Properties

Label 576.4.k.c.145.8
Level $576$
Weight $4$
Character 576.145
Analytic conductor $33.985$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,4,Mod(145,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.145"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 576.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9851001633\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 145.8
Character \(\chi\) \(=\) 576.145
Dual form 576.4.k.c.433.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.16526 - 5.16526i) q^{5} -7.03833i q^{7} +(-22.2198 + 22.2198i) q^{11} +(37.2029 + 37.2029i) q^{13} +67.4608 q^{17} +(-37.2366 - 37.2366i) q^{19} +32.4348i q^{23} +71.6401i q^{25} +(94.7734 + 94.7734i) q^{29} +158.503 q^{31} +(-36.3548 - 36.3548i) q^{35} +(192.501 - 192.501i) q^{37} -283.277i q^{41} +(206.310 - 206.310i) q^{43} -584.883 q^{47} +293.462 q^{49} +(82.5251 - 82.5251i) q^{53} +229.542i q^{55} +(-79.7567 + 79.7567i) q^{59} +(132.394 + 132.394i) q^{61} +384.325 q^{65} +(596.157 + 596.157i) q^{67} -110.487i q^{71} -412.677i q^{73} +(156.390 + 156.390i) q^{77} +1142.41 q^{79} +(656.133 + 656.133i) q^{83} +(348.453 - 348.453i) q^{85} -474.926i q^{89} +(261.846 - 261.846i) q^{91} -384.673 q^{95} +1358.31 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{19} - 744 q^{31} - 16 q^{37} + 376 q^{43} - 1176 q^{49} - 912 q^{61} - 1440 q^{67} + 328 q^{79} - 240 q^{85} + 104 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.16526 5.16526i 0.461995 0.461995i −0.437314 0.899309i \(-0.644070\pi\)
0.899309 + 0.437314i \(0.144070\pi\)
\(6\) 0 0
\(7\) 7.03833i 0.380034i −0.981781 0.190017i \(-0.939146\pi\)
0.981781 0.190017i \(-0.0608543\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −22.2198 + 22.2198i −0.609047 + 0.609047i −0.942697 0.333650i \(-0.891720\pi\)
0.333650 + 0.942697i \(0.391720\pi\)
\(12\) 0 0
\(13\) 37.2029 + 37.2029i 0.793710 + 0.793710i 0.982095 0.188386i \(-0.0603255\pi\)
−0.188386 + 0.982095i \(0.560325\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 67.4608 0.962450 0.481225 0.876597i \(-0.340192\pi\)
0.481225 + 0.876597i \(0.340192\pi\)
\(18\) 0 0
\(19\) −37.2366 37.2366i −0.449613 0.449613i 0.445613 0.895226i \(-0.352986\pi\)
−0.895226 + 0.445613i \(0.852986\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 32.4348i 0.294049i 0.989133 + 0.147024i \(0.0469696\pi\)
−0.989133 + 0.147024i \(0.953030\pi\)
\(24\) 0 0
\(25\) 71.6401i 0.573121i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 94.7734 + 94.7734i 0.606861 + 0.606861i 0.942125 0.335263i \(-0.108825\pi\)
−0.335263 + 0.942125i \(0.608825\pi\)
\(30\) 0 0
\(31\) 158.503 0.918324 0.459162 0.888353i \(-0.348150\pi\)
0.459162 + 0.888353i \(0.348150\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −36.3548 36.3548i −0.175574 0.175574i
\(36\) 0 0
\(37\) 192.501 192.501i 0.855323 0.855323i −0.135460 0.990783i \(-0.543251\pi\)
0.990783 + 0.135460i \(0.0432511\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 283.277i 1.07903i −0.841975 0.539517i \(-0.818607\pi\)
0.841975 0.539517i \(-0.181393\pi\)
\(42\) 0 0
\(43\) 206.310 206.310i 0.731672 0.731672i −0.239279 0.970951i \(-0.576911\pi\)
0.970951 + 0.239279i \(0.0769109\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −584.883 −1.81519 −0.907596 0.419845i \(-0.862085\pi\)
−0.907596 + 0.419845i \(0.862085\pi\)
\(48\) 0 0
\(49\) 293.462 0.855574
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 82.5251 82.5251i 0.213881 0.213881i −0.592033 0.805914i \(-0.701674\pi\)
0.805914 + 0.592033i \(0.201674\pi\)
\(54\) 0 0
\(55\) 229.542i 0.562754i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −79.7567 + 79.7567i −0.175990 + 0.175990i −0.789605 0.613615i \(-0.789715\pi\)
0.613615 + 0.789605i \(0.289715\pi\)
\(60\) 0 0
\(61\) 132.394 + 132.394i 0.277889 + 0.277889i 0.832266 0.554377i \(-0.187043\pi\)
−0.554377 + 0.832266i \(0.687043\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 384.325 0.733380
\(66\) 0 0
\(67\) 596.157 + 596.157i 1.08705 + 1.08705i 0.995831 + 0.0912161i \(0.0290754\pi\)
0.0912161 + 0.995831i \(0.470925\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 110.487i 0.184682i −0.995727 0.0923409i \(-0.970565\pi\)
0.995727 0.0923409i \(-0.0294350\pi\)
\(72\) 0 0
\(73\) 412.677i 0.661646i −0.943693 0.330823i \(-0.892674\pi\)
0.943693 0.330823i \(-0.107326\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 156.390 + 156.390i 0.231459 + 0.231459i
\(78\) 0 0
\(79\) 1142.41 1.62698 0.813491 0.581577i \(-0.197564\pi\)
