Properties

Label 144.4.k.b.37.7
Level $144$
Weight $4$
Character 144.37
Analytic conductor $8.496$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,4,Mod(37,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.37"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.49627504083\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 37.7
Character \(\chi\) \(=\) 144.37
Dual form 144.4.k.b.109.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.716137 - 2.73627i) q^{2} +(-6.97430 - 3.91908i) q^{4} +(11.7719 + 11.7719i) q^{5} +14.7089i q^{7} +(-15.7182 + 16.2769i) q^{8} +(40.6415 - 23.7808i) q^{10} +(24.9380 + 24.9380i) q^{11} +(-58.1345 + 58.1345i) q^{13} +(40.2475 + 10.5336i) q^{14} +(33.2816 + 54.6657i) q^{16} +75.8798 q^{17} +(51.8464 - 51.8464i) q^{19} +(-35.9658 - 128.236i) q^{20} +(86.0960 - 50.3779i) q^{22} -149.444i q^{23} +152.157i q^{25} +(117.439 + 200.704i) q^{26} +(57.6455 - 102.584i) q^{28} +(-48.5419 + 48.5419i) q^{29} +29.6074 q^{31} +(173.414 - 51.9192i) q^{32} +(54.3403 - 207.627i) q^{34} +(-173.153 + 173.153i) q^{35} +(-147.751 - 147.751i) q^{37} +(-104.736 - 178.994i) q^{38} +(-376.645 + 6.57727i) q^{40} +225.232i q^{41} +(81.7640 + 81.7640i) q^{43} +(-76.1909 - 271.659i) q^{44} +(-408.917 - 107.022i) q^{46} -46.5418 q^{47} +126.648 q^{49} +(416.342 + 108.965i) q^{50} +(633.281 - 177.613i) q^{52} +(156.105 + 156.105i) q^{53} +587.137i q^{55} +(-239.416 - 231.198i) q^{56} +(98.0609 + 167.586i) q^{58} +(238.199 + 238.199i) q^{59} +(-594.013 + 594.013i) q^{61} +(21.2029 - 81.0137i) q^{62} +(-17.8765 - 511.688i) q^{64} -1368.71 q^{65} +(299.623 - 299.623i) q^{67} +(-529.208 - 297.379i) q^{68} +(349.790 + 597.792i) q^{70} -693.932i q^{71} -462.446i q^{73} +(-510.096 + 298.476i) q^{74} +(-564.782 + 158.402i) q^{76} +(-366.811 + 366.811i) q^{77} -878.797 q^{79} +(-251.732 + 1035.31i) q^{80} +(616.293 + 161.297i) q^{82} +(926.380 - 926.380i) q^{83} +(893.252 + 893.252i) q^{85} +(282.282 - 165.174i) q^{86} +(-797.894 + 13.9335i) q^{88} -350.770i q^{89} +(-855.096 - 855.096i) q^{91} +(-585.682 + 1042.26i) q^{92} +(-33.3303 + 127.351i) q^{94} +1220.66 q^{95} -766.194 q^{97} +(90.6971 - 346.542i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 20 q^{4} - 84 q^{8} + 72 q^{10} + 40 q^{11} + 348 q^{14} - 192 q^{16} + 24 q^{19} - 80 q^{20} + 704 q^{22} + 20 q^{26} - 344 q^{28} - 400 q^{29} - 744 q^{31} + 960 q^{32} - 704 q^{34} + 456 q^{35}+ \cdots - 6760 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.716137 2.73627i 0.253193 0.967416i
\(3\) 0 0
\(4\) −6.97430 3.91908i −0.871787 0.489885i
\(5\) 11.7719 + 11.7719i 1.05291 + 1.05291i 0.998520 + 0.0543947i \(0.0173229\pi\)
