Properties

Label 144.4.k.c.37.6
Level $144$
Weight $4$
Character 144.37
Analytic conductor $8.496$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,4,Mod(37,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.37"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.49627504083\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 37.6
Character \(\chi\) \(=\) 144.37
Dual form 144.4.k.c.109.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.639782 - 2.75512i) q^{2} +(-7.18136 + 3.52535i) q^{4} +(5.16526 + 5.16526i) q^{5} -7.03833i q^{7} +(14.3073 + 17.5300i) q^{8} +(10.9263 - 17.5356i) q^{10} +(22.2198 + 22.2198i) q^{11} +(37.2029 - 37.2029i) q^{13} +(-19.3914 + 4.50300i) q^{14} +(39.1438 - 50.6336i) q^{16} +67.4608 q^{17} +(37.2366 - 37.2366i) q^{19} +(-55.3030 - 18.8842i) q^{20} +(47.0024 - 75.4340i) q^{22} +32.4348i q^{23} -71.6401i q^{25} +(-126.300 - 78.6966i) q^{26} +(24.8126 + 50.5448i) q^{28} +(94.7734 - 94.7734i) q^{29} -158.503 q^{31} +(-164.545 - 75.4513i) q^{32} +(-43.1602 - 185.863i) q^{34} +(36.3548 - 36.3548i) q^{35} +(192.501 + 192.501i) q^{37} +(-126.414 - 78.7678i) q^{38} +(-16.6465 + 164.448i) q^{40} +283.277i q^{41} +(-206.310 - 206.310i) q^{43} +(-237.901 - 81.2357i) q^{44} +(89.3617 - 20.7512i) q^{46} +584.883 q^{47} +293.462 q^{49} +(-197.377 + 45.8341i) q^{50} +(-136.014 + 398.320i) q^{52} +(82.5251 + 82.5251i) q^{53} +229.542i q^{55} +(123.382 - 100.699i) q^{56} +(-321.746 - 200.478i) q^{58} +(79.7567 + 79.7567i) q^{59} +(132.394 - 132.394i) q^{61} +(101.408 + 436.696i) q^{62} +(-102.604 + 501.614i) q^{64} +384.325 q^{65} +(-596.157 + 596.157i) q^{67} +(-484.460 + 237.823i) q^{68} +(-123.421 - 76.9027i) q^{70} -110.487i q^{71} +412.677i q^{73} +(407.204 - 653.522i) q^{74} +(-136.137 + 398.681i) q^{76} +(156.390 - 156.390i) q^{77} -1142.41 q^{79} +(463.724 - 59.3480i) q^{80} +(780.461 - 181.235i) q^{82} +(-656.133 + 656.133i) q^{83} +(348.453 + 348.453i) q^{85} +(-436.414 + 700.401i) q^{86} +(-71.6093 + 707.419i) q^{88} +474.926i q^{89} +(-261.846 - 261.846i) q^{91} +(-114.344 - 232.926i) q^{92} +(-374.198 - 1611.42i) q^{94} +384.673 q^{95} +1358.31 q^{97} +(-187.752 - 808.522i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 20 q^{4} + 48 q^{10} - 192 q^{16} + 24 q^{19} + 232 q^{22} + 416 q^{28} + 744 q^{31} + 296 q^{34} - 16 q^{37} + 104 q^{40} - 376 q^{43} - 32 q^{46} - 1176 q^{49} - 2088 q^{52} - 808 q^{58} - 912 q^{61}+ \cdots - 2896 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.639782 2.75512i −0.226197 0.974082i
\(3\) 0 0
\(4\) −7.18136 + 3.52535i −0.897670 + 0.440669i
\(5\) 5.16526 + 5.16526i 0.461995 + 0.461995i 0.899309 0.437314i \(-0.144070\pi\)
−0.437314 + 0.899309i \(0.644070\pi\)
\(6\) 0 0
\(7\) 7.03833i 0.380034i −0.981781 0.190017i \(-0.939146\pi\)
0.981781 0.190017i \(-0.0608543\pi\)
\(8\) 14.3073 + 17.5300i 0.632298 + 0.774725i
\(9\) 0 0
\(10\) 10.9263 17.5356i 0.345519 0.554523i
\(11\) 22.2198 + 22.2198i 0.609047 + 0.609047i 0.942697 0.333650i \(-0.108280\pi\)
−0.333650 + 0.942697i \(0.608280\pi\)
\(12\) 0 0
\(13\) 37.2029 37.2029i 0.793710 0.793710i −0.188386 0.982095i \(-0.560325\pi\)
0.982095 + 0.188386i \(0.0603255\pi\)
\(14\) −19.3914 + 4.50300i −0.370184 + 0.0859626i
\(15\) 0 0
\(16\) 39.1438 50.6336i 0.611622 0.791150i
\(17\) 67.4608 0.962450 0.481225 0.876597i \(-0.340192\pi\)
0.481225 + 0.876597i \(0.340192\pi\)
\(18\) 0 0
\(19\) 37.2366 37.2366i 0.449613 0.449613i −0.445613 0.895226i \(-0.647014\pi\)
0.895226 + 0.445613i \(0.147014\pi\)
\(20\) −55.3030 18.8842i −0.618306 0.211132i
\(21\) 0 0
\(22\) 47.0024 75.4340i 0.455497 0.731027i
\(23\) 32.4348i 0.294049i 0.989133 + 0.147024i \(0.0469696\pi\)
−0.989133 + 0.147024i \(0.953030\pi\)
\(24\) 0 0
\(25\) 71.6401i 0.573121i
\(26\) −126.300 78.6966i −0.952673 0.593603i
\(27\) 0 0
\(28\) 24.8126 + 50.5448i 0.167469 + 0.341145i
\(29\) 94.7734 94.7734i 0.606861 0.606861i −0.335263 0.942125i \(-0.608825\pi\)
0.942125 + 0.335263i \(0.108825\pi\)
\(30\) 0 0
\(31\) −158.503 −0.918324 −0.459162 0.888353i \(-0.651850\pi\)
−0.459162 + 0.888353i \(0.651850\pi\)
\(32\) −164.545 75.4513i −0.908992 0.416814i
\(33\) 0 0
\(34\) −43.1602 185.863i −0.217703 0.937505i
\(35\) 36.3548 36.3548i 0.175574 0.175574i
\(36\) 0 0
\(37\) 192.501 + 192.501i 0.855323 + 0.855323i 0.990783 0.135460i \(-0.0432511\pi\)
−0.135460 + 0.990783i \(0.543251\pi\)
\(38\) −126.414 78.7678i −0.539661 0.336259i
\(39\) 0 0
\(40\) −16.6465 + 164.448i −0.0658009 + 0.650038i
\(41\) 283.277i 1.07903i 0.841975 + 0.539517i \(0.181393\pi\)
−0.841975 + 0.539517i \(0.818607\pi\)
\(42\) 0 0
\(43\) −206.310 206.310i −0.731672 0.731672i 0.239279 0.970951i \(-0.423089\pi\)
−0.970951 + 0.239279i \(0.923089\pi\)
\(44\) −237.901 81.2357i −0.815112 0.278335i
\(45\) 0 0
\(46\) 89.3617 20.7512i 0.286427 0.0665130i
\(47\) 584.883 1.81519 0.907596 0.419845i \(-0.137915\pi\)
0.907596 + 0.419845i \(0.137915\pi\)
\(48\) 0 0
\(49\) 293.462 0.855574
\(50\) −197.377 + 45.8341i −0.558266 + 0.129638i
\(51\) 0 0
\(52\) −136.014 + 398.320i −0.362726 + 1.06225i
\(53\) 82.5251 + 82.5251i 0.213881 + 0.213881i 0.805914 0.592033i \(-0.201674\pi\)
−0.592033 + 0.805914i \(0.701674\pi\)
\(54\) 0 0
\(55\) 229.542i 0.562754i
\(56\) 123.382 100.699i 0.294422 0.240295i
\(57\) 0 0
\(58\) −321.746 200.478i −0.728403 0.453862i
\(59\) 79.7567 + 79.7567i 0.175990 + 0.175990i 0.789605 0.613615i \(-0.210285\pi\)
−0.613615 + 0.789605i \(0.710285\pi\)
\(60\) 0 0
\(61\) 132.394 132.394i 0.277889 0.277889i −0.554377 0.832266i \(-0.687043\pi\)
0.832266 + 0.554377i \(0.187043\pi\)
\(62\) 101.408 + 436.696i 0.207722 + 0.894522i
\(63\) 0 0
\(64\) −102.604 + 501.614i −0.200399 + 0.979714i
\(65\) 384.325 0.733380
\(66\) 0 0
\(67\) −596.157 + 596.157i −1.08705 + 1.08705i −0.0912161 + 0.995831i \(0.529075\pi\)
−0.995831 + 0.0912161i \(0.970925\pi\)
\(68\) −484.460 + 237.823i −0.863962 + 0.424122i
\(69\) 0 0
\(70\) −123.421 76.9027i −0.210738 0.131309i