0.813491 + 0.581577i \(0.197564\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 656.133 + 656.133i 0.867711 + 0.867711i 0.992219 0.124508i \(-0.0397352\pi\)
−0.124508 + 0.992219i \(0.539735\pi\)
\(84\) 0 0
\(85\) 348.453 348.453i 0.444647 0.444647i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 474.926i 0.565641i −0.959173 0.282820i \(-0.908730\pi\)
0.959173 0.282820i \(-0.0912700\pi\)
\(90\) 0 0
\(91\) 261.846 261.846i 0.301637 0.301637i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −384.673 −0.415438
\(96\) 0 0
\(97\) 1358.31 1.42181 0.710906 0.703287i \(-0.248285\pi\)
0.710906 + 0.703287i \(0.248285\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1345.17 + 1345.17i −1.32524 + 1.32524i −0.415771 + 0.909470i \(0.636488\pi\)
−0.909470 + 0.415771i \(0.863512\pi\)
\(102\) 0 0
\(103\) 1077.73i 1.03099i −0.856894 0.515493i \(-0.827609\pi\)
0.856894 0.515493i \(-0.172391\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1505.13 1505.13i 1.35988 1.35988i 0.485816 0.874061i \(-0.338523\pi\)
0.874061 0.485816i \(-0.161477\pi\)
\(108\) 0 0
\(109\) 885.884 + 885.884i 0.778462 + 0.778462i 0.979569 0.201107i \(-0.0644540\pi\)
−0.201107 + 0.979569i \(0.564454\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1002.89 −0.834902 −0.417451 0.908699i \(-0.637076\pi\)
−0.417451 + 0.908699i \(0.637076\pi\)
\(114\) 0 0
\(115\) 167.534 + 167.534i 0.135849 + 0.135849i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 474.812i 0.365764i
\(120\) 0 0
\(121\) 343.561i 0.258122i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1015.70 + 1015.70i 0.726774 + 0.726774i
\(126\) 0 0
\(127\) −657.435 −0.459354 −0.229677 0.973267i \(-0.573767\pi\)
−0.229677 + 0.973267i \(0.573767\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1708.93 + 1708.93i 1.13977 + 1.13977i 0.988491 + 0.151279i \(0.0483392\pi\)
0.151279 + 0.988491i \(0.451661\pi\)
\(132\) 0 0
\(133\) −262.083 + 262.083i −0.170868 + 0.170868i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2990.96i 1.86522i −0.360891 0.932608i \(-0.617527\pi\)
0.360891 0.932608i \(-0.382473\pi\)
\(138\) 0 0
\(139\) 898.789 898.789i 0.548448 0.548448i −0.377543 0.925992i \(-0.623231\pi\)
0.925992 + 0.377543i \(0.123231\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1653.28 −0.966814
\(144\) 0 0
\(145\) 979.059 0.560734
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1949.10 + 1949.10i −1.07165 + 1.07165i −0.0744264 + 0.997227i \(0.523713\pi\)
−0.997227 + 0.0744264i \(0.976287\pi\)
\(150\) 0 0
\(151\) 389.789i 0.210070i 0.994469 + 0.105035i \(0.0334955\pi\)
−0.994469 + 0.105035i \(0.966505\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 818.712 818.712i 0.424261 0.424261i
\(156\) 0 0
\(157\) −573.333 573.333i −0.291446 0.291446i 0.546206 0.837651i \(-0.316072\pi\)
−0.837651 + 0.546206i \(0.816072\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 228.287 0.111749
\(162\) 0 0
\(163\) −94.7841 94.7841i −0.0455464 0.0455464i 0.683967 0.729513i \(-0.260253\pi\)
−0.729513 + 0.683967i \(0.760253\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 396.734i 0.183834i −0.995767 0.0919169i \(-0.970701\pi\)
0.995767 0.0919169i \(-0.0292994\pi\)
\(168\) 0 0
\(169\) 571.109i 0.259950i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −193.034 193.034i −0.0848329 0.0848329i 0.663417 0.748250i \(-0.269106\pi\)
−0.748250 + 0.663417i \(0.769106\pi\)
\(174\) 0 0
\(175\) 504.227 0.217805
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 114.931 + 114.931i 0.0479909 + 0.0479909i 0.730695 0.682704i \(-0.239196\pi\)
−0.682704 + 0.730695i \(0.739196\pi\)
\(180\) 0 0
\(181\) 764.431 764.431i 0.313921 0.313921i −0.532505 0.846427i \(-0.678749\pi\)
0.846427 + 0.532505i \(0.178749\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1988.64i 0.790310i
\(186\) 0 0
\(187\) −1498.97 + 1498.97i −0.586178 + 0.586178i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2413.08 −0.914159 −0.457080 0.889426i \(-0.651105\pi\)
−0.457080 + 0.889426i \(0.651105\pi\)
\(192\) 0 0
\(193\) −4996.88 −1.86364 −0.931822 0.362915i \(-0.881781\pi\)
−0.931822 + 0.362915i \(0.881781\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1208.70 + 1208.70i −0.437138 + 0.437138i −0.891048 0.453910i \(-0.850029\pi\)
0.453910 + 0.891048i \(0.350029\pi\)
\(198\) 0 0
\(199\) 3020.23i 1.07587i 0.842986 + 0.537935i \(0.180795\pi\)
−0.842986 + 0.537935i \(0.819205\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 667.047 667.047i 0.230628 0.230628i