0.0543947 + 0.998520i \(0.482677\pi\)
\(6\) 0 0
\(7\) 14.7089i 0.794207i 0.917774 + 0.397104i \(0.129985\pi\)
−0.917774 + 0.397104i \(0.870015\pi\)
\(8\) −15.7182 + 16.2769i −0.694653 + 0.719345i
\(9\) 0 0
\(10\) 40.6415 23.7808i 1.28520 0.752016i
\(11\) 24.9380 + 24.9380i 0.683553 + 0.683553i 0.960799 0.277246i \(-0.0894216\pi\)
−0.277246 + 0.960799i \(0.589422\pi\)
\(12\) 0 0
\(13\) −58.1345 + 58.1345i −1.24028 + 1.24028i −0.280393 + 0.959885i \(0.590465\pi\)
−0.959885 + 0.280393i \(0.909535\pi\)
\(14\) 40.2475 + 10.5336i 0.768329 + 0.201087i
\(15\) 0 0
\(16\) 33.2816 + 54.6657i 0.520025 + 0.854151i
\(17\) 75.8798 1.08256 0.541281 0.840842i \(-0.317940\pi\)
0.541281 + 0.840842i \(0.317940\pi\)
\(18\) 0 0
\(19\) 51.8464 51.8464i 0.626020 0.626020i −0.321045 0.947064i \(-0.604034\pi\)
0.947064 + 0.321045i \(0.104034\pi\)
\(20\) −35.9658 128.236i −0.402110 1.43372i
\(21\) 0 0
\(22\) 86.0960 50.3779i 0.834351 0.488210i
\(23\) 149.444i 1.35483i −0.735600 0.677416i \(-0.763100\pi\)
0.735600 0.677416i \(-0.236900\pi\)
\(24\) 0 0
\(25\) 152.157i 1.21726i
\(26\) 117.439 + 200.704i 0.885836 + 1.51389i
\(27\) 0 0
\(28\) 57.6455 102.584i 0.389070 0.692379i
\(29\) −48.5419 + 48.5419i −0.310828 + 0.310828i −0.845230 0.534402i \(-0.820537\pi\)
0.534402 + 0.845230i \(0.320537\pi\)
\(30\) 0 0
\(31\) 29.6074 0.171537 0.0857685 0.996315i \(-0.472665\pi\)
0.0857685 + 0.996315i \(0.472665\pi\)
\(32\) 173.414 51.9192i 0.957986 0.286816i
\(33\) 0 0
\(34\) 54.3403 207.627i 0.274097 1.04729i
\(35\) −173.153 + 173.153i −0.836232 + 0.836232i
\(36\) 0 0
\(37\) −147.751 147.751i −0.656489 0.656489i 0.298058 0.954548i \(-0.403661\pi\)
−0.954548 + 0.298058i \(0.903661\pi\)
\(38\) −104.736 178.994i −0.447118 0.764125i
\(39\) 0 0
\(40\) −376.645 + 6.57727i −1.48882 + 0.0259990i
\(41\) 225.232i 0.857933i 0.903320 + 0.428967i \(0.141122\pi\)
−0.903320 + 0.428967i \(0.858878\pi\)
\(42\) 0 0
\(43\) 81.7640 + 81.7640i 0.289974 + 0.289974i 0.837070 0.547096i \(-0.184267\pi\)
−0.547096 + 0.837070i \(0.684267\pi\)
\(44\) −76.1909 271.659i −0.261050 0.930776i
\(45\) 0 0
\(46\) −408.917 107.022i −1.31069 0.343034i
\(47\) −46.5418 −0.144443 −0.0722215 0.997389i \(-0.523009\pi\)
−0.0722215 + 0.997389i \(0.523009\pi\)
\(48\) 0 0
\(49\) 126.648 0.369235
\(50\) 416.342 + 108.965i 1.17759 + 0.308200i
\(51\) 0 0
\(52\) 633.281 177.613i 1.68885 0.473664i
\(53\) 156.105 + 156.105i 0.404578 + 0.404578i 0.879843 0.475265i \(-0.157648\pi\)
−0.475265 + 0.879843i \(0.657648\pi\)
\(54\) 0 0
\(55\) 587.137i 1.43945i
\(56\) −239.416 231.198i −0.571309 0.551698i
\(57\) 0 0
\(58\) 98.0609 + 167.586i 0.222000 + 0.379399i