\(71\) 110.487i 0.184682i −0.995727 0.0923409i \(-0.970565\pi\)
0.995727 0.0923409i \(-0.0294350\pi\)
\(72\) 0 0
\(73\) 412.677i 0.661646i 0.943693 + 0.330823i \(0.107326\pi\)
−0.943693 + 0.330823i \(0.892674\pi\)
\(74\) 407.204 653.522i 0.639683 1.02663i
\(75\) 0 0
\(76\) −136.137 + 398.681i −0.205474 + 0.601735i
\(77\) 156.390 156.390i 0.231459 0.231459i
\(78\) 0 0
\(79\) −1142.41 −1.62698 −0.813491 0.581577i \(-0.802436\pi\)
−0.813491 + 0.581577i \(0.802436\pi\)
\(80\) 463.724 59.3480i 0.648074 0.0829413i
\(81\) 0 0
\(82\) 780.461 181.235i 1.05107 0.244074i
\(83\) −656.133 + 656.133i −0.867711 + 0.867711i −0.992219 0.124508i \(-0.960265\pi\)
0.124508 + 0.992219i \(0.460265\pi\)
\(84\) 0 0
\(85\) 348.453 + 348.453i 0.444647 + 0.444647i
\(86\) −436.414 + 700.401i −0.547206 + 0.878211i
\(87\) 0 0
\(88\) −71.6093 + 707.419i −0.0867452 + 0.856944i
\(89\) 474.926i 0.565641i 0.959173 + 0.282820i \(0.0912700\pi\)
−0.959173 + 0.282820i \(0.908730\pi\)
\(90\) 0 0
\(91\) −261.846 261.846i −0.301637 0.301637i
\(92\) −114.344 232.926i −0.129578 0.263959i
\(93\) 0 0
\(94\) −374.198 1611.42i −0.410591 1.76814i
\(95\) 384.673 0.415438
\(96\) 0 0
\(97\) 1358.31 1.42181 0.710906 0.703287i \(-0.248285\pi\)
0.710906 + 0.703287i \(0.248285\pi\)
\(98\) −187.752 808.522i −0.193528 0.833399i
\(99\) 0 0
\(100\) 252.557 + 514.473i 0.252557 + 0.514473i
\(101\) −1345.17 1345.17i −1.32524 1.32524i −0.909470 0.415771i \(-0.863512\pi\)
−0.415771 0.909470i \(-0.636488\pi\)
\(102\) 0 0
\(103\) 1077.73i 1.03099i −0.856894 0.515493i \(-0.827609\pi\)
0.856894 0.515493i \(-0.172391\pi\)
\(104\) 1184.44 + 119.896i 1.11677 + 0.113046i
\(105\) 0 0
\(106\) 174.568 280.165i 0.159958 0.256717i
\(107\) −1505.13 1505.13i −1.35988 1.35988i −0.874061 0.485816i \(-0.838523\pi\)
−0.485816 0.874061i \(-0.661477\pi\)
\(108\) 0 0
\(109\) 885.884 885.884i 0.778462 0.778462i −0.201107 0.979569i \(-0.564454\pi\)
0.979569 + 0.201107i \(0.0644540\pi\)
\(110\) 632.416 146.857i 0.548168 0.127293i
\(111\) 0 0
\(112\) −356.376 275.507i −0.300664 0.232437i
\(113\) −1002.89 −0.834902 −0.417451 0.908699i \(-0.637076\pi\)
−0.417451 + 0.908699i \(0.637076\pi\)
\(114\) 0 0
\(115\) −167.534 + 167.534i −0.135849 + 0.135849i
\(116\) −346.492 + 1014.71i −0.277336 + 0.812186i
\(117\) 0 0
\(118\) 168.712 270.766i 0.131621 0.211238i
\(119\) 474.812i 0.365764i
\(120\) 0 0
\(121\) 343.561i 0.258122i
\(122\) −449.463 280.057i −0.333545 0.207829i
\(123\) 0 0
\(124\) 1138.27 558.780i 0.824352 0.404677i
\(125\) 1015.70 1015.70i 0.726774 0.726774i
\(126\) 0 0
\(127\) 657.435 0.459354 0.229677 0.973267i \(-0.426233\pi\)
0.229677 + 0.973267i \(0.426233\pi\)
\(128\) 1447.65 38.2366i 0.999651 0.0264037i
\(129\) 0 0
\(130\) −245.885 1058.86i −0.165888 0.714372i
\(131\) −1708.93 + 1708.93i −1.13977 + 1.13977i −0.151279 + 0.988491i \(0.548339\pi\)
−0.988491 + 0.151279i \(0.951661\pi\)
\(132\) 0 0
\(133\) −262.083 262.083i −0.170868 0.170868i
\(134\) 2023.89 + 1261.07i 1.30476 + 0.812986i
\(135\) 0 0
\(136\) 965.180 + 1182.59i 0.608555 + 0.745635i
\(137\) 2990.96i 1.86522i 0.360891 + 0.932608i \(0.382473\pi\)
−0.360891 + 0.932608i \(0.617527\pi\)
\(138\) 0 0
\(139\) −898.789 898.789i −0.548448 0.548448i 0.377543 0.925992i \(-0.376769\pi\)
−0.925992 + 0.377543i \(0.876769\pi\)
\(140\) −132.914 + 389.241i −0.0802374 + 0.234977i
\(141\) 0 0
\(142\) −304.405 + 70.6877i −0.179895 + 0.0417745i
\(143\) 1653.28 0.966814
\(144\) 0 0
\(145\) 979.059 0.560734
\(146\) 1136.97 264.023i 0.644497 0.149662i
\(147\) 0 0
\(148\) −2061.05 703.785i −1.14471 0.390883i
\(149\) −1949.10 1949.10i −1.07165 1.07165i −0.997227 0.0744264i \(-0.976287\pi\)
−0.0744264 0.997227i \(-0.523713\pi\)
\(150\) 0 0
\(151\) 389.789i 0.210070i 0.994469 + 0.105035i \(0.0334955\pi\)
−0.994469 + 0.105035i \(0.966505\pi\)
\(152\) 1185.51 + 120.005i 0.632616 + 0.0640373i
\(153\) 0 0
\(154\) −530.930 330.818i −0.277815 0.173104i
\(155\) −818.712 818.712i −0.424261 0.424261i
\(156\) 0 0
\(157\) −573.333 + 573.333i −0.291446 + 0.291446i −0.837651 0.546206i \(-0.816072\pi\)
0.546206 + 0.837651i \(0.316072\pi\)
\(158\) 730.896 + 3147.49i 0.368019 + 1.58481i
\(159\) 0 0
\(160\) −460.193 1239.64i −0.227384 0.612516i
\(161\) 228.287 0.111749
\(162\) 0 0
\(163\) 94.7841 94.7841i 0.0455464 0.0455464i −0.683967 0.729513i \(-0.739747\pi\)
0.729513 + 0.683967i \(0.239747\pi\)
\(164\) −998.650 2034.31i −0.475497 0.968616i
\(165\) 0 0
\(166\) 2227.51 + 1387.94i 1.04149 + 0.648947i
\(167\) 396.734i 0.183834i −0.995767 0.0919169i \(-0.970701\pi\)
0.995767 0.0919169i \(-0.0292994\pi\)
\(168\) 0 0
\(169\) 571.109i 0.259950i
\(170\) 737.095 1182.96i 0.332545 0.533701i
\(171\) 0 0
\(172\) 2208.90 + 754.269i 0.979225 + 0.334375i
\(173\) −193.034 + 193.034i −0.0848329 + 0.0848329i −0.748250 0.663417i \(-0.769106\pi\)
0.663417 + 0.748250i \(0.269106\pi\)
\(174\) 0 0
\(175\) −504.227 −0.217805
\(176\) 1994.84 255.302i 0.854355 0.109341i
\(177\) 0 0
\(178\) 1308.48 303.849i 0.550980 0.127946i
\(179\) −114.931 + 114.931i −0.0479909 + 0.0479909i −0.730695 0.682704i \(-0.760804\pi\)
0.682704 + 0.730695i \(0.260804\pi\)
\(180\) 0 0
\(181\) 764.431 + 764.431i 0.313921 + 0.313921i 0.846427 0.532505i \(-0.178749\pi\)
−0.532505 + 0.846427i \(0.678749\pi\)
\(182\) −553.893 + 888.942i −0.225589 + 0.362048i
\(183\) 0 0
\(184\) −568.583 + 464.053i −0.227807 + 0.185926i
\(185\) 1988.64i 0.790310i
\(186\) 0 0
\(187\) 1498.97 + 1498.97i 0.586178 + 0.586178i
\(188\) −4200.26 + 2061.92i −1.62944 + 0.799899i
\(189\) 0 0
\(190\) −246.107 1059.82i −0.0939710 0.404671i
\(191\) 2413.08 0.914159 0.457080 0.889426i \(-0.348895\pi\)
0.457080 + 0.889426i \(0.348895\pi\)
\(192\) 0 0
\(193\) −4996.88 −1.86364 −0.931822 0.362915i \(-0.881781\pi\)
−0.931822 + 0.362915i \(0.881781\pi\)
\(194\) −869.025 3742.32i −0.321610 1.38496i
\(195\) 0 0
\(196\) −2107.45 + 1034.56i −0.768023 + 0.377025i
\(197\) −1208.70 1208.70i −0.437138 0.437138i 0.453910 0.891048i \(-0.350029\pi\)
−0.891048 + 0.453910i \(0.850029\pi\)