\(204\) 0 0
\(205\) −1463.20 1463.20i −0.498508 0.498508i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1654.78 0.547672
\(210\) 0 0
\(211\) −1874.16 1874.16i −0.611482 0.611482i 0.331850 0.943332i \(-0.392327\pi\)
−0.943332 + 0.331850i \(0.892327\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2131.29i 0.676058i
\(216\) 0 0
\(217\) 1115.60i 0.348994i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2509.74 + 2509.74i 0.763906 + 0.763906i
\(222\) 0 0
\(223\) −974.233 −0.292554 −0.146277 0.989244i \(-0.546729\pi\)
−0.146277 + 0.989244i \(0.546729\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3640.99 + 3640.99i 1.06459 + 1.06459i 0.997765 + 0.0668201i \(0.0212854\pi\)
0.0668201 + 0.997765i \(0.478715\pi\)
\(228\) 0 0
\(229\) −1480.42 + 1480.42i −0.427202 + 0.427202i −0.887674 0.460472i \(-0.847680\pi\)
0.460472 + 0.887674i \(0.347680\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1623.75i 0.456545i −0.973597 0.228273i \(-0.926692\pi\)
0.973597 0.228273i \(-0.0733078\pi\)
\(234\) 0 0
\(235\) −3021.08 + 3021.08i −0.838610 + 0.838610i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6868.93 −1.85905 −0.929527 0.368753i \(-0.879785\pi\)
−0.929527 + 0.368753i \(0.879785\pi\)
\(240\) 0 0
\(241\) −2767.43 −0.739693 −0.369847 0.929093i \(-0.620590\pi\)
−0.369847 + 0.929093i \(0.620590\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1515.81 1515.81i 0.395271 0.395271i
\(246\) 0 0
\(247\) 2770.61i 0.713725i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −35.4718 + 35.4718i −0.00892016 + 0.00892016i −0.711553 0.702633i \(-0.752008\pi\)
0.702633 + 0.711553i \(0.252008\pi\)
\(252\) 0 0
\(253\) −720.694 720.694i −0.179090 0.179090i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3415.73 0.829056 0.414528 0.910037i \(-0.363947\pi\)
0.414528 + 0.910037i \(0.363947\pi\)
\(258\) 0 0
\(259\) −1354.89 1354.89i −0.325052 0.325052i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6780.71i 1.58980i 0.606742 + 0.794899i \(0.292476\pi\)
−0.606742 + 0.794899i \(0.707524\pi\)
\(264\) 0 0
\(265\) 852.528i 0.197624i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3834.98 + 3834.98i 0.869229 + 0.869229i 0.992387 0.123158i \(-0.0393022\pi\)
−0.123158 + 0.992387i \(0.539302\pi\)
\(270\) 0 0
\(271\) −7031.32 −1.57610 −0.788048 0.615614i \(-0.788908\pi\)
−0.788048 + 0.615614i \(0.788908\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1591.83 1591.83i −0.349058 0.349058i
\(276\) 0 0
\(277\) −3030.30 + 3030.30i −0.657304 + 0.657304i −0.954741 0.297437i \(-0.903868\pi\)
0.297437 + 0.954741i \(0.403868\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4719.06i 1.00183i −0.865495 0.500917i \(-0.832996\pi\)
0.865495 0.500917i \(-0.167004\pi\)
\(282\) 0 0
\(283\) 2696.52 2696.52i 0.566400 0.566400i −0.364718 0.931118i \(-0.618835\pi\)
0.931118 + 0.364718i \(0.118835\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1993.79 −0.410070
\(288\) 0 0
\(289\) −362.038 −0.0736898
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 865.453 865.453i 0.172561 0.172561i −0.615543 0.788103i \(-0.711063\pi\)
0.788103 + 0.615543i \(0.211063\pi\)
\(294\) 0 0
\(295\) 823.929i 0.162614i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1206.67 + 1206.67i −0.233389 + 0.233389i
\(300\) 0 0
\(301\) −1452.08 1452.08i −0.278061 0.278061i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1367.70 0.256767
\(306\) 0 0
\(307\) −703.076 703.076i −0.130706 0.130706i 0.638727 0.769433i \(-0.279461\pi\)
−0.769433 + 0.638727i \(0.779461\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6484.26i 1.18228i −0.806570 0.591139i \(-0.798678\pi\)
0.806570 0.591139i \(-0.201322\pi\)
\(312\) 0 0
\(313\) 7115.56i 1.28497i 0.766299 + 0.642484i \(0.222096\pi\)
−0.766299 + 0.642484i \(0.777904\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5573.78 5573.78i −0.987554 0.987554i 0.0123690 0.999924i \(-0.496063\pi\)
−0.999924 + 0.0123690i \(0.996063\pi\)
\(318\) 0 0
\(319\) −4211.69 −0.739215
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2512.01 2512.01i −0.432730 0.432730i
\(324\) 0 0
\(325\) −2665.22 + 2665.22i −0.454891 + 0.454891i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4116.60i 0.689835i
\(330\) 0 0
\(331\) −5774.02 + 5774.02i −0.958819 + 0.958819i −0.999185 0.0403663i \(-0.987148\pi\)
0.0403663 + 0.999185i \(0.487148\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6158.62 1.00442
\(336\) 0 0
