.l.b.863.17 48
16.13 even 4 576.4.l.a.431.8 48
24.5 odd 2 1152.4.l.b.287.17 48
24.11 even 2 1152.4.l.a.287.17 48
48.5 odd 4 1152.4.l.a.863.8 48
48.11 even 4 1152.4.l.b.863.8 48
48.29 odd 4 576.4.l.a.431.17 48
48.35 even 4 inner 144.4.l.a.35.14 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.l.a.35.11 48 16.3 odd 4 inner
144.4.l.a.35.14 yes 48 48.35 even 4 inner
144.4.l.a.107.11 yes 48 3.2 odd 2 inner
144.4.l.a.107.14 yes 48 1.1 even 1 trivial
576.4.l.a.143.8 48 12.11 even 2
576.4.l.a.143.17 48 4.3 odd 2
576.4.l.a.431.8 48 16.13 even 4
576.4.l.a.431.17 48 48.29 odd 4
1152.4.l.a.287.8 48 8.3 odd 2
1152.4.l.a.287.17 48 24.11 even 2
1152.4.l.a.863.8 48 48.5 odd 4
1152.4.l.a.863.17 48 16.5 even 4
1152.4.l.b.287.8 48 8.5 even 2
1152.4.l.b.287.17 48 24.5 odd 2
1152.4.l.b.863.8 48 48.11 even 4
1152.4.l.b.863.17 48 16.11 odd 4