\(198\) 0 0
\(199\) 3020.23i 1.07587i 0.842986 + 0.537935i \(0.180795\pi\)
−0.842986 + 0.537935i \(0.819205\pi\)
\(200\) 1255.85 1024.97i 0.444011 0.362383i
\(201\) 0 0
\(202\) −2845.48 + 4566.71i −0.991126 + 1.59066i
\(203\) −667.047 667.047i −0.230628 0.230628i
\(204\) 0 0
\(205\) −1463.20 + 1463.20i −0.498508 + 0.498508i
\(206\) −2969.27 + 689.510i −1.00426 + 0.233206i
\(207\) 0 0
\(208\) −427.455 3339.98i −0.142494 1.11339i
\(209\) 1654.78 0.547672
\(210\) 0 0
\(211\) 1874.16 1874.16i 0.611482 0.611482i −0.331850 0.943332i \(-0.607673\pi\)
0.943332 + 0.331850i \(0.107673\pi\)
\(212\) −883.572 301.712i −0.286245 0.0977438i
\(213\) 0 0
\(214\) −3183.87 + 5109.78i −1.01703 + 1.63223i
\(215\) 2131.29i 0.676058i
\(216\) 0 0
\(217\) 1115.60i 0.348994i
\(218\) −3007.49 1873.94i −0.934371 0.582199i
\(219\) 0 0
\(220\) −809.217 1648.43i −0.247988 0.505167i
\(221\) 2509.74 2509.74i 0.763906 0.763906i
\(222\) 0 0
\(223\) 974.233 0.292554 0.146277 0.989244i \(-0.453271\pi\)
0.146277 + 0.989244i \(0.453271\pi\)
\(224\) −531.051 + 1158.12i −0.158403 + 0.345448i
\(225\) 0 0
\(226\) 641.631 + 2763.08i 0.188852 + 0.813263i
\(227\) −3640.99 + 3640.99i −1.06459 + 1.06459i −0.0668201 + 0.997765i \(0.521285\pi\)
−0.997765 + 0.0668201i \(0.978715\pi\)
\(228\) 0 0
\(229\) −1480.42 1480.42i −0.427202 0.427202i 0.460472 0.887674i \(-0.347680\pi\)
−0.887674 + 0.460472i \(0.847680\pi\)
\(230\) 568.762 + 354.391i 0.163057 + 0.101599i
\(231\) 0 0
\(232\) 3017.33 + 305.433i 0.853868 + 0.0864338i
\(233\) 1623.75i 0.456545i 0.973597 + 0.228273i \(0.0733078\pi\)
−0.973597 + 0.228273i \(0.926692\pi\)
\(234\) 0 0
\(235\) 3021.08 + 3021.08i 0.838610 + 0.838610i
\(236\) −853.932 291.591i −0.235535 0.0804278i
\(237\) 0 0
\(238\) −1308.16 + 303.776i −0.356284 + 0.0827348i
\(239\) 6868.93 1.85905 0.929527 0.368753i \(-0.120215\pi\)
0.929527 + 0.368753i \(0.120215\pi\)
\(240\) 0 0
\(241\) −2767.43 −0.739693 −0.369847 0.929093i \(-0.620590\pi\)
−0.369847 + 0.929093i \(0.620590\pi\)
\(242\) −946.551 + 219.804i −0.251432 + 0.0583865i
\(243\) 0 0
\(244\) −484.032 + 1417.50i −0.126996 + 0.371910i
\(245\) 1515.81 + 1515.81i 0.395271 + 0.395271i
\(246\) 0 0
\(247\) 2770.61i 0.713725i
\(248\) −2267.75 2778.57i −0.580654 0.711449i
\(249\) 0 0
\(250\) −3448.19 2148.54i −0.872332 0.543543i
\(251\) 35.4718 + 35.4718i 0.00892016 + 0.00892016i 0.711553 0.702633i \(-0.247992\pi\)
−0.702633 + 0.711553i \(0.747992\pi\)
\(252\) 0 0
\(253\) −720.694 + 720.694i −0.179090 + 0.179090i
\(254\) −420.615 1811.31i −0.103905 0.447448i
\(255\) 0 0
\(256\) −1031.53 3963.98i −0.251838 0.967770i
\(257\) 3415.73 0.829056 0.414528 0.910037i \(-0.363947\pi\)
0.414528 + 0.910037i \(0.363947\pi\)
\(258\) 0 0
\(259\) 1354.89 1354.89i 0.325052 0.325052i
\(260\) −2759.98 + 1354.88i −0.658333 + 0.323178i
\(261\) 0 0
\(262\) 5801.65 + 3614.96i 1.36804 + 0.852416i
\(263\) 6780.71i 1.58980i 0.606742 + 0.794899i \(0.292476\pi\)
−0.606742 + 0.794899i \(0.707524\pi\)
\(264\) 0 0
\(265\) 852.528i 0.197624i
\(266\) −554.394 + 889.747i −0.127790 + 0.205090i
\(267\) 0 0
\(268\) 2179.55 6382.88i 0.496781 1.45484i
\(269\) 3834.98 3834.98i 0.869229 0.869229i −0.123158 0.992387i \(-0.539302\pi\)
0.992387 + 0.123158i \(0.0393022\pi\)
\(270\) 0 0
\(271\) 7031.32 1.57610 0.788048 0.615614i \(-0.211092\pi\)
0.788048 + 0.615614i \(0.211092\pi\)
\(272\) 2640.67 3415.79i 0.588655 0.761443i
\(273\) 0 0
\(274\) 8240.44 1913.56i 1.81687 0.421907i
\(275\) 1591.83 1591.83i 0.349058 0.349058i
\(276\) 0 0
\(277\) −3030.30 3030.30i −0.657304 0.657304i 0.297437 0.954741i \(-0.403868\pi\)
−0.954741 + 0.297437i \(0.903868\pi\)
\(278\) −1901.24 + 3051.30i −0.410176 + 0.658291i
\(279\) 0 0
\(280\) 1157.44 + 117.163i 0.247037 + 0.0250066i
\(281\) 4719.06i 1.00183i 0.865495 + 0.500917i \(0.167004\pi\)
−0.865495 + 0.500917i \(0.832996\pi\)
\(282\) 0 0
\(283\) −2696.52 2696.52i −0.566400 0.566400i 0.364718 0.931118i \(-0.381165\pi\)
−0.931118 + 0.364718i \(0.881165\pi\)
\(284\) 389.506 + 793.448i 0.0813836 + 0.165783i
\(285\) 0 0
\(286\) −1057.74 4554.99i −0.218690 0.941755i
\(287\) 1993.79 0.410070
\(288\) 0 0
\(289\) −362.038 −0.0736898
\(290\) −626.385 2697.42i −0.126836 0.546201i
\(291\) 0 0
\(292\) −1454.83 2963.58i −0.291567 0.593939i
\(293\) 865.453 + 865.453i 0.172561 + 0.172561i 0.788103 0.615543i \(-0.211063\pi\)
−0.615543 + 0.788103i \(0.711063\pi\)
\(294\) 0 0
\(295\) 823.929i 0.162614i
\(296\) −620.386 + 6128.71i −0.121822 + 1.20346i
\(297\) 0 0
\(298\) −4123.00 + 6616.99i −0.801473 + 1.28628i
\(299\) 1206.67 + 1206.67i 0.233389 + 0.233389i
\(300\) 0 0
\(301\) −1452.08 + 1452.08i −0.278061 + 0.278061i
\(302\) 1073.92 249.380i 0.204626 0.0475173i
\(303\) 0 0
\(304\) −427.842 3343.00i −0.0807184 0.630705i
\(305\) 1367.70 0.256767
\(306\) 0 0
\(307\) 703.076 703.076i 0.130706 0.130706i −0.638727 0.769433i \(-0.720539\pi\)
0.769433 + 0.638727i \(0.220539\pi\)
\(308\) −571.764 + 1674.43i −0.105777 + 0.309770i
\(309\) 0 0
\(310\) −1731.85 + 2779.44i −0.317298 + 0.509232i
\(311\) 6484.26i 1.18228i −0.806570 0.591139i \(-0.798678\pi\)
0.806570 0.591139i \(-0.201322\pi\)
\(312\) 0 0
\(313\) 7115.56i 1.28497i −0.766299 0.642484i \(-0.777904\pi\)
0.766299 0.642484i \(-0.222096\pi\)
\(314\) 1946.41 + 1212.79i 0.349816 + 0.217968i
\(315\) 0 0
\(316\) 8204.09 4027.41i 1.46049 0.716961i
\(317\) −5573.78 + 5573.78i −0.987554 + 0.987554i −0.999924 0.0123690i \(-0.996063\pi\)
0.0123690 + 0.999924i \(0.496063\pi\)
\(318\) 0 0
\(319\) 4211.69 0.739215
\(320\) −3120.95 + 2060.99i −0.545207 + 0.360040i
\(321\) 0 0
\(322\) −146.054 628.957i −0.0252772 0.108852i
\(323\) 2512.01 2512.01i 0.432730 0.432730i
\(324\) 0 0
\(325\) −2665.22 2665.22i −0.454891 0.454891i
\(326\) −321.783 200.500i −0.0546684 0.0340635i
\(327\) 0 0
\(328\) −4965.85 + 4052.91i −0.835955 + 0.682270i
\(329\) 4116.60i 0.689835i
\(330\) 0 0
\(331\) 5774.02 + 5774.02i 0.958819 + 0.958819i 0.999185 0.0403663i \(-0.0128525\pi\)