\(337\) 2111.30 0.341275 0.170638 0.985334i \(-0.445417\pi\)
0.170638 + 0.985334i \(0.445417\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3521.91 + 3521.91i −0.559303 + 0.559303i
\(342\) 0 0
\(343\) 4479.63i 0.705182i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2375.98 + 2375.98i −0.367577 + 0.367577i −0.866593 0.499016i \(-0.833695\pi\)
0.499016 + 0.866593i \(0.333695\pi\)
\(348\) 0 0
\(349\) −212.228 212.228i −0.0325511 0.0325511i 0.690644 0.723195i \(-0.257327\pi\)
−0.723195 + 0.690644i \(0.757327\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8492.56 −1.28049 −0.640246 0.768170i \(-0.721167\pi\)
−0.640246 + 0.768170i \(0.721167\pi\)
\(354\) 0 0
\(355\) −570.695 570.695i −0.0853221 0.0853221i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2300.75i 0.338242i −0.985595 0.169121i \(-0.945907\pi\)
0.985595 0.169121i \(-0.0540929\pi\)
\(360\) 0 0
\(361\) 4085.88i 0.595696i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2131.58 2131.58i −0.305677 0.305677i
\(366\) 0 0
\(367\) 4035.86 0.574033 0.287016 0.957926i \(-0.407337\pi\)
0.287016 + 0.957926i \(0.407337\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −580.839 580.839i −0.0812821 0.0812821i
\(372\) 0 0
\(373\) 1491.28 1491.28i 0.207013 0.207013i −0.595984 0.802997i \(-0.703238\pi\)
0.802997 + 0.595984i \(0.203238\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7051.69i 0.963343i
\(378\) 0 0
\(379\) 4343.13 4343.13i 0.588632 0.588632i −0.348629 0.937261i \(-0.613353\pi\)
0.937261 + 0.348629i \(0.113353\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13342.2 1.78004 0.890022 0.455917i \(-0.150689\pi\)
0.890022 + 0.455917i \(0.150689\pi\)
\(384\) 0 0
\(385\) 1615.59 0.213866
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3336.92 3336.92i 0.434932 0.434932i −0.455370 0.890302i \(-0.650493\pi\)
0.890302 + 0.455370i \(0.150493\pi\)
\(390\) 0 0
\(391\) 2188.08i 0.283007i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5900.87 5900.87i 0.751658 0.751658i
\(396\) 0 0
\(397\) 3228.02 + 3228.02i 0.408085 + 0.408085i 0.881070 0.472986i \(-0.156824\pi\)
−0.472986 + 0.881070i \(0.656824\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 52.2560 0.00650759 0.00325379 0.999995i \(-0.498964\pi\)
0.00325379 + 0.999995i \(0.498964\pi\)
\(402\) 0 0
\(403\) 5896.78 + 5896.78i 0.728882 + 0.728882i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8554.66i 1.04186i
\(408\) 0 0
\(409\) 14516.7i 1.75502i −0.479558 0.877510i \(-0.659203\pi\)
0.479558 0.877510i \(-0.340797\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 561.354 + 561.354i 0.0668824 + 0.0668824i
\(414\) 0 0
\(415\) 6778.20 0.801757
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 409.663 + 409.663i 0.0477646 + 0.0477646i 0.730586 0.682821i \(-0.239247\pi\)
−0.682821 + 0.730586i \(0.739247\pi\)
\(420\) 0 0
\(421\) 4465.76 4465.76i 0.516978 0.516978i −0.399678 0.916656i \(-0.630878\pi\)
0.916656 + 0.399678i \(0.130878\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4832.90i 0.551600i
\(426\) 0 0
\(427\) 931.830 931.830i 0.105607 0.105607i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2298.21 0.256846 0.128423 0.991719i \(-0.459008\pi\)
0.128423 + 0.991719i \(0.459008\pi\)
\(432\) 0 0
\(433\) −4951.41 −0.549538 −0.274769 0.961510i \(-0.588601\pi\)
−0.274769 + 0.961510i \(0.588601\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1207.76 1207.76i 0.132208 0.132208i
\(438\) 0 0
\(439\) 2937.90i 0.319404i 0.987165 + 0.159702i \(0.0510533\pi\)
−0.987165 + 0.159702i \(0.948947\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4175.48 + 4175.48i −0.447818 + 0.447818i −0.894628 0.446811i \(-0.852560\pi\)
0.446811 + 0.894628i \(0.352560\pi\)
\(444\) 0 0
\(445\) −2453.12 2453.12i −0.261323 0.261323i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6835.79 −0.718487 −0.359244 0.933244i \(-0.616965\pi\)
−0.359244 + 0.933244i \(0.616965\pi\)
\(450\) 0 0
\(451\) 6294.35 + 6294.35i 0.657183 + 0.657183i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2705.01i 0.278709i
\(456\) 0 0
\(457\) 11521.0i 1.17928i 0.807668 + 0.589638i \(0.200729\pi\)
−0.807668 + 0.589638i \(0.799271\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4875.43 4875.43i −0.492563 0.492563i 0.416550 0.909113i \(-0.363239\pi\)
−0.909113 + 0.416550i \(0.863239\pi\)
\(462\) 0 0
\(463\) 13485.6 1.35362 0.676812 0.736156i \(-0.263361\pi\)
0.676812 + 0.736156i \(0.263361\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6043.84 6043.84i −0.598877 0.598877i 0.341137 0.940014i \(-0.389188\pi\)