\(59\) 238.199 + 238.199i 0.525608 + 0.525608i 0.919260 0.393652i \(-0.128788\pi\)
−0.393652 + 0.919260i \(0.628788\pi\)
\(60\) 0 0
\(61\) −594.013 + 594.013i −1.24681 + 1.24681i −0.289692 + 0.957120i \(0.593553\pi\)
−0.957120 + 0.289692i \(0.906447\pi\)
\(62\) 21.2029 81.0137i 0.0434319 0.165948i
\(63\) 0 0
\(64\) −17.8765 511.688i −0.0349150 0.999390i
\(65\) −1368.71 −2.61181
\(66\) 0 0
\(67\) 299.623 299.623i 0.546339 0.546339i −0.379041 0.925380i \(-0.623746\pi\)
0.925380 + 0.379041i \(0.123746\pi\)
\(68\) −529.208 297.379i −0.943763 0.530331i
\(69\) 0 0
\(70\) 349.790 + 597.792i 0.597256 + 1.02071i
\(71\) 693.932i 1.15992i −0.814644 0.579962i \(-0.803067\pi\)
0.814644 0.579962i \(-0.196933\pi\)
\(72\) 0 0
\(73\) 462.446i 0.741441i −0.928745 0.370720i \(-0.879111\pi\)
0.928745 0.370720i \(-0.120889\pi\)
\(74\) −510.096 + 298.476i −0.801316 + 0.468880i
\(75\) 0 0
\(76\) −564.782 + 158.402i −0.852433 + 0.239078i
\(77\) −366.811 + 366.811i −0.542883 + 0.542883i
\(78\) 0 0
\(79\) −878.797 −1.25155 −0.625775 0.780004i \(-0.715217\pi\)
−0.625775 + 0.780004i \(0.715217\pi\)
\(80\) −251.732 + 1035.31i −0.351806 + 1.44689i
\(81\) 0 0
\(82\) 616.293 + 161.297i 0.829978 + 0.217222i
\(83\) 926.380 926.380i 1.22510 1.22510i 0.259306 0.965795i \(-0.416506\pi\)
0.965795 0.259306i \(-0.0834938\pi\)
\(84\) 0 0
\(85\) 893.252 + 893.252i 1.13984 + 1.13984i
\(86\) 282.282 165.174i 0.353945 0.207106i
\(87\) 0 0
\(88\) −797.894 + 13.9335i −0.966543 + 0.0168786i
\(89\) 350.770i 0.417770i −0.977940 0.208885i \(-0.933017\pi\)
0.977940 0.208885i \(-0.0669834\pi\)
\(90\) 0 0
\(91\) −855.096 855.096i −0.985038 0.985038i
\(92\) −585.682 + 1042.26i −0.663713 + 1.18113i
\(93\) 0 0
\(94\) −33.3303 + 127.351i −0.0365719 + 0.139737i
\(95\) 1220.66 1.31829
\(96\) 0 0
\(97\) −766.194 −0.802013 −0.401006 0.916075i \(-0.631339\pi\)
−0.401006 + 0.916075i \(0.631339\pi\)
\(98\) 90.6971 346.542i 0.0934876 0.357204i
\(99\) 0 0
\(100\) 596.316 1061.19i 0.596316 1.06119i
\(101\) 983.994 + 983.994i 0.969417 + 0.969417i 0.999546 0.0301291i \(-0.00959184\pi\)
−0.0301291 + 0.999546i \(0.509592\pi\)
\(102\) 0 0
\(103\) 512.291i 0.490074i −0.969514 0.245037i \(-0.921200\pi\)
0.969514 0.245037i \(-0.0788000\pi\)
\(104\) −32.4812 1860.02i −0.0306254 1.75375i
\(105\) 0 0
\(106\) 538.937 315.352i 0.493832 0.288959i
\(107\) −633.097 633.097i −0.571998 0.571998i 0.360688 0.932686i \(-0.382542\pi\)
−0.932686 + 0.360688i \(0.882542\pi\)
\(108\) 0 0
\(109\) 983.894 983.894i 0.864587 0.864587i −0.127280 0.991867i \(-0.540625\pi\)
0.991867 + 0.127280i \(0.0406246\pi\)
\(110\) 1606.56 + 420.471i 1.39254 + 0.364457i
\(111\) 0 0