−0.0403663 + 0.999185i \(0.512852\pi\)
\(332\) 2398.83 7025.03i 0.396545 1.16129i
\(333\) 0 0
\(334\) −1093.05 + 253.824i −0.179069 + 0.0415827i
\(335\) −6158.62 −1.00442
\(336\) 0 0
\(337\) 2111.30 0.341275 0.170638 0.985334i \(-0.445417\pi\)
0.170638 + 0.985334i \(0.445417\pi\)
\(338\) −1573.47 + 365.385i −0.253212 + 0.0587999i
\(339\) 0 0
\(340\) −3730.78 1273.95i −0.595089 0.203204i
\(341\) −3521.91 3521.91i −0.559303 0.559303i
\(342\) 0 0
\(343\) 4479.63i 0.705182i
\(344\) 664.888 6568.34i 0.104210 1.02948i
\(345\) 0 0
\(346\) 655.331 + 408.332i 0.101823 + 0.0634452i
\(347\) 2375.98 + 2375.98i 0.367577 + 0.367577i 0.866593 0.499016i \(-0.166305\pi\)
−0.499016 + 0.866593i \(0.666305\pi\)
\(348\) 0 0
\(349\) −212.228 + 212.228i −0.0325511 + 0.0325511i −0.723195 0.690644i \(-0.757327\pi\)
0.690644 + 0.723195i \(0.257327\pi\)
\(350\) 322.595 + 1389.20i 0.0492670 + 0.212160i
\(351\) 0 0
\(352\) −1979.65 5332.67i −0.299760 0.807479i
\(353\) −8492.56 −1.28049 −0.640246 0.768170i \(-0.721167\pi\)
−0.640246 + 0.768170i \(0.721167\pi\)
\(354\) 0 0
\(355\) 570.695 570.695i 0.0853221 0.0853221i
\(356\) −1674.28 3410.61i −0.249260 0.507758i
\(357\) 0 0
\(358\) 390.180 + 243.118i 0.0576024 + 0.0358916i
\(359\) 2300.75i 0.338242i −0.985595 0.169121i \(-0.945907\pi\)
0.985595 0.169121i \(-0.0540929\pi\)
\(360\) 0 0
\(361\) 4085.88i 0.595696i
\(362\) 1617.03 2595.17i 0.234777 0.376793i
\(363\) 0 0
\(364\) 2803.51 + 957.311i 0.403692 + 0.137848i
\(365\) −2131.58 + 2131.58i −0.305677 + 0.305677i
\(366\) 0 0
\(367\) −4035.86 −0.574033 −0.287016 0.957926i \(-0.592663\pi\)
−0.287016 + 0.957926i \(0.592663\pi\)
\(368\) 1642.29 + 1269.62i 0.232637 + 0.179847i
\(369\) 0 0
\(370\) 5478.93 1272.29i 0.769827 0.178766i
\(371\) 580.839 580.839i 0.0812821 0.0812821i
\(372\) 0 0
\(373\) 1491.28 + 1491.28i 0.207013 + 0.207013i 0.802997 0.595984i \(-0.203238\pi\)
−0.595984 + 0.802997i \(0.703238\pi\)
\(374\) 3170.82 5088.84i 0.438393 0.703577i
\(375\) 0 0
\(376\) 8368.08 + 10253.0i 1.14774 + 1.40628i
\(377\) 7051.69i 0.963343i
\(378\) 0 0
\(379\) −4343.13 4343.13i −0.588632 0.588632i 0.348629 0.937261i \(-0.386647\pi\)
−0.937261 + 0.348629i \(0.886647\pi\)
\(380\) −2762.48 + 1356.11i −0.372926 + 0.183071i
\(381\) 0 0
\(382\) −1543.85 6648.33i −0.206780 0.890466i
\(383\) −13342.2 −1.78004 −0.890022 0.455917i \(-0.849311\pi\)
−0.890022 + 0.455917i \(0.849311\pi\)
\(384\) 0 0
\(385\) 1615.59 0.213866
\(386\) 3196.92 + 13767.0i 0.421551 + 1.81534i
\(387\) 0 0
\(388\) −9754.54 + 4788.53i −1.27632 + 0.626549i
\(389\) 3336.92 + 3336.92i 0.434932 + 0.434932i 0.890302 0.455370i \(-0.150493\pi\)
−0.455370 + 0.890302i \(0.650493\pi\)
\(390\) 0 0
\(391\) 2188.08i 0.283007i
\(392\) 4198.64 + 5144.40i 0.540978 + 0.662835i
\(393\) 0 0
\(394\) −2556.80 + 4103.41i −0.326928 + 0.524687i
\(395\) −5900.87 5900.87i −0.751658 0.751658i
\(396\) 0 0
\(397\) 3228.02 3228.02i 0.408085 0.408085i −0.472986 0.881070i \(-0.656824\pi\)
0.881070 + 0.472986i \(0.156824\pi\)
\(398\) 8321.08 1932.29i 1.04799 0.243359i
\(399\) 0 0
\(400\) −3627.40 2804.27i −0.453425 0.350533i
\(401\) 52.2560 0.00650759 0.00325379 0.999995i \(-0.498964\pi\)
0.00325379 + 0.999995i \(0.498964\pi\)
\(402\) 0 0
\(403\) −5896.78 + 5896.78i −0.728882 + 0.728882i
\(404\) 14402.3 + 4917.94i 1.77362 + 0.605636i
\(405\) 0 0
\(406\) −1411.03 + 2264.56i −0.172483 + 0.276818i
\(407\) 8554.66i 1.04186i
\(408\) 0 0
\(409\) 14516.7i 1.75502i 0.479558 + 0.877510i \(0.340797\pi\)
−0.479558 + 0.877510i \(0.659203\pi\)
\(410\) 4967.41 + 3095.16i 0.598349 + 0.372827i
\(411\) 0 0
\(412\) 3799.37 + 7739.54i 0.454324 + 0.925485i
\(413\) 561.354 561.354i 0.0668824 0.0668824i
\(414\) 0 0
\(415\) −6778.20 −0.801757
\(416\) −8928.56 + 3314.55i −1.05230 + 0.390647i
\(417\) 0 0
\(418\) −1058.70 4559.11i −0.123882 0.533477i
\(419\) −409.663 + 409.663i −0.0477646 + 0.0477646i −0.730586 0.682821i \(-0.760753\pi\)
0.682821 + 0.730586i \(0.260753\pi\)
\(420\) 0 0
\(421\) 4465.76 + 4465.76i 0.516978 + 0.516978i 0.916656 0.399678i \(-0.130878\pi\)
−0.399678 + 0.916656i \(0.630878\pi\)
\(422\) −6362.60 3964.49i −0.733949 0.457318i
\(423\) 0 0
\(424\) −265.959 + 2627.38i −0.0304626 + 0.300936i
\(425\) 4832.90i 0.551600i
\(426\) 0 0
\(427\) −931.830 931.830i −0.105607 0.105607i
\(428\) 16115.0 + 5502.78i 1.81998 + 0.621465i
\(429\) 0 0
\(430\) −5871.95 + 1363.56i −0.658536 + 0.152922i
\(431\) −2298.21 −0.256846 −0.128423 0.991719i \(-0.540992\pi\)
−0.128423 + 0.991719i \(0.540992\pi\)
\(432\) 0 0
\(433\) −4951.41 −0.549538 −0.274769 0.961510i \(-0.588601\pi\)
−0.274769 + 0.961510i \(0.588601\pi\)
\(434\) 3073.61 713.740i 0.339949 0.0789416i
\(435\) 0 0
\(436\) −3238.80 + 9484.91i −0.355758 + 1.04185i
\(437\) 1207.76 + 1207.76i 0.132208 + 0.132208i
\(438\) 0 0
\(439\) 2937.90i 0.319404i 0.987165 + 0.159702i \(0.0510533\pi\)
−0.987165 + 0.159702i \(0.948947\pi\)
\(440\) −4023.88 + 3284.12i −0.435980 + 0.355828i
\(441\) 0 0
\(442\) −8520.31 5308.94i −0.916900 0.571313i
\(443\) 4175.48 + 4175.48i 0.447818 + 0.447818i 0.894628 0.446811i \(-0.147440\pi\)
−0.446811 + 0.894628i \(0.647440\pi\)
\(444\) 0 0
\(445\) −2453.12 + 2453.12i −0.261323 + 0.261323i
\(446\) −623.297 2684.13i −0.0661748 0.284971i
\(447\) 0 0
\(448\) 3530.52 + 722.163i 0.372325 + 0.0761585i
\(449\) −6835.79 −0.718487 −0.359244 0.933244i \(-0.616965\pi\)
−0.359244 + 0.933244i \(0.616965\pi\)
\(450\) 0 0
\(451\) −6294.35 + 6294.35i −0.657183 + 0.657183i
\(452\) 7202.11 3535.54i 0.749466 0.367915i
\(453\) 0 0
\(454\) 12360.8 + 7701.91i 1.27780 + 0.796187i
\(455\) 2705.01i 0.278709i
\(456\) 0 0
\(457\) 11521.0i 1.17928i −0.807668 0.589638i \(-0.799271\pi\)
0.807668 0.589638i \(-0.200729\pi\)
\(458\) −3131.59 + 5025.89i −0.319497 + 0.512761i
\(459\) 0 0
\(460\) 612.506 1793.74i 0.0620831 0.181812i
\(461\) −4875.43 + 4875.43i −0.492563 + 0.492563i −0.909113 0.416550i \(-0.863239\pi\)
0.416550 + 0.909113i \(0.363239\pi\)
\(462\) 0 0