−0.940014 + 0.341137i \(0.889188\pi\)
\(468\) 0 0
\(469\) 4195.95 4195.95i 0.413115 0.413115i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9168.32i 0.891246i
\(474\) 0 0
\(475\) 2667.63 2667.63i 0.257683 0.257683i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12502.9 1.19263 0.596315 0.802750i \(-0.296631\pi\)
0.596315 + 0.802750i \(0.296631\pi\)
\(480\) 0 0
\(481\) 14323.2 1.35776
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7016.05 7016.05i 0.656871 0.656871i
\(486\) 0 0
\(487\) 10204.1i 0.949469i 0.880129 + 0.474734i \(0.157456\pi\)
−0.880129 + 0.474734i \(0.842544\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3102.01 + 3102.01i −0.285116 + 0.285116i −0.835145 0.550030i \(-0.814616\pi\)
0.550030 + 0.835145i \(0.314616\pi\)
\(492\) 0 0
\(493\) 6393.49 + 6393.49i 0.584074 + 0.584074i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −777.645 −0.0701854
\(498\) 0 0
\(499\) −13549.5 13549.5i −1.21555 1.21555i −0.969174 0.246379i \(-0.920759\pi\)
−0.246379 0.969174i \(-0.579241\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3300.94i 0.292607i 0.989240 + 0.146304i \(0.0467377\pi\)
−0.989240 + 0.146304i \(0.953262\pi\)
\(504\) 0 0
\(505\) 13896.3i 1.22451i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10081.2 10081.2i −0.877880 0.877880i 0.115435 0.993315i \(-0.463174\pi\)
−0.993315 + 0.115435i \(0.963174\pi\)
\(510\) 0 0
\(511\) −2904.55 −0.251448
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5566.74 5566.74i −0.476311 0.476311i
\(516\) 0 0
\(517\) 12996.0 12996.0i 1.10554 1.10554i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 22396.4i 1.88331i 0.336579 + 0.941655i \(0.390730\pi\)
−0.336579 + 0.941655i \(0.609270\pi\)
\(522\) 0 0
\(523\) 10114.9 10114.9i 0.845688 0.845688i −0.143904 0.989592i \(-0.545966\pi\)
0.989592 + 0.143904i \(0.0459657\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10692.8 0.883841
\(528\) 0 0
\(529\) 11115.0 0.913535
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10538.7 10538.7i 0.856439 0.856439i
\(534\) 0 0
\(535\) 15548.8i 1.25651i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6520.66 + 6520.66i −0.521085 + 0.521085i
\(540\) 0 0
\(541\) 10004.1 + 10004.1i 0.795024 + 0.795024i 0.982306 0.187282i \(-0.0599679\pi\)
−0.187282 + 0.982306i \(0.559968\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9151.65 0.719291
\(546\) 0 0
\(547\) 11671.6 + 11671.6i 0.912325 + 0.912325i 0.996455 0.0841298i \(-0.0268110\pi\)
−0.0841298 + 0.996455i \(0.526811\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7058.07i 0.545706i
\(552\) 0 0
\(553\) 8040.69i 0.618309i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 117.575 + 117.575i 0.00894401 + 0.00894401i 0.711565 0.702621i \(-0.247987\pi\)
−0.702621 + 0.711565i \(0.747987\pi\)
\(558\) 0 0
\(559\) 15350.6 1.16147
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6510.39 6510.39i −0.487354 0.487354i 0.420116 0.907470i \(-0.361989\pi\)
−0.907470 + 0.420116i \(0.861989\pi\)
\(564\) 0 0
\(565\) −5180.19 + 5180.19i −0.385721 + 0.385721i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1080.96i 0.0796421i 0.999207 + 0.0398210i \(0.0126788\pi\)
−0.999207 + 0.0398210i \(0.987321\pi\)
\(570\) 0 0
\(571\) 6064.11 6064.11i 0.444440 0.444440i −0.449061 0.893501i \(-0.648242\pi\)
0.893501 + 0.449061i \(0.148242\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2323.63 −0.168525
\(576\) 0 0
\(577\) 75.0142 0.00541227 0.00270614 0.999996i \(-0.499139\pi\)
0.00270614 + 0.999996i \(0.499139\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4618.08 4618.08i 0.329760 0.329760i
\(582\) 0 0
\(583\) 3667.38i 0.260527i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15487.5 + 15487.5i −1.08899 + 1.08899i −0.0933554 + 0.995633i \(0.529759\pi\)
−0.995633 + 0.0933554i \(0.970241\pi\)
\(588\) 0 0
\(589\) −5902.12 5902.12i −0.412891 0.412891i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6675.53 −0.462278 −0.231139 0.972921i \(-0.574245\pi\)
−0.231139 + 0.972921i \(0.574245\pi\)
\(594\) 0 0
\(595\) −2452.53 2452.53i −0.168981 0.168981i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4338.77i 0.295955i 0.988991 + 0.147978i \(0.0472763\pi\)
−0.988991 + 0.147978i \(0.952724\pi\)
\(600\) 0 0
\(601\) 4339.37i 0.294520i −0.989098 0.147260i \(-0.952955\pi\)
0.989098 0.147260i \(-0.0470455\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1774.58 + 1774.58i 0.119251 + 0.119251i
\(606\) 0 0