\(112\) −804.073 + 489.536i −0.678373 + 0.413007i
\(113\) −332.042 −0.276424 −0.138212 0.990403i \(-0.544136\pi\)
−0.138212 + 0.990403i \(0.544136\pi\)
\(114\) 0 0
\(115\) 1759.24 1759.24i 1.42652 1.42652i
\(116\) 528.785 148.306i 0.423245 0.118706i
\(117\) 0 0
\(118\) 822.359 481.193i 0.641562 0.375401i
\(119\) 1116.11i 0.859778i
\(120\) 0 0
\(121\) 87.1933i 0.0655096i
\(122\) 1199.98 + 2050.77i 0.890502 + 1.52187i
\(123\) 0 0
\(124\) −206.491 116.034i −0.149544 0.0840334i
\(125\) −319.692 + 319.692i −0.228753 + 0.228753i
\(126\) 0 0
\(127\) 712.949 0.498141 0.249071 0.968485i \(-0.419875\pi\)
0.249071 + 0.968485i \(0.419875\pi\)
\(128\) −1412.92 317.524i −0.975666 0.219261i
\(129\) 0 0
\(130\) −980.186 + 3745.16i −0.661292 + 2.52671i
\(131\) 2039.63 2039.63i 1.36033 1.36033i 0.486843 0.873489i \(-0.338148\pi\)
0.873489 0.486843i \(-0.161852\pi\)
\(132\) 0 0
\(133\) 762.604 + 762.604i 0.497189 + 0.497189i
\(134\) −605.276 1034.42i −0.390208 0.666866i
\(135\) 0 0
\(136\) −1192.69 + 1235.09i −0.752004 + 0.778735i
\(137\) 761.248i 0.474728i 0.971421 + 0.237364i \(0.0762835\pi\)
−0.971421 + 0.237364i \(0.923717\pi\)
\(138\) 0 0
\(139\) 1277.92 + 1277.92i 0.779798 + 0.779798i 0.979796 0.199998i \(-0.0640937\pi\)
−0.199998 + 0.979796i \(0.564094\pi\)
\(140\) 1886.22 529.018i 1.13867 0.319358i
\(141\) 0 0
\(142\) −1898.78 496.950i −1.12213 0.293684i
\(143\) −2899.52 −1.69559
\(144\) 0 0
\(145\) −1142.86 −0.654550
\(146\) −1265.37 331.175i −0.717282 0.187727i
\(147\) 0 0
\(148\) 451.411 + 1609.51i 0.250714 + 0.893923i
\(149\) −746.651 746.651i −0.410524 0.410524i 0.471397 0.881921i \(-0.343750\pi\)
−0.881921 + 0.471397i \(0.843750\pi\)
\(150\) 0 0
\(151\) 1186.11i 0.639234i 0.947547 + 0.319617i \(0.103554\pi\)
−0.947547 + 0.319617i \(0.896446\pi\)
\(152\) 28.9678 + 1658.83i 0.0154579 + 0.885190i
\(153\) 0 0
\(154\) 741.005 + 1266.38i 0.387740 + 0.662648i
\(155\) 348.536 + 348.536i 0.180614 + 0.180614i
\(156\) 0 0
\(157\) 219.416 219.416i 0.111537 0.111537i −0.649136 0.760673i \(-0.724869\pi\)
0.760673 + 0.649136i \(0.224869\pi\)
\(158\) −629.339 + 2404.62i −0.316883 + 1.21077i
\(159\) 0 0
\(160\) 2652.61 + 1430.23i 1.31067 + 0.706685i
\(161\) 2198.15 1.07602
\(162\) 0 0
\(163\) 1321.49 1321.49i 0.635011 0.635011i −0.314309 0.949321i \(-0.601773\pi\)
0.949321 + 0.314309i \(0.101773\pi\)
\(164\) 882.701 1570.83i 0.420289 0.747935i
\(165\) 0 0
\(166\) −1871.41 3198.24i −0.874996 1.49537i
\(167\) 1180.83i 0.547160i 0.961849 + 0.273580i \(0.0882078\pi\)
−0.961849 + 0.273580i \(0.911792\pi\)
\(168\) 0 0
\(169\) 4562.25i 2.07658i
\(170\) 3083.86 1804.48i 1.39130 0.814103i
\(171\) 0 0
\(172\) −249.807 890.687i −0.110742 0.394850i
