Newspace parameters
Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 576.k (of order \(4\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(33.9851001633\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | no (minimal twist has level 144) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
145.1 | 0 | 0 | 0 | −14.8202 | + | 14.8202i | 0 | − | 10.4191i | 0 | 0 | 0 | |||||||||||||||
145.2 | 0 | 0 | 0 | −9.19636 | + | 9.19636i | 0 | 31.8982i | 0 | 0 | 0 | ||||||||||||||||
145.3 | 0 | 0 | 0 | −8.32567 | + | 8.32567i | 0 | 22.1273i | 0 | 0 | 0 | ||||||||||||||||
145.4 | 0 | 0 | 0 | −5.80444 | + | 5.80444i | 0 | 3.41531i | 0 | 0 | 0 | ||||||||||||||||
145.5 | 0 | 0 | 0 | −5.16526 | + | 5.16526i | 0 | − | 7.03833i | 0 | 0 | 0 | |||||||||||||||
145.6 | 0 | 0 | 0 | −4.01270 | + | 4.01270i | 0 | − | 25.9833i | 0 | 0 | 0 | |||||||||||||||
145.7 | 0 | 0 | 0 | 4.01270 | − | 4.01270i | 0 | − | 25.9833i | 0 | 0 | 0 | |||||||||||||||
145.8 | 0 | 0 | 0 | 5.16526 | − | 5.16526i | 0 | − | 7.03833i | 0 | 0 | 0 | |||||||||||||||
145.9 | 0 | 0 | 0 | 5.80444 | − | 5.80444i | 0 | 3.41531i | 0 | 0 | 0 | ||||||||||||||||
145.10 | 0 | 0 | 0 | 8.32567 | − | 8.32567i | 0 | 22.1273i | 0 | 0 | 0 | ||||||||||||||||
145.11 | 0 | 0 | 0 | 9.19636 | − | 9.19636i | 0 | 31.8982i | 0 | 0 | 0 | ||||||||||||||||
145.12 | 0 | 0 | 0 | 14.8202 | − | 14.8202i | 0 | − | 10.4191i | 0 | 0 | 0 | |||||||||||||||
433.1 | 0 | 0 | 0 | −14.8202 | − | 14.8202i | 0 | 10.4191i | 0 | 0 | 0 | ||||||||||||||||
433.2 | 0 | 0 | 0 | −9.19636 | − | 9.19636i | 0 | − | 31.8982i | 0 | 0 | 0 | |||||||||||||||
433.3 | 0 | 0 | 0 | −8.32567 | − | 8.32567i | 0 | − | 22.1273i | 0 | 0 | 0 | |||||||||||||||
433.4 | 0 | 0 | 0 | −5.80444 | − | 5.80444i | 0 | − | 3.41531i | 0 | 0 | 0 | |||||||||||||||
433.5 | 0 | 0 | 0 | −5.16526 | − | 5.16526i | 0 | 7.03833i | 0 | 0 | 0 | ||||||||||||||||
433.6 | 0 | 0 | 0 | −4.01270 | − | 4.01270i | 0 | 25.9833i | 0 | 0 | 0 | ||||||||||||||||
433.7 | 0 | 0 | 0 | 4.01270 | + | 4.01270i | 0 | 25.9833i | 0 | 0 | 0 | ||||||||||||||||
433.8 | 0 | 0 | 0 | 5.16526 | + | 5.16526i | 0 | 7.03833i | 0 | 0 | 0 | ||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
16.e | even | 4 | 1 | inner |
48.i | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 576.4.k.c | 24 | |
3.b | odd | 2 | 1 | inner | 576.4.k.c | 24 | |
4.b | odd | 2 | 1 | 144.4.k.c | ✓ | 24 | |
12.b | even | 2 | 1 | 144.4.k.c | ✓ | 24 | |
16.e | even | 4 | 1 | inner | 576.4.k.c | 24 | |
16.f | odd | 4 | 1 | 144.4.k.c | ✓ | 24 | |
48.i | odd | 4 | 1 | inner | 576.4.k.c | 24 | |
48.k | even | 4 | 1 | 144.4.k.c | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
144.4.k.c | ✓ | 24 | 4.b | odd | 2 | 1 | |
144.4.k.c | ✓ | 24 | 12.b | even | 2 | 1 | |
144.4.k.c | ✓ | 24 | 16.f | odd | 4 | 1 | |
144.4.k.c | ✓ | 24 | 48.k | even | 4 | 1 | |
576.4.k.c | 24 | 1.a | even | 1 | 1 | trivial | |
576.4.k.c | 24 | 3.b | odd | 2 | 1 | inner | |
576.4.k.c | 24 | 16.e | even | 4 | 1 | inner | |
576.4.k.c | 24 | 48.i | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{24} + 249216 T_{5}^{20} + 11828373696 T_{5}^{16} + 193462878781440 T_{5}^{12} + \cdots + 14\!\cdots\!00 \)
acting on \(S_{4}^{\mathrm{new}}(576, [\chi])\).