\(607\) −19248.1 −1.28708 −0.643539 0.765414i \(-0.722534\pi\)
−0.643539 + 0.765414i \(0.722534\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −21759.4 21759.4i −1.44074 1.44074i
\(612\) 0 0
\(613\) −9056.59 + 9056.59i −0.596724 + 0.596724i −0.939439 0.342715i \(-0.888653\pi\)
0.342715 + 0.939439i \(0.388653\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12587.6i 0.821325i −0.911787 0.410662i \(-0.865297\pi\)
0.911787 0.410662i \(-0.134703\pi\)
\(618\) 0 0
\(619\) −11044.3 + 11044.3i −0.717136 + 0.717136i −0.968018 0.250881i \(-0.919280\pi\)
0.250881 + 0.968018i \(0.419280\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3342.68 −0.214963
\(624\) 0 0
\(625\) 1537.68 0.0984117
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12986.3 12986.3i 0.823206 0.823206i
\(630\) 0 0
\(631\) 7554.44i 0.476605i −0.971191 0.238302i \(-0.923409\pi\)
0.971191 0.238302i \(-0.0765909\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3395.83 + 3395.83i −0.212219 + 0.212219i
\(636\) 0 0
\(637\) 10917.6 + 10917.6i 0.679077 + 0.679077i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18511.6 1.14066 0.570330 0.821416i \(-0.306815\pi\)
0.570330 + 0.821416i \(0.306815\pi\)
\(642\) 0 0
\(643\) 7895.63 + 7895.63i 0.484251 + 0.484251i 0.906486 0.422236i \(-0.138755\pi\)
−0.422236 + 0.906486i \(0.638755\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 25087.9i 1.52443i 0.647323 + 0.762216i \(0.275888\pi\)
−0.647323 + 0.762216i \(0.724112\pi\)
\(648\) 0 0
\(649\) 3544.36i 0.214373i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3966.20 3966.20i −0.237687 0.237687i 0.578205 0.815892i \(-0.303753\pi\)
−0.815892 + 0.578205i \(0.803753\pi\)
\(654\) 0 0
\(655\) 17654.1 1.05314
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8121.04 + 8121.04i 0.480047 + 0.480047i 0.905147 0.425100i \(-0.139761\pi\)
−0.425100 + 0.905147i \(0.639761\pi\)
\(660\) 0 0
\(661\) 6417.92 6417.92i 0.377652 0.377652i −0.492602 0.870255i \(-0.663954\pi\)
0.870255 + 0.492602i \(0.163954\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2707.46i 0.157881i
\(666\) 0 0
\(667\) −3073.95 + 3073.95i −0.178447 + 0.178447i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5883.52 −0.338496
\(672\) 0 0
\(673\) −4207.12 −0.240969 −0.120485 0.992715i \(-0.538445\pi\)
−0.120485 + 0.992715i \(0.538445\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2686.58 + 2686.58i −0.152517 + 0.152517i −0.779241 0.626724i \(-0.784395\pi\)
0.626724 + 0.779241i \(0.284395\pi\)
\(678\) 0 0
\(679\) 9560.26i 0.540338i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1806.99 1806.99i 0.101234 0.101234i −0.654676 0.755910i \(-0.727195\pi\)
0.755910 + 0.654676i \(0.227195\pi\)
\(684\) 0 0
\(685\) −15449.1 15449.1i −0.861721 0.861721i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6140.34 0.339519
\(690\) 0 0
\(691\) −3964.38 3964.38i −0.218252 0.218252i 0.589509 0.807761i \(-0.299321\pi\)
−0.807761 + 0.589509i \(0.799321\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9284.97i 0.506761i
\(696\) 0 0
\(697\) 19110.1i 1.03852i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20882.0 + 20882.0i 1.12511 + 1.12511i 0.990961 + 0.134149i \(0.0428300\pi\)
0.134149 + 0.990961i \(0.457170\pi\)
\(702\) 0 0
\(703\) −14336.1 −0.769129
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9467.74 + 9467.74i 0.503637 + 0.503637i
\(708\) 0 0
\(709\) −8482.93 + 8482.93i −0.449342 + 0.449342i −0.895136 0.445794i \(-0.852921\pi\)
0.445794 + 0.895136i \(0.352921\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5141.02i 0.270032i
\(714\) 0 0
\(715\) −8539.63 + 8539.63i −0.446663 + 0.446663i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 23765.0 1.23266 0.616332 0.787486i \(-0.288618\pi\)
0.616332 + 0.787486i \(0.288618\pi\)
\(720\) 0 0
\(721\) −7585.40 −0.391810
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6789.58 + 6789.58i −0.347805 + 0.347805i
\(726\) 0 0
\(727\) 27979.3i 1.42737i 0.700468 + 0.713684i \(0.252975\pi\)
−0.700468 + 0.713684i \(0.747025\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 13917.8 13917.8i 0.704198 0.704198i
\(732\) 0 0
\(733\) −17513.6 17513.6i −0.882509 0.882509i 0.111280 0.993789i \(-0.464505\pi\)
−0.993789 + 0.111280i \(0.964505\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −26493.0 −1.32413
\(738\) 0 0
\(739\) 9683.07 + 9683.07i 0.481999 + 0.481999i 0.905770 0.423770i \(-0.139294\pi\)