\(173\) 1559.35 1559.35i 0.685289 0.685289i −0.275898 0.961187i \(-0.588975\pi\)
0.961187 + 0.275898i \(0.0889753\pi\)
\(174\) 0 0
\(175\) −2238.07 −0.966754
\(176\) −533.276 + 2193.23i −0.228393 + 0.939323i
\(177\) 0 0
\(178\) −959.799 251.199i −0.404157 0.105776i
\(179\) −1718.83 + 1718.83i −0.717717 + 0.717717i −0.968137 0.250420i \(-0.919431\pi\)
0.250420 + 0.968137i \(0.419431\pi\)
\(180\) 0 0
\(181\) 703.803 + 703.803i 0.289023 + 0.289023i 0.836694 0.547671i \(-0.184485\pi\)
−0.547671 + 0.836694i \(0.684485\pi\)
\(182\) −2952.14 + 1727.40i −1.20235 + 0.703537i
\(183\) 0 0
\(184\) 2432.48 + 2348.99i 0.974593 + 0.941138i
\(185\) 3478.63i 1.38245i
\(186\) 0 0
\(187\) 1892.29 + 1892.29i 0.739989 + 0.739989i
\(188\) 324.597 + 182.401i 0.125924 + 0.0707605i
\(189\) 0 0
\(190\) 874.163 3340.06i 0.333781 1.27533i
\(191\) −290.013 −0.109867 −0.0549335 0.998490i \(-0.517495\pi\)
−0.0549335 + 0.998490i \(0.517495\pi\)
\(192\) 0 0
\(193\) −4295.94 −1.60222 −0.801111 0.598516i \(-0.795757\pi\)
−0.801111 + 0.598516i \(0.795757\pi\)
\(194\) −548.700 + 2096.51i −0.203064 + 0.775880i
\(195\) 0 0
\(196\) −883.278 496.342i −0.321894 0.180883i
\(197\) −936.690 936.690i −0.338764 0.338764i 0.517138 0.855902i \(-0.326997\pi\)
−0.855902 + 0.517138i \(0.826997\pi\)
\(198\) 0 0
\(199\) 3333.18i 1.18735i −0.804705 0.593675i \(-0.797676\pi\)
0.804705 0.593675i \(-0.202324\pi\)
\(200\) −2476.65 2391.64i −0.875628 0.845571i
\(201\) 0 0
\(202\) 3397.14 1987.80i 1.18328 0.692380i
\(203\) −713.999 713.999i −0.246862 0.246862i
\(204\) 0 0
\(205\) −2651.41 + 2651.41i −0.903330 + 0.903330i
\(206\) −1401.77 366.871i −0.474105 0.124083i
\(207\) 0 0
\(208\) −5112.77 1243.15i −1.70436 0.414409i
\(209\) 2585.89 0.855836
\(210\) 0 0
\(211\) −3810.99 + 3810.99i −1.24341 + 1.24341i −0.284831 + 0.958578i \(0.591937\pi\)
−0.958578 + 0.284831i \(0.908063\pi\)
\(212\) −476.934 1700.51i −0.154509 0.550903i
\(213\) 0 0
\(214\) −2185.71 + 1278.94i −0.698186 + 0.408534i
\(215\) 1925.04i 0.610636i
\(216\) 0 0
\(217\) 435.493i 0.136236i
\(218\) −1987.59 3396.80i −0.617508 1.05532i
\(219\) 0 0
\(220\) 2301.04 4094.87i 0.705163 1.25489i
\(221\) −4411.23 + 4411.23i −1.34268 + 1.34268i
\(222\) 0 0
\(223\) −3093.27 −0.928882 −0.464441 0.885604i \(-0.653745\pi\)
−0.464441 + 0.885604i \(0.653745\pi\)
\(224\) 763.675 + 2550.73i 0.227791 + 0.760839i
\(225\) 0 0
\(226\) −237.788 + 908.555i −0.0699885 + 0.267417i
\(227\) −97.5310 + 97.5310i −0.0285170 + 0.0285170i −0.721222 0.692705i \(-0.756419\pi\)
0.692705 + 0.721222i \(0.256419\pi\)
\(228\) 0 0
\(229\) 2867.04 + 2867.04i 0.827334 + 0.827334i 0.987147 0.159813i \(-0.0510892\pi\)