\(463\) −13485.6 −1.35362 −0.676812 0.736156i \(-0.736639\pi\)
−0.676812 + 0.736156i \(0.736639\pi\)
\(464\) −1088.93 8508.51i −0.108949 0.851288i
\(465\) 0 0
\(466\) 4473.61 1038.84i 0.444713 0.103269i
\(467\) 6043.84 6043.84i 0.598877 0.598877i −0.341137 0.940014i \(-0.610812\pi\)
0.940014 + 0.341137i \(0.110812\pi\)
\(468\) 0 0
\(469\) 4195.95 + 4195.95i 0.413115 + 0.413115i
\(470\) 6390.59 10256.3i 0.627183 1.00657i
\(471\) 0 0
\(472\) −257.037 + 2539.24i −0.0250659 + 0.247623i
\(473\) 9168.32i 0.891246i
\(474\) 0 0
\(475\) −2667.63 2667.63i −0.257683 0.257683i
\(476\) 1673.88 + 3409.79i 0.161181 + 0.328335i
\(477\) 0 0
\(478\) −4394.62 18924.7i −0.420513 1.81087i
\(479\) −12502.9 −1.19263 −0.596315 0.802750i \(-0.703369\pi\)
−0.596315 + 0.802750i \(0.703369\pi\)
\(480\) 0 0
\(481\) 14323.2 1.35776
\(482\) 1770.56 + 7624.61i 0.167317 + 0.720522i
\(483\) 0 0
\(484\) 1211.17 + 2467.23i 0.113747 + 0.231709i
\(485\) 7016.05 + 7016.05i 0.656871 + 0.656871i
\(486\) 0 0
\(487\) 10204.1i 0.949469i 0.880129 + 0.474734i \(0.157456\pi\)
−0.880129 + 0.474734i \(0.842544\pi\)
\(488\) 4215.05 + 426.674i 0.390997 + 0.0395791i
\(489\) 0 0
\(490\) 3206.44 5146.02i 0.295617 0.474435i
\(491\) 3102.01 + 3102.01i 0.285116 + 0.285116i 0.835145 0.550030i \(-0.185384\pi\)
−0.550030 + 0.835145i \(0.685384\pi\)
\(492\) 0 0
\(493\) 6393.49 6393.49i 0.584074 0.584074i
\(494\) −7633.37 + 1772.59i −0.695226 + 0.161442i
\(495\) 0 0
\(496\) −6204.42 + 8025.60i −0.561667 + 0.726532i
\(497\) −777.645 −0.0701854
\(498\) 0 0
\(499\) 13549.5 13549.5i 1.21555 1.21555i 0.246379 0.969174i \(-0.420759\pi\)
0.969174 0.246379i \(-0.0792407\pi\)
\(500\) −3713.40 + 10874.8i −0.332136 + 0.972670i
\(501\) 0 0
\(502\) 75.0348 120.423i 0.00667125 0.0107067i
\(503\) 3300.94i 0.292607i 0.989240 + 0.146304i \(0.0467377\pi\)
−0.989240 + 0.146304i \(0.953262\pi\)
\(504\) 0 0
\(505\) 13896.3i 1.22451i
\(506\) 2446.69 + 1524.51i 0.214957 + 0.133938i
\(507\) 0 0
\(508\) −4721.28 + 2317.69i −0.412348 + 0.202423i
\(509\) −10081.2 + 10081.2i −0.877880 + 0.877880i −0.993315 0.115435i \(-0.963174\pi\)
0.115435 + 0.993315i \(0.463174\pi\)
\(510\) 0 0
\(511\) 2904.55 0.251448
\(512\) −10261.3 + 5378.07i −0.885721 + 0.464217i
\(513\) 0 0
\(514\) −2185.32 9410.74i −0.187530 0.807568i
\(515\) 5566.74 5566.74i 0.476311 0.476311i
\(516\) 0 0
\(517\) 12996.0 + 12996.0i 1.10554 + 1.10554i
\(518\) −4599.70 2866.04i −0.390153 0.243101i
\(519\) 0 0
\(520\) 5498.65 + 6737.24i 0.463715 + 0.568168i
\(521\) 22396.4i 1.88331i −0.336579 0.941655i \(-0.609270\pi\)
0.336579 0.941655i \(-0.390730\pi\)
\(522\) 0 0
\(523\) −10114.9 10114.9i −0.845688 0.845688i 0.143904 0.989592i \(-0.454034\pi\)
−0.989592 + 0.143904i \(0.954034\pi\)
\(524\) 6247.86 18297.0i 0.520876 1.52540i
\(525\) 0 0
\(526\) 18681.7 4338.18i 1.54859 0.359608i
\(527\) −10692.8 −0.883841
\(528\) 0 0
\(529\) 11115.0 0.913535
\(530\) 2348.82 545.432i 0.192502 0.0447020i
\(531\) 0 0
\(532\) 2806.05 + 958.178i 0.228680 + 0.0780870i
\(533\) 10538.7 + 10538.7i 0.856439 + 0.856439i
\(534\) 0 0
\(535\) 15548.8i 1.25651i
\(536\) −18980.0 1921.28i −1.52950 0.154826i
\(537\) 0 0
\(538\) −13019.4 8112.27i −1.04332 0.650083i
\(539\) 6520.66 + 6520.66i 0.521085 + 0.521085i
\(540\) 0 0
\(541\) 10004.1 10004.1i 0.795024 0.795024i −0.187282 0.982306i \(-0.559968\pi\)
0.982306 + 0.187282i \(0.0599679\pi\)
\(542\) −4498.51 19372.1i −0.356508 1.53525i
\(543\) 0 0
\(544\) −11100.3 5090.01i −0.874859 0.401162i
\(545\) 9151.65 0.719291
\(546\) 0 0
\(547\) −11671.6 + 11671.6i −0.912325 + 0.912325i −0.996455 0.0841298i \(-0.973189\pi\)
0.0841298 + 0.996455i \(0.473189\pi\)
\(548\) −10544.2 21479.1i −0.821943 1.67435i
\(549\) 0 0
\(550\) −5404.10 3367.25i −0.418967 0.261055i
\(551\) 7058.07i 0.545706i
\(552\) 0 0
\(553\) 8040.69i 0.618309i
\(554\) −6410.11 + 10287.6i −0.491588 + 0.788949i
\(555\) 0 0
\(556\) 9623.08 + 3285.98i 0.734010 + 0.250641i
\(557\) 117.575 117.575i 0.00894401 0.00894401i −0.702621 0.711565i \(-0.747987\pi\)
0.711565 + 0.702621i \(0.247987\pi\)
\(558\) 0 0
\(559\) −15350.6 −1.16147
\(560\) −417.711 3263.84i −0.0315205 0.246290i
\(561\) 0 0
\(562\) 13001.6 3019.17i 0.975869 0.226612i
\(563\) 6510.39 6510.39i 0.487354 0.487354i −0.420116 0.907470i \(-0.638011\pi\)
0.907470 + 0.420116i \(0.138011\pi\)
\(564\) 0 0
\(565\) −5180.19 5180.19i −0.385721 0.385721i
\(566\) −5704.04 + 9154.41i −0.423602 + 0.679838i
\(567\) 0 0
\(568\) 1936.84 1580.77i 0.143078 0.116774i
\(569\) 1080.96i 0.0796421i −0.999207 0.0398210i \(-0.987321\pi\)
0.999207 0.0398210i \(-0.0126788\pi\)
\(570\) 0 0
\(571\) −6064.11 6064.11i −0.444440 0.444440i 0.449061 0.893501i \(-0.351758\pi\)
−0.893501 + 0.449061i \(0.851758\pi\)
\(572\) −11872.8 + 5828.40i −0.867879 + 0.426045i
\(573\) 0 0
\(574\) −1275.59 5493.14i −0.0927566 0.399441i
\(575\) 2323.63 0.168525
\(576\) 0 0
\(577\) 75.0142 0.00541227 0.00270614 0.999996i \(-0.499139\pi\)
0.00270614 + 0.999996i \(0.499139\pi\)
\(578\) 231.625 + 997.458i 0.0166684 + 0.0717799i
\(579\) 0 0
\(580\) −7030.97 + 3451.53i −0.503354 + 0.247098i
\(581\) 4618.08 + 4618.08i 0.329760 + 0.329760i
\(582\) 0 0
\(583\) 3667.38i 0.260527i
\(584\) −7234.24 + 5904.27i −0.512594 + 0.418357i
\(585\) 0 0
\(586\) 1830.72 2938.13i 0.129055 0.207121i
\(587\) 15487.5 + 15487.5i 1.08899 + 1.08899i 0.995633 + 0.0933554i \(0.0297593\pi\)
0.0933554 + 0.995633i \(0.470241\pi\)
\(588\) 0 0
\(589\) −5902.12 + 5902.12i −0.412891 + 0.412891i
\(590\) 2270.02 527.135i 0.158399 0.0367827i
\(591\) 0 0
\(592\) 17282.2 2211.80i 1.19982 0.153555i
\(593\) −6675.53 −0.462278 −0.231139 0.972921i \(-0.574245\pi\)
−0.231139 + 0.972921i \(0.574245\pi\)
\(594\) 0 0
\(595\) 2452.53 2452.53i 0.168981 0.168981i
\(596\) 20868.4 + 7125.91i 1.43423 + 0.489746i
\(597\) 0 0
\(598\) 2552.51 4096.52i 0.174548 0.280132i
\(599\) 4338.77i 0.295955i 0.988991 + 0.147978i \(0.0472763\pi\)
−0.988991 + 0.147978i \(0.952724\pi\)
\(600\) 0 0
\(601\) 4339.37i 0.294520i 0.989098 + 0.147260i \(0.0470455\pi\)