−0.423770 + 0.905770i \(0.639294\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19107.6i 0.943460i −0.881743 0.471730i \(-0.843630\pi\)
0.881743 0.471730i \(-0.156370\pi\)
\(744\) 0 0
\(745\) 20135.2i 0.990197i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −10593.6 10593.6i −0.516800 0.516800i
\(750\) 0 0
\(751\) −10823.0 −0.525883 −0.262942 0.964812i \(-0.584693\pi\)
−0.262942 + 0.964812i \(0.584693\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2013.36 + 2013.36i 0.0970514 + 0.0970514i
\(756\) 0 0
\(757\) −12578.0 + 12578.0i −0.603904 + 0.603904i −0.941346 0.337442i \(-0.890438\pi\)
0.337442 + 0.941346i \(0.390438\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 30860.2i 1.47002i 0.678058 + 0.735009i \(0.262822\pi\)
−0.678058 + 0.735009i \(0.737178\pi\)
\(762\) 0 0
\(763\) 6235.15 6235.15i 0.295842 0.295842i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5934.36 −0.279371
\(768\) 0 0
\(769\) −19357.6 −0.907741 −0.453870 0.891068i \(-0.649957\pi\)
−0.453870 + 0.891068i \(0.649957\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −2959.96 + 2959.96i −0.137726 + 0.137726i −0.772609 0.634882i \(-0.781049\pi\)
0.634882 + 0.772609i \(0.281049\pi\)
\(774\) 0 0
\(775\) 11355.2i 0.526311i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −10548.2 + 10548.2i −0.485148 + 0.485148i
\(780\) 0 0
\(781\) 2455.00 + 2455.00i 0.112480 + 0.112480i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −5922.83 −0.269293
\(786\) 0 0
\(787\) −21346.3 21346.3i −0.966853 0.966853i 0.0326147 0.999468i \(-0.489617\pi\)
−0.999468 + 0.0326147i \(0.989617\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7058.67i 0.317291i
\(792\) 0 0
\(793\) 9850.84i 0.441127i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −22434.9 22434.9i −0.997097 0.997097i 0.00289926 0.999996i \(-0.499077\pi\)
−0.999996 + 0.00289926i \(0.999077\pi\)
\(798\) 0 0
\(799\) −39456.7 −1.74703
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9169.59 + 9169.59i 0.402974 + 0.402974i
\(804\) 0 0
\(805\) 1179.16 1179.16i 0.0516273 0.0516273i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 36085.5i 1.56823i −0.620616 0.784115i \(-0.713117\pi\)
0.620616 0.784115i \(-0.286883\pi\)
\(810\) 0 0
\(811\) −23874.2 + 23874.2i −1.03371 + 1.03371i −0.0342973 + 0.999412i \(0.510919\pi\)
−0.999412 + 0.0342973i \(0.989081\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −979.170 −0.0420845
\(816\) 0 0
\(817\) −15364.5 −0.657939
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17774.8 + 17774.8i −0.755596 + 0.755596i −0.975518 0.219922i \(-0.929420\pi\)
0.219922 + 0.975518i \(0.429420\pi\)
\(822\) 0 0
\(823\) 44331.9i 1.87766i −0.344384 0.938829i \(-0.611912\pi\)
0.344384 0.938829i \(-0.388088\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29773.5 29773.5i 1.25191 1.25191i 0.297044 0.954864i \(-0.403999\pi\)
0.954864 0.297044i \(-0.0960008\pi\)
\(828\) 0 0
\(829\) −9794.56 9794.56i −0.410349 0.410349i 0.471511 0.881860i \(-0.343709\pi\)
−0.881860 + 0.471511i \(0.843709\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 19797.2 0.823447
\(834\) 0 0
\(835\) −2049.24 2049.24i −0.0849303 0.0849303i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 20248.1i 0.833183i −0.909094 0.416591i \(-0.863225\pi\)
0.909094 0.416591i \(-0.136775\pi\)
\(840\) 0 0
\(841\) 6425.00i 0.263439i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2949.93 + 2949.93i 0.120095 + 0.120095i
\(846\) 0 0
\(847\) 2418.10 0.0980953
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6243.72 + 6243.72i 0.251507 + 0.251507i
\(852\) 0 0
\(853\) −10983.4 + 10983.4i −0.440873 + 0.440873i −0.892305 0.451433i \(-0.850913\pi\)
0.451433 + 0.892305i \(0.350913\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 26782.3i 1.06752i −0.845635 0.533761i \(-0.820778\pi\)
0.845635 0.533761i \(-0.179222\pi\)
\(858\) 0 0
\(859\) 26073.4 26073.4i 1.03564 1.03564i 0.0362968 0.999341i \(-0.488444\pi\)
0.999341 0.0362968i \(-0.0115562\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −30417.7 −1.19980 −0.599902 0.800073i \(-0.704794\pi\)
−0.599902 + 0.800073i \(0.704794\pi\)
\(864\) 0 0
\(865\) −1994.14 −0.0783848
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −25384.2 + 25384.2i −0.990910 + 0.990910i
\(870\) 0 0
\(871\) 44357.5i 1.72560i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 7148.82 7148.82i 0.276199 0.276199i
\(876\) 0 0
\(877\) 11483.1 + 11483.1i 0.442142 + 0.442142i 0.892731 0.450590i \(-0.148786\pi\)