−0.159813 + 0.987147i \(0.551089\pi\)
\(230\) −3553.89 6073.61i −1.01886 1.74123i
\(231\) 0 0
\(232\) −27.1216 1553.10i −0.00767508 0.439510i
\(233\) 260.384i 0.0732116i 0.999330 + 0.0366058i \(0.0116546\pi\)
−0.999330 + 0.0366058i \(0.988345\pi\)
\(234\) 0 0
\(235\) −547.888 547.888i −0.152086 0.152086i
\(236\) −727.749 2594.79i −0.200731 0.715706i
\(237\) 0 0
\(238\) 3053.97 + 799.287i 0.831763 + 0.217689i
\(239\) −1133.63 −0.306814 −0.153407 0.988163i \(-0.549025\pi\)
−0.153407 + 0.988163i \(0.549025\pi\)
\(240\) 0 0
\(241\) 2717.65 0.726386 0.363193 0.931714i \(-0.381686\pi\)
0.363193 + 0.931714i \(0.381686\pi\)
\(242\) −238.584 62.4423i −0.0633750 0.0165866i
\(243\) 0 0
\(244\) 6470.80 1814.84i 1.69775 0.476160i
\(245\) 1490.89 + 1490.89i 0.388773 + 0.388773i
\(246\) 0 0
\(247\) 6028.13i 1.55288i
\(248\) −465.375 + 481.917i −0.119159 + 0.123394i
\(249\) 0 0
\(250\) 645.818 + 1103.70i 0.163381 + 0.279218i
\(251\) −902.500 902.500i −0.226953 0.226953i 0.584465 0.811419i \(-0.301304\pi\)
−0.811419 + 0.584465i \(0.801304\pi\)
\(252\) 0 0
\(253\) 3726.82 3726.82i 0.926101 0.926101i
\(254\) 510.569 1950.82i 0.126126 0.481910i
\(255\) 0 0
\(256\) −1880.67 + 3638.72i −0.459148 + 0.888360i
\(257\) 49.0728 0.0119108 0.00595541 0.999982i \(-0.498104\pi\)
0.00595541 + 0.999982i \(0.498104\pi\)
\(258\) 0 0
\(259\) 2173.26 2173.26i 0.521388 0.521388i
\(260\) 9545.81 + 5364.10i 2.27695 + 1.27949i
\(261\) 0 0
\(262\) −4120.32 7041.63i −0.971581 1.66043i
\(263\) 448.347i 0.105119i −0.998618 0.0525594i \(-0.983262\pi\)
0.998618 0.0525594i \(-0.0167379\pi\)
\(264\) 0 0
\(265\) 3675.31i 0.851973i
\(266\) 2632.82 1540.56i 0.606873 0.355104i
\(267\) 0 0
\(268\) −3263.90 + 915.411i −0.743935 + 0.208648i
\(269\) 4691.01 4691.01i 1.06326 1.06326i 0.0653970 0.997859i \(-0.479169\pi\)
0.997859 0.0653970i \(-0.0208314\pi\)
\(270\) 0 0
\(271\) 310.218 0.0695365 0.0347683 0.999395i \(-0.488931\pi\)
0.0347683 + 0.999395i \(0.488931\pi\)
\(272\) 2525.40 + 4148.02i 0.562959 + 0.924671i
\(273\) 0 0
\(274\) 2082.98 + 545.158i 0.459260 + 0.120198i
\(275\) −3794.49 + 3794.49i −0.832060 + 0.832060i
\(276\) 0 0
\(277\) 3523.42 + 3523.42i 0.764267 + 0.764267i 0.977091 0.212823i \(-0.0682659\pi\)
−0.212823 + 0.977091i \(0.568266\pi\)
\(278\) 4411.90 2581.57i 0.951828 0.556950i
\(279\) 0 0
\(280\) −96.7446 5540.04i −0.0206486 1.18243i
\(281\) 1369.74i 0.290789i −0.989374 0.145395i \(-0.953555\pi\)
0.989374 0.145395i \(-0.0464452\pi\)
\(282\) 0 0
\(283\) −5575.17 5575.17i −1.17106 1.17106i −0.981958 0.189100i \(-0.939443\pi\)
−0.189100 0.981958i \(-0.560557\pi\)
\(284\) −2719.58 + 4839.69i −0.568229 + 1.01121i