−0.989098 + 0.147260i \(0.952955\pi\)
\(602\) 4929.65 + 3071.63i 0.333750 + 0.207957i
\(603\) 0 0
\(604\) −1374.14 2799.22i −0.0925714 0.188574i
\(605\) 1774.58 1774.58i 0.119251 0.119251i
\(606\) 0 0
\(607\) 19248.1 1.28708 0.643539 0.765414i \(-0.277466\pi\)
0.643539 + 0.765414i \(0.277466\pi\)
\(608\) −8936.64 + 3317.55i −0.596100 + 0.221290i
\(609\) 0 0
\(610\) −875.027 3768.16i −0.0580800 0.250112i
\(611\) 21759.4 21759.4i 1.44074 1.44074i
\(612\) 0 0
\(613\) −9056.59 9056.59i −0.596724 0.596724i 0.342715 0.939439i \(-0.388653\pi\)
−0.939439 + 0.342715i \(0.888653\pi\)
\(614\) −2386.87 1487.24i −0.156883 0.0977528i
\(615\) 0 0
\(616\) 4979.05 + 504.010i 0.325668 + 0.0329661i
\(617\) 12587.6i 0.821325i 0.911787 + 0.410662i \(0.134703\pi\)
−0.911787 + 0.410662i \(0.865297\pi\)
\(618\) 0 0
\(619\) 11044.3 + 11044.3i 0.717136 + 0.717136i 0.968018 0.250881i \(-0.0807204\pi\)
−0.250881 + 0.968018i \(0.580720\pi\)
\(620\) 8765.71 + 2993.21i 0.567805 + 0.193888i
\(621\) 0 0
\(622\) −17864.9 + 4148.51i −1.15164 + 0.267428i
\(623\) 3342.68 0.214963
\(624\) 0 0
\(625\) 1537.68 0.0984117
\(626\) −19604.2 + 4552.41i −1.25166 + 0.290656i
\(627\) 0 0
\(628\) 2096.11 6138.51i 0.133191 0.390053i
\(629\) 12986.3 + 12986.3i 0.823206 + 0.823206i
\(630\) 0 0
\(631\) 7554.44i 0.476605i −0.971191 0.238302i \(-0.923409\pi\)
0.971191 0.238302i \(-0.0765909\pi\)
\(632\) −16344.8 20026.6i −1.02874 1.26047i
\(633\) 0 0
\(634\) 18922.4 + 11790.4i 1.18534 + 0.738577i
\(635\) 3395.83 + 3395.83i 0.212219 + 0.212219i
\(636\) 0 0
\(637\) 10917.6 10917.6i 0.679077 0.679077i
\(638\) −2694.57 11603.7i −0.167208 0.720055i
\(639\) 0 0
\(640\) 7674.99 + 7279.99i 0.474033 + 0.449636i
\(641\) 18511.6 1.14066 0.570330 0.821416i \(-0.306815\pi\)
0.570330 + 0.821416i \(0.306815\pi\)
\(642\) 0 0
\(643\) −7895.63 + 7895.63i −0.484251 + 0.484251i −0.906486 0.422236i \(-0.861245\pi\)
0.422236 + 0.906486i \(0.361245\pi\)
\(644\) −1639.41 + 804.791i −0.100313 + 0.0492441i
\(645\) 0 0
\(646\) −8528.02 5313.74i −0.519397 0.323632i
\(647\) 25087.9i 1.52443i 0.647323 + 0.762216i \(0.275888\pi\)
−0.647323 + 0.762216i \(0.724112\pi\)
\(648\) 0 0
\(649\) 3544.36i 0.214373i
\(650\) −5637.83 + 9048.15i −0.340206 + 0.545997i
\(651\) 0 0
\(652\) −346.531 + 1014.83i −0.0208148 + 0.0609565i
\(653\) −3966.20 + 3966.20i −0.237687 + 0.237687i −0.815892 0.578205i \(-0.803753\pi\)
0.578205 + 0.815892i \(0.303753\pi\)
\(654\) 0 0
\(655\) −17654.1 −1.05314
\(656\) 14343.3 + 11088.5i 0.853678 + 0.659960i
\(657\) 0 0
\(658\) −11341.7 + 2633.73i −0.671955 + 0.156039i
\(659\) −8121.04 + 8121.04i −0.480047 + 0.480047i −0.905147 0.425100i \(-0.860239\pi\)
0.425100 + 0.905147i \(0.360239\pi\)
\(660\) 0 0
\(661\) 6417.92 + 6417.92i 0.377652 + 0.377652i 0.870255 0.492602i \(-0.163954\pi\)
−0.492602 + 0.870255i \(0.663954\pi\)
\(662\) 12214.0 19602.2i 0.717086 1.15085i
\(663\) 0 0
\(664\) −20889.5 2114.57i −1.22089 0.123586i
\(665\) 2707.46i 0.157881i
\(666\) 0 0
\(667\) 3073.95 + 3073.95i 0.178447 + 0.178447i
\(668\) 1398.63 + 2849.09i 0.0810098 + 0.165022i
\(669\) 0 0
\(670\) 3940.17 + 16967.7i 0.227197 + 0.978388i
\(671\) 5883.52 0.338496
\(672\) 0 0
\(673\) −4207.12 −0.240969 −0.120485 0.992715i \(-0.538445\pi\)
−0.120485 + 0.992715i \(0.538445\pi\)
\(674\) −1350.77 5816.88i −0.0771955 0.332430i
\(675\) 0 0
\(676\) 2013.36 + 4101.34i 0.114552 + 0.233349i
\(677\) −2686.58 2686.58i −0.152517 0.152517i 0.626724 0.779241i \(-0.284395\pi\)
−0.779241 + 0.626724i \(0.784395\pi\)
\(678\) 0 0
\(679\) 9560.26i 0.540338i
\(680\) −1122.98 + 11093.8i −0.0633301 + 0.625629i
\(681\) 0 0
\(682\) −7450.03 + 11956.5i −0.418294 + 0.671319i
\(683\) −1806.99 1806.99i −0.101234 0.101234i 0.654676 0.755910i \(-0.272805\pi\)
−0.755910 + 0.654676i \(0.772805\pi\)
\(684\) 0 0
\(685\) −15449.1 + 15449.1i −0.861721 + 0.861721i
\(686\) −12341.9 + 2865.99i −0.686904 + 0.159510i
\(687\) 0 0
\(688\) −18521.9 + 2370.46i −1.02637 + 0.131356i
\(689\) 6140.34 0.339519
\(690\) 0 0
\(691\) 3964.38 3964.38i 0.218252 0.218252i −0.589509 0.807761i \(-0.700679\pi\)
0.807761 + 0.589509i \(0.200679\pi\)
\(692\) 705.733 2066.76i 0.0387687 0.113535i
\(693\) 0 0
\(694\) 5025.99 8066.20i 0.274905 0.441194i
\(695\) 9284.97i 0.506761i
\(696\) 0 0
\(697\) 19110.1i 1.03852i
\(698\) 720.494 + 448.934i 0.0390704 + 0.0243444i
\(699\) 0 0
\(700\) 3621.03 1777.58i 0.195517 0.0959801i
\(701\) 20882.0 20882.0i 1.12511 1.12511i 0.134149 0.990961i \(-0.457170\pi\)
0.990961 0.134149i \(-0.0428300\pi\)
\(702\) 0 0
\(703\) 14336.1 0.769129
\(704\) −13425.6 + 8865.91i −0.718745 + 0.474640i
\(705\) 0 0
\(706\) 5433.39 + 23398.0i 0.289644 + 1.24730i
\(707\) −9467.74 + 9467.74i −0.503637 + 0.503637i
\(708\) 0 0
\(709\) −8482.93 8482.93i −0.449342 0.449342i 0.445794 0.895136i \(-0.352921\pi\)
−0.895136 + 0.445794i \(0.852921\pi\)
\(710\) −1937.45 1207.21i −0.102410 0.0638111i
\(711\) 0 0
\(712\) −8325.46 + 6794.89i −0.438216 + 0.357653i
\(713\) 5141.02i 0.270032i
\(714\) 0 0
\(715\) 8539.63 + 8539.63i 0.446663 + 0.446663i
\(716\) 420.190 1230.54i 0.0219319 0.0642281i
\(717\) 0 0
\(718\) −6338.84 + 1471.98i −0.329476 + 0.0765094i
\(719\) −23765.0 −1.23266 −0.616332 0.787486i \(-0.711382\pi\)
−0.616332 + 0.787486i \(0.711382\pi\)
\(720\) 0 0
\(721\) −7585.40 −0.391810
\(722\) 11257.1 2614.07i 0.580256 0.134745i
\(723\) 0 0
\(724\) −8184.54 2794.77i −0.420133 0.143462i
\(725\) −6789.58 6789.58i −0.347805 0.347805i
\(726\) 0 0
\(727\) 27979.3i 1.42737i 0.700468 + 0.713684i \(0.252975\pi\)
−0.700468 + 0.713684i \(0.747025\pi\)
\(728\) 843.870 8336.48i 0.0429614 0.424410i
\(729\) 0 0
\(730\) 7236.51 + 4509.02i 0.366898 + 0.228611i
\(731\) −13917.8 13917.8i −0.704198 0.704198i
\(732\) 0 0
\(733\) −17513.6 + 17513.6i −0.882509 + 0.882509i −0.993789 0.111280i \(-0.964505\pi\)
0.111280 + 0.993789i \(0.464505\pi\)
\(734\) 2582.07 + 11119.3i 0.129845 + 0.559155i
\(735\) 0 0
\(736\) 2447.25 5336.99i 0.122563 0.267288i