−0.450590 + 0.892731i \(0.648786\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −34502.7 −1.31944 −0.659720 0.751511i \(-0.729325\pi\)
−0.659720 + 0.751511i \(0.729325\pi\)
\(882\) 0 0
\(883\) −35667.9 35667.9i −1.35937 1.35937i −0.874699 0.484667i \(-0.838941\pi\)
−0.484667 0.874699i \(-0.661059\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4004.04i 0.151570i 0.997124 + 0.0757850i \(0.0241463\pi\)
−0.997124 + 0.0757850i \(0.975854\pi\)
\(888\) 0 0
\(889\) 4627.25i 0.174570i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 21779.0 + 21779.0i 0.816134 + 0.816134i
\(894\) 0 0
\(895\) 1187.30 0.0443431
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15021.9 + 15021.9i 0.557295 + 0.557295i
\(900\) 0 0
\(901\) 5567.21 5567.21i 0.205850 0.205850i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7896.98i 0.290060i
\(906\) 0 0
\(907\) −26847.6 + 26847.6i −0.982865 + 0.982865i −0.999856 0.0169907i \(-0.994591\pi\)
0.0169907 + 0.999856i \(0.494591\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −15303.2 −0.556552 −0.278276 0.960501i \(-0.589763\pi\)
−0.278276 + 0.960501i \(0.589763\pi\)
\(912\) 0 0
\(913\) −29158.3 −1.05695
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12028.0 12028.0i 0.433152 0.433152i
\(918\) 0 0
\(919\) 43252.1i 1.55251i −0.630421 0.776254i \(-0.717118\pi\)
0.630421 0.776254i \(-0.282882\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4110.44 4110.44i 0.146584 0.146584i
\(924\) 0 0
\(925\) 13790.8 + 13790.8i 0.490203 + 0.490203i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13328.9 −0.470729 −0.235365 0.971907i \(-0.575628\pi\)
−0.235365 + 0.971907i \(0.575628\pi\)
\(930\) 0 0
\(931\) −10927.5 10927.5i −0.384677 0.384677i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 15485.1i 0.541623i
\(936\) 0 0
\(937\) 15781.5i 0.550225i 0.961412 + 0.275112i \(0.0887151\pi\)
−0.961412 + 0.275112i \(0.911285\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 24664.1 + 24664.1i 0.854440 + 0.854440i 0.990676 0.136236i \(-0.0435006\pi\)
−0.136236 + 0.990676i \(0.543501\pi\)
\(942\) 0 0
\(943\) 9188.01 0.317288
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 16466.0 + 16466.0i 0.565017 + 0.565017i 0.930728 0.365711i \(-0.119174\pi\)
−0.365711 + 0.930728i \(0.619174\pi\)
\(948\) 0 0
\(949\) 15352.8 15352.8i 0.525155 0.525155i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 42180.3i 1.43374i −0.697207 0.716870i \(-0.745574\pi\)
0.697207 0.716870i \(-0.254426\pi\)
\(954\) 0 0
\(955\) −12464.2 + 12464.2i −0.422337 + 0.422337i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −21051.3 −0.708846
\(960\) 0 0
\(961\) −4667.69 −0.156681
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −25810.2 + 25810.2i −0.860995 + 0.860995i
\(966\) 0 0
\(967\) 29742.4i 0.989091i 0.869152 + 0.494546i \(0.164666\pi\)
−0.869152 + 0.494546i \(0.835334\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 30803.6 30803.6i 1.01806 1.01806i 0.0182247 0.999834i \(-0.494199\pi\)
0.999834 0.0182247i \(-0.00580144\pi\)
\(972\) 0 0
\(973\) −6325.98 6325.98i −0.208429 0.208429i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 37576.0 1.23046 0.615232 0.788346i \(-0.289062\pi\)
0.615232 + 0.788346i \(0.289062\pi\)
\(978\) 0 0
\(979\) 10552.8 + 10552.8i 0.344502 + 0.344502i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3002.36i 0.0974164i −0.998813 0.0487082i \(-0.984490\pi\)
0.998813 0.0487082i \(-0.0155104\pi\)
\(984\) 0 0
\(985\) 12486.5i 0.403911i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6691.61 + 6691.61i 0.215147 + 0.215147i
\(990\) 0 0
\(991\) −4854.04 −0.155594 −0.0777971 0.996969i \(-0.524789\pi\)
−0.0777971 + 0.996969i \(0.524789\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 15600.3 + 15600.3i 0.497047 + 0.497047i
\(996\) 0 0
\(997\) −24273.6 + 24273.6i −0.771067 + 0.771067i −0.978293 0.207226i \(-0.933557\pi\)
0.207226 + 0.978293i \(0.433557\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.4.k.c.145.8 24
3.2 odd 2 inner 576.4.k.c.145.5 24
4.3 odd 2 144.4.k.c.109.6 yes 24
12.11 even 2 144.4.k.c.109.7 yes 24
16.5 even 4 inner 576.4.k.c.433.8 24
16.11 odd 4 144.4.k.c.37.6 24
48.5 odd 4 inner 576.4.k.c.433.5 24
48.11 even 4 144.4.k.c.37.7 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.k.c.37.6 24 16.11 odd 4
144.4.k.c.37.7 yes 24 48.11 even 4
144.4.k.c.109.6 yes 24 4.3 odd 2
144.4.k.c.109.7 yes 24 12.11 even 2
576.4.k.c.145.5 24 3.2 odd 2 inner
576.4.k.c.145.8 24 1.1 even 1 trivial
576.4.k.c.433.5 24 48.5 odd 4 inner
576.4.k.c.433.8 24 16.5 even 4 inner