\(285\) 0 0
\(286\) −2076.45 + 7933.85i −0.429312 + 1.64034i
\(287\) −3312.91 −0.681377
\(288\) 0 0
\(289\) 844.738 0.171939
\(290\) −818.448 + 3127.18i −0.165727 + 0.633222i
\(291\) 0 0
\(292\) −1812.36 + 3225.23i −0.363221 + 0.646378i
\(293\) 1651.17 + 1651.17i 0.329222 + 0.329222i 0.852291 0.523068i \(-0.175213\pi\)
−0.523068 + 0.852291i \(0.675213\pi\)
\(294\) 0 0
\(295\) 5608.13i 1.10684i
\(296\) 4727.31 82.5521i 0.928274 0.0162103i
\(297\) 0 0
\(298\) −2577.74 + 1508.33i −0.501089 + 0.293206i
\(299\) 8687.84 + 8687.84i 1.68037 + 1.68037i
\(300\) 0 0
\(301\) −1202.66 + 1202.66i −0.230300 + 0.230300i
\(302\) 3245.51 + 849.418i 0.618405 + 0.161849i
\(303\) 0 0
\(304\) 4559.75 + 1108.69i 0.860261 + 0.209169i
\(305\) −13985.4 −2.62557
\(306\) 0 0
\(307\) −1930.51 + 1930.51i −0.358892 + 0.358892i −0.863404 0.504512i \(-0.831672\pi\)
0.504512 + 0.863404i \(0.331672\pi\)
\(308\) 3995.81 1120.69i 0.739229 0.207328i
\(309\) 0 0
\(310\) 1203.29 704.088i 0.220459 0.128998i
\(311\) 3967.14i 0.723331i 0.932308 + 0.361665i \(0.117792\pi\)
−0.932308 + 0.361665i \(0.882208\pi\)
\(312\) 0 0
\(313\) 7329.46i 1.32360i −0.749682 0.661798i \(-0.769794\pi\)
0.749682 0.661798i \(-0.230206\pi\)
\(314\) −443.247 757.511i −0.0796621 0.136143i
\(315\) 0 0
\(316\) 6128.99 + 3444.08i 1.09108 + 0.613115i
\(317\) 3264.85 3264.85i 0.578461 0.578461i −0.356018 0.934479i \(-0.615866\pi\)
0.934479 + 0.356018i \(0.115866\pi\)
\(318\) 0 0
\(319\) −2421.07 −0.424935
\(320\) 5813.12 6234.00i 1.01551 1.08903i
\(321\) 0 0
\(322\) 1574.18 6014.74i 0.272440 1.04096i
\(323\) 3934.09 3934.09i 0.677705 0.677705i
\(324\) 0 0
\(325\) −8845.58 8845.58i −1.50974 1.50974i
\(326\) −2669.57 4562.30i −0.453540 0.775100i
\(327\) 0 0
\(328\) −3666.08 3540.23i −0.617150 0.595966i
\(329\) 684.580i 0.114718i
\(330\) 0 0
\(331\) 7640.33 + 7640.33i 1.26873 + 1.26873i 0.946743 + 0.321991i \(0.104352\pi\)
0.321991 + 0.946743i \(0.395648\pi\)
\(332\) −10091.4 + 2830.29i −1.66819 + 0.467868i
\(333\) 0 0
\(334\) 3231.08 + 845.639i 0.529331 + 0.138537i
\(335\) 7054.28 1.15050
\(336\) 0 0
\(337\) 10375.8 1.67716 0.838582 0.544775i \(-0.183385\pi\)
0.838582 + 0.544775i \(0.183385\pi\)
\(338\) −12483.5 3267.20i −2.00892 0.525775i
\(339\) 0 0
\(340\) −2729.08 9730.53i −0.435309 1.55209i
\(341\) 738.349 + 738.349i 0.117255 + 0.117255i
\(342\) 0 0
\(343\) 6908.01i 1.08746i
\(344\) −2616.05 + 45.6836i −0.410023 + 0.00716016i
\(345\) 0 0
\(346\) −3150.08 5383.49i −0.489449 0.836469i
\(347\) −3827.22 3827.22i −0.592092 0.592092i 0.346104 0.938196i \(-0.387504\pi\)
−0.938196 + 0.346104i \(0.887504\pi\)
\(348\) 0 0
\(349\) 783.575 783.575i 0.120183 0.120183i −0.644457 0.764640i \(-0.722917\pi\)