\(737\) −26493.0 −1.32413
\(738\) 0 0
\(739\) −9683.07 + 9683.07i −0.481999 + 0.481999i −0.905770 0.423770i \(-0.860706\pi\)
0.423770 + 0.905770i \(0.360706\pi\)
\(740\) −7010.64 14281.1i −0.348265 0.709438i
\(741\) 0 0
\(742\) −1971.89 1228.67i −0.0975612 0.0607896i
\(743\) 19107.6i 0.943460i −0.881743 0.471730i \(-0.843630\pi\)
0.881743 0.471730i \(-0.156370\pi\)
\(744\) 0 0
\(745\) 20135.2i 0.990197i
\(746\) 3154.57 5062.76i 0.154822 0.248473i
\(747\) 0 0
\(748\) −16049.0 5480.23i −0.784504 0.267884i
\(749\) −10593.6 + 10593.6i −0.516800 + 0.516800i
\(750\) 0 0
\(751\) 10823.0 0.525883 0.262942 0.964812i \(-0.415307\pi\)
0.262942 + 0.964812i \(0.415307\pi\)
\(752\) 22894.6 29614.8i 1.11021 1.43609i
\(753\) 0 0
\(754\) −19428.2 + 4511.54i −0.938375 + 0.217906i
\(755\) −2013.36 + 2013.36i −0.0970514 + 0.0970514i
\(756\) 0 0
\(757\) −12578.0 12578.0i −0.603904 0.603904i 0.337442 0.941346i \(-0.390438\pi\)
−0.941346 + 0.337442i \(0.890438\pi\)
\(758\) −9187.17 + 14744.5i −0.440228 + 0.706522i
\(759\) 0 0
\(760\) 5503.62 + 6743.34i 0.262681 + 0.321851i
\(761\) 30860.2i 1.47002i −0.678058 0.735009i \(-0.737178\pi\)
0.678058 0.735009i \(-0.262822\pi\)
\(762\) 0 0
\(763\) −6235.15 6235.15i −0.295842 0.295842i
\(764\) −17329.2 + 8506.96i −0.820613 + 0.402842i
\(765\) 0 0
\(766\) 8536.13 + 36759.5i 0.402641 + 1.73391i
\(767\) 5934.36 0.279371
\(768\) 0 0
\(769\) −19357.6 −0.907741 −0.453870 0.891068i \(-0.649957\pi\)
−0.453870 + 0.891068i \(0.649957\pi\)
\(770\) −1033.63 4451.15i −0.0483758 0.208323i
\(771\) 0 0
\(772\) 35884.4 17615.8i 1.67294 0.821250i
\(773\) −2959.96 2959.96i −0.137726 0.137726i 0.634882 0.772609i \(-0.281049\pi\)
−0.772609 + 0.634882i \(0.781049\pi\)
\(774\) 0 0
\(775\) 11355.2i 0.526311i
\(776\) 19433.8 + 23811.3i 0.899009 + 1.10151i
\(777\) 0 0
\(778\) 7058.71 11328.5i 0.325279 0.522040i
\(779\) 10548.2 + 10548.2i 0.485148 + 0.485148i
\(780\) 0 0
\(781\) 2455.00 2455.00i 0.112480 0.112480i
\(782\) 6028.41 1399.89i 0.275672 0.0640154i
\(783\) 0 0
\(784\) 11487.2 14859.0i 0.523288 0.676888i
\(785\) −5922.83 −0.269293
\(786\) 0 0
\(787\) 21346.3 21346.3i 0.966853 0.966853i −0.0326147 0.999468i \(-0.510383\pi\)
0.999468 + 0.0326147i \(0.0103834\pi\)
\(788\) 12941.2 + 4419.00i 0.585038 + 0.199772i
\(789\) 0 0
\(790\) −12482.3 + 20032.9i −0.562154 + 0.902199i
\(791\) 7058.67i 0.317291i
\(792\) 0 0
\(793\) 9850.84i 0.441127i
\(794\) −10958.8 6828.34i −0.489815 0.305200i
\(795\) 0 0
\(796\) −10647.4 21689.3i −0.474103 0.965776i
\(797\) −22434.9 + 22434.9i −0.997097 + 0.997097i −0.999996 0.00289926i \(-0.999077\pi\)
0.00289926 + 0.999996i \(0.499077\pi\)
\(798\) 0 0
\(799\) 39456.7 1.74703
\(800\) −5405.34 + 11788.0i −0.238885 + 0.520962i
\(801\) 0 0
\(802\) −33.4325 143.972i −0.00147200 0.00633892i
\(803\) −9169.59 + 9169.59i −0.402974 + 0.402974i
\(804\) 0 0
\(805\) 1179.16 + 1179.16i 0.0516273 + 0.0516273i
\(806\) 20019.0 + 12473.7i 0.874862 + 0.545120i
\(807\) 0 0
\(808\) 4335.17 42826.5i 0.188751 1.86464i
\(809\) 36085.5i 1.56823i 0.620616 + 0.784115i \(0.286883\pi\)
−0.620616 + 0.784115i \(0.713117\pi\)
\(810\) 0 0
\(811\) 23874.2 + 23874.2i 1.03371 + 1.03371i 0.999412 + 0.0342973i \(0.0109193\pi\)
0.0342973 + 0.999412i \(0.489081\pi\)
\(812\) 7141.87 + 2438.73i 0.308658 + 0.105397i
\(813\) 0 0
\(814\) 23569.1 5473.12i 1.01486 0.235667i
\(815\) 979.170 0.0420845
\(816\) 0 0
\(817\) −15364.5 −0.657939
\(818\) 39995.2 9287.51i 1.70953 0.396981i
\(819\) 0 0
\(820\) 5349.46 15666.0i 0.227819 0.667173i
\(821\) −17774.8 17774.8i −0.755596 0.755596i 0.219922 0.975518i \(-0.429420\pi\)
−0.975518 + 0.219922i \(0.929420\pi\)
\(822\) 0 0
\(823\) 44331.9i 1.87766i −0.344384 0.938829i \(-0.611912\pi\)
0.344384 0.938829i \(-0.388088\pi\)
\(824\) 18892.6 15419.3i 0.798731 0.651890i
\(825\) 0 0
\(826\) −1905.74 1187.45i −0.0802775 0.0500203i
\(827\) −29773.5 29773.5i −1.25191 1.25191i −0.954864 0.297044i \(-0.903999\pi\)
−0.297044 0.954864i \(-0.596001\pi\)
\(828\) 0 0
\(829\) −9794.56 + 9794.56i −0.410349 + 0.410349i −0.881860 0.471511i \(-0.843709\pi\)
0.471511 + 0.881860i \(0.343709\pi\)
\(830\) 4336.57 + 18674.8i 0.181355 + 0.780976i
\(831\) 0 0
\(832\) 14844.3 + 22478.7i 0.618550 + 0.936667i
\(833\) 19797.2 0.823447
\(834\) 0 0
\(835\) 2049.24 2049.24i 0.0849303 0.0849303i
\(836\) −11883.6 + 5833.67i −0.491628 + 0.241342i
\(837\) 0 0
\(838\) 1390.77 + 866.575i 0.0573308 + 0.0357224i
\(839\) 20248.1i 0.833183i −0.909094 0.416591i \(-0.863225\pi\)
0.909094 0.416591i \(-0.136775\pi\)
\(840\) 0 0
\(841\) 6425.00i 0.263439i
\(842\) 9446.59 15160.8i 0.386640 0.620518i
\(843\) 0 0
\(844\) −6851.95 + 20066.1i −0.279448 + 0.818370i
\(845\) 2949.93 2949.93i 0.120095 0.120095i
\(846\) 0 0
\(847\) −2418.10 −0.0980953
\(848\) 7408.89 948.199i 0.300026 0.0383977i
\(849\) 0 0
\(850\) −13315.2 + 3092.00i −0.537304 + 0.124770i
\(851\) −6243.72 + 6243.72i −0.251507 + 0.251507i
\(852\) 0 0
\(853\) −10983.4 10983.4i −0.440873 0.440873i 0.451433 0.892305i \(-0.350913\pi\)
−0.892305 + 0.451433i \(0.850913\pi\)
\(854\) −1971.13 + 3163.47i −0.0789822 + 0.126758i
\(855\) 0 0
\(856\) 4850.70 47919.4i 0.193684 1.91338i
\(857\) 26782.3i 1.06752i 0.845635 + 0.533761i \(0.179222\pi\)
−0.845635 + 0.533761i \(0.820778\pi\)
\(858\) 0 0
\(859\) −26073.4 26073.4i −1.03564 1.03564i −0.999341 0.0362968i \(-0.988444\pi\)
−0.0362968 0.999341i \(-0.511556\pi\)
\(860\) 7513.53 + 15305.5i 0.297918 + 0.606877i
\(861\) 0 0
\(862\) 1470.35 + 6331.83i 0.0580979 + 0.250189i
\(863\) 30417.7 1.19980 0.599902 0.800073i \(-0.295206\pi\)
0.599902 + 0.800073i \(0.295206\pi\)
\(864\) 0 0
\(865\) −1994.14 −0.0783848
\(866\) 3167.83 + 13641.7i 0.124304 + 0.535294i
\(867\) 0 0
\(868\) −3932.88 8011.52i −0.153791 0.313282i
\(869\) −25384.2 25384.2i −0.990910 0.990910i
\(870\) 0 0
\(871\) 44357.5i 1.72560i
\(872\) 28204.2 + 2855.00i 1.09531 + 0.110874i
\(873\) 0 0
\(874\) 2554.82 4100.22i 0.0988764 0.158687i
\(875\) −7148.82 7148.82i −0.276199 0.276199i
