Properties

Label 576.4.k.c
Level $576$
Weight $4$
Character orbit 576.k
Analytic conductor $33.985$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,4,Mod(145,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.145"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 576.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9851001633\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 24 q^{19} - 744 q^{31} - 16 q^{37} + 376 q^{43} - 1176 q^{49} - 912 q^{61} - 1440 q^{67} + 328 q^{79} - 240 q^{85} + 104 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
145.1 0 0 0 −14.8202 + 14.8202i 0 10.4191i 0 0 0
145.2 0 0 0 −9.19636 + 9.19636i 0 31.8982i 0 0 0
145.3 0 0 0 −8.32567 + 8.32567i 0 22.1273i 0 0 0
145.4 0 0 0 −5.80444 + 5.80444i 0 3.41531i 0 0 0
145.5 0 0 0 −5.16526 + 5.16526i 0 7.03833i 0 0 0
145.6 0 0 0 −4.01270 + 4.01270i 0 25.9833i 0 0 0
145.7 0 0 0 4.01270 4.01270i 0 25.9833i 0 0 0
145.8 0 0 0 5.16526 5.16526i 0 7.03833i 0 0 0
145.9 0 0 0 5.80444 5.80444i 0 3.41531i 0 0 0
145.10 0 0 0 8.32567 8.32567i 0 22.1273i 0 0 0
145.11 0 0 0 9.19636 9.19636i 0 31.8982i 0 0 0
145.12 0 0 0 14.8202 14.8202i 0 10.4191i 0 0 0
433.1 0 0 0 −14.8202 14.8202i 0 10.4191i 0 0 0
433.2 0 0 0 −9.19636 9.19636i 0 31.8982i 0 0 0
433.3 0 0 0 −8.32567 8.32567i 0 22.1273i 0 0 0
433.4 0 0 0 −5.80444 5.80444i 0 3.41531i 0 0 0
433.5 0 0 0 −5.16526 5.16526i 0 7.03833i 0 0 0
433.6 0 0 0 −4.01270 4.01270i 0 25.9833i 0 0 0
433.7 0 0 0 4.01270 + 4.01270i 0 25.9833i 0 0 0
433.8 0 0 0 5.16526 + 5.16526i 0 7.03833i 0 0 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 145.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
16.e even 4 1 inner
48.i odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.4.k.c 24
3.b odd 2 1 inner 576.4.k.c 24
4.b odd 2 1 144.4.k.c 24
12.b even 2 1 144.4.k.c 24
16.e even 4 1 inner 576.4.k.c 24
16.f odd 4 1 144.4.k.c 24
48.i odd 4 1 inner 576.4.k.c 24
48.k even 4 1 144.4.k.c 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
144.4.k.c 24 4.b odd 2 1
144.4.k.c 24 12.b even 2 1
144.4.k.c 24 16.f odd 4 1
144.4.k.c 24 48.k even 4 1
576.4.k.c 24 1.a even 1 1 trivial
576.4.k.c 24 3.b odd 2 1 inner
576.4.k.c 24 16.e even 4 1 inner
576.4.k.c 24 48.i odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{24} + 249216 T_{5}^{20} + 11828373696 T_{5}^{16} + 193462878781440 T_{5}^{12} + \cdots + 14\!\cdots\!00 \) acting on \(S_{4}^{\mathrm{new}}(576, [\chi])\). Copy content Toggle raw display