\(876\) 0 0
\(877\) 11483.1 11483.1i 0.442142 0.442142i −0.450590 0.892731i \(-0.648786\pi\)
0.892731 + 0.450590i \(0.148786\pi\)
\(878\) 8094.26 1879.61i 0.311125 0.0722482i
\(879\) 0 0
\(880\) 11622.6 + 8985.15i 0.445223 + 0.344193i
\(881\) −34502.7 −1.31944 −0.659720 0.751511i \(-0.729325\pi\)
−0.659720 + 0.751511i \(0.729325\pi\)
\(882\) 0 0
\(883\) 35667.9 35667.9i 1.35937 1.35937i 0.484667 0.874699i \(-0.338941\pi\)
0.874699 0.484667i \(-0.161059\pi\)
\(884\) −9175.61 + 26871.0i −0.349106 + 1.02236i
\(885\) 0 0
\(886\) 8832.55 14175.4i 0.334916 0.537506i
\(887\) 4004.04i 0.151570i 0.997124 + 0.0757850i \(0.0241463\pi\)
−0.997124 + 0.0757850i \(0.975854\pi\)
\(888\) 0 0
\(889\) 4627.25i 0.174570i
\(890\) 8328.08 + 5189.17i 0.313661 + 0.195440i
\(891\) 0 0
\(892\) −6996.32 + 3434.51i −0.262617 + 0.128919i
\(893\) 21779.0 21779.0i 0.816134 0.816134i
\(894\) 0 0
\(895\) −1187.30 −0.0443431
\(896\) −269.122 10189.0i −0.0100343 0.379902i
\(897\) 0 0
\(898\) 4373.41 + 18833.4i 0.162520 + 0.699865i
\(899\) −15021.9 + 15021.9i −0.557295 + 0.557295i
\(900\) 0 0
\(901\) 5567.21 + 5567.21i 0.205850 + 0.205850i
\(902\) 21368.7 + 13314.7i 0.788802 + 0.491497i
\(903\) 0 0
\(904\) −14348.6 17580.7i −0.527907 0.646820i
\(905\) 7896.98i 0.290060i
\(906\) 0 0
\(907\) 26847.6 + 26847.6i 0.982865 + 0.982865i 0.999856 0.0169907i \(-0.00540855\pi\)
−0.0169907 + 0.999856i \(0.505409\pi\)
\(908\) 13311.5 38983.0i 0.486516 1.42478i
\(909\) 0 0
\(910\) −7452.62 + 1730.62i −0.271486 + 0.0630433i
\(911\) 15303.2 0.556552 0.278276 0.960501i \(-0.410237\pi\)
0.278276 + 0.960501i \(0.410237\pi\)
\(912\) 0 0
\(913\) −29158.3 −1.05695
\(914\) −31741.7 + 7370.92i −1.14871 + 0.266749i
\(915\) 0 0
\(916\) 15850.5 + 5412.44i 0.571740 + 0.195231i
\(917\) 12028.0 + 12028.0i 0.433152 + 0.433152i
\(918\) 0 0
\(919\) 43252.1i 1.55251i −0.630421 0.776254i \(-0.717118\pi\)
0.630421 0.776254i \(-0.282882\pi\)
\(920\) −5333.84 539.924i −0.191143 0.0193487i
\(921\) 0 0
\(922\) 16551.6 + 10313.2i 0.591213 + 0.368380i
\(923\) −4110.44 4110.44i −0.146584 0.146584i
\(924\) 0 0
\(925\) 13790.8 13790.8i 0.490203 0.490203i
\(926\) 8627.83 + 37154.4i 0.306186 + 1.31854i
\(927\) 0 0
\(928\) −22745.3 + 8443.72i −0.804580 + 0.298684i
\(929\) −13328.9 −0.470729 −0.235365 0.971907i \(-0.575628\pi\)
−0.235365 + 0.971907i \(0.575628\pi\)
\(930\) 0 0
\(931\) 10927.5 10927.5i 0.384677 0.384677i
\(932\) −5724.27 11660.7i −0.201185 0.409827i
\(933\) 0 0
\(934\) −20518.2 12784.8i −0.718819 0.447891i
\(935\) 15485.1i 0.541623i
\(936\) 0 0
\(937\) 15781.5i 0.550225i −0.961412 0.275112i \(-0.911285\pi\)
0.961412 0.275112i \(-0.0887151\pi\)
\(938\) 8875.85 14244.8i 0.308962 0.495853i
\(939\) 0 0
\(940\) −32345.8 11045.1i −1.12234 0.383245i
\(941\) 24664.1 24664.1i 0.854440 0.854440i −0.136236 0.990676i \(-0.543501\pi\)
0.990676 + 0.136236i \(0.0435006\pi\)
\(942\) 0 0
\(943\) −9188.01 −0.317288
\(944\) 7160.35 916.391i 0.246875 0.0315953i
\(945\) 0 0
\(946\) −25259.8 + 5865.72i −0.868147 + 0.201597i
\(947\) −16466.0 + 16466.0i −0.565017 + 0.565017i −0.930728 0.365711i \(-0.880826\pi\)
0.365711 + 0.930728i \(0.380826\pi\)
\(948\) 0 0
\(949\) 15352.8 + 15352.8i 0.525155 + 0.525155i
\(950\) −5642.94 + 9056.34i −0.192717 + 0.309291i
\(951\) 0 0
\(952\) 8323.46 6793.26i 0.283367 0.231272i
\(953\) 42180.3i 1.43374i 0.697207 + 0.716870i \(0.254426\pi\)
−0.697207 + 0.716870i \(0.745574\pi\)
\(954\) 0 0
\(955\) 12464.2 + 12464.2i 0.422337 + 0.422337i
\(956\) −49328.2 + 24215.4i −1.66882 + 0.819228i
\(957\) 0 0
\(958\) 7999.10 + 34446.9i 0.269770 + 1.16172i
\(959\) 21051.3 0.708846
\(960\) 0 0
\(961\) −4667.69 −0.156681
\(962\) −9163.71 39462.1i −0.307121 1.32257i
\(963\) 0 0
\(964\) 19873.9 9756.18i 0.664000 0.325960i
\(965\) −25810.2 25810.2i −0.860995 0.860995i
\(966\) 0 0
\(967\) 29742.4i 0.989091i 0.869152 + 0.494546i \(0.164666\pi\)
−0.869152 + 0.494546i \(0.835334\pi\)
\(968\) 6022.63 4915.42i 0.199974 0.163210i
\(969\) 0 0
\(970\) 14841.3 23818.8i 0.491263 0.788428i
\(971\) −30803.6 30803.6i −1.01806 1.01806i −0.999834 0.0182247i \(-0.994199\pi\)
−0.0182247 0.999834i \(-0.505801\pi\)
\(972\) 0 0
\(973\) −6325.98 + 6325.98i −0.208429 + 0.208429i
\(974\) 28113.5 6528.39i 0.924860 0.214767i
\(975\) 0 0
\(976\) −1521.18 11886.0i −0.0498891 0.389816i
\(977\) 37576.0 1.23046 0.615232 0.788346i \(-0.289062\pi\)
0.615232 + 0.788346i \(0.289062\pi\)
\(978\) 0 0
\(979\) −10552.8 + 10552.8i −0.344502 + 0.344502i
\(980\) −16229.3 5541.80i −0.529007 0.180639i
\(981\) 0 0
\(982\) 6561.80 10531.0i 0.213234 0.342218i
\(983\) 3002.36i 0.0974164i −0.998813 0.0487082i \(-0.984490\pi\)
0.998813 0.0487082i \(-0.0155104\pi\)
\(984\) 0 0
\(985\) 12486.5i 0.403911i
\(986\) −21705.3 13524.4i −0.701051 0.436820i
\(987\) 0 0
\(988\) 9767.39 + 19896.8i 0.314516 + 0.640689i
\(989\) 6691.61 6691.61i 0.215147 0.215147i
\(990\) 0 0
\(991\) 4854.04 0.155594 0.0777971 0.996969i \(-0.475211\pi\)
0.0777971 + 0.996969i \(0.475211\pi\)
\(992\) 26081.0 + 11959.3i 0.834749 + 0.382770i
\(993\) 0 0
\(994\) 497.524 + 2142.50i 0.0158757 + 0.0683663i
\(995\) −15600.3 + 15600.3i −0.497047 + 0.497047i
\(996\) 0 0
\(997\) −24273.6 24273.6i −0.771067 0.771067i 0.207226 0.978293i \(-0.433557\pi\)
−0.978293 + 0.207226i \(0.933557\pi\)
\(998\) −45999.3 28661.8i −1.45900 0.909093i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.4.k.c.37.6 24
3.2 odd 2 inner 144.4.k.c.37.7 yes 24
4.3 odd 2 576.4.k.c.433.8 24
12.11 even 2 576.4.k.c.433.5 24
16.3 odd 4 576.4.k.c.145.8 24
16.13 even 4 inner 144.4.k.c.109.6 yes 24
48.29 odd 4 inner 144.4.k.c.109.7 yes 24
48.35 even 4 576.4.k.c.145.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.k.c.37.6 24 1.1 even 1 trivial
144.4.k.c.37.7 yes 24 3.2 odd 2 inner
144.4.k.c.109.6 yes 24 16.13 even 4 inner
144.4.k.c.109.7 yes 24 48.29 odd 4 inner
576.4.k.c.145.5 24 48.35 even 4
576.4.k.c.145.8 24 16.3 odd 4
576.4.k.c.433.5 24 12.11 even 2
576.4.k.c.433.8 24 4.3 odd 2