0.764640 + 0.644457i \(0.222917\pi\)
\(350\) −1602.76 + 6123.94i −0.244775 + 0.935253i
\(351\) 0 0
\(352\) 5619.36 + 3029.84i 0.850888 + 0.458781i
\(353\) 9151.32 1.37982 0.689909 0.723896i \(-0.257651\pi\)
0.689909 + 0.723896i \(0.257651\pi\)
\(354\) 0 0
\(355\) 8168.92 8168.92i 1.22130 1.22130i
\(356\) −1374.70 + 2446.37i −0.204659 + 0.364206i
\(357\) 0 0
\(358\) 3472.26 + 5934.09i 0.512610 + 0.876052i
\(359\) 290.943i 0.0427727i −0.999771 0.0213863i \(-0.993192\pi\)
0.999771 0.0213863i \(-0.00680800\pi\)
\(360\) 0 0
\(361\) 1482.91i 0.216199i
\(362\) 2429.81 1421.77i 0.352784 0.206427i
\(363\) 0 0
\(364\) 2612.50 + 9314.89i 0.376188 + 1.34130i
\(365\) 5443.88 5443.88i 0.780674 0.780674i
\(366\) 0 0
\(367\) −5526.68 −0.786077 −0.393039 0.919522i \(-0.628576\pi\)
−0.393039 + 0.919522i \(0.628576\pi\)
\(368\) 8169.44 4973.72i 1.15723 0.704547i
\(369\) 0 0
\(370\) −9518.45 2491.18i −1.33741 0.350027i
\(371\) −2296.13 + 2296.13i −0.321319 + 0.321319i
\(372\) 0 0
\(373\) −978.030 978.030i −0.135765 0.135765i 0.635958 0.771724i \(-0.280605\pi\)
−0.771724 + 0.635958i \(0.780605\pi\)
\(374\) 6532.94 3822.67i 0.903236 0.528517i
\(375\) 0 0
\(376\) 731.554 757.558i 0.100338 0.103904i
\(377\) 5643.92i 0.771026i
\(378\) 0 0
\(379\) −4408.79 4408.79i −0.597531 0.597531i 0.342124 0.939655i \(-0.388854\pi\)
−0.939655 + 0.342124i \(0.888854\pi\)
\(380\) −8513.27 4783.88i −1.14927 0.645811i
\(381\) 0 0
\(382\) −207.689 + 793.553i −0.0278175 + 0.106287i
\(383\) −6799.13 −0.907101 −0.453550 0.891231i \(-0.649843\pi\)
−0.453550 + 0.891231i \(0.649843\pi\)
\(384\) 0 0
\(385\) −8636.15 −1.14322
\(386\) −3076.48 + 11754.8i −0.405671 + 1.55001i
\(387\) 0 0
\(388\) 5343.66 + 3002.78i 0.699184 + 0.392894i
\(389\) 5520.37 + 5520.37i 0.719521 + 0.719521i 0.968507 0.248986i \(-0.0800972\pi\)
−0.248986 + 0.968507i \(0.580097\pi\)
\(390\) 0 0
\(391\) 11339.7i 1.46669i
\(392\) −1990.67 + 2061.43i −0.256490 + 0.265607i
\(393\) 0 0
\(394\) −3233.83 + 1892.23i −0.413498 + 0.241953i
\(395\) −10345.1 10345.1i −1.31777 1.31777i
\(396\) 0 0
\(397\) −4743.70 + 4743.70i −0.599696 + 0.599696i −0.940232 0.340536i \(-0.889392\pi\)
0.340536 + 0.940232i \(0.389392\pi\)
\(398\) −9120.46 2387.01i −1.14866 0.300628i
\(399\) 0 0
\(400\) −8317.77 + 5064.03i −1.03972 + 0.633004i
\(401\) 1674.92 0.208582 0.104291 0.994547i \(-0.466743\pi\)
0.104291 + 0.994547i \(0.466743\pi\)
\(402\) 0 0
\(403\) −1721.21 + 1721.21i −0.212754 + 0.212754i
\(404\) −3006.31 10719.0i −0.370222 1.32003i
\(405\) 0 0
\(406\) −2465.01 + 1442.37i −0.301321 + 0.176314i
\(407\) 7369.22i 0.897491i
\(408\) 0 0
\(409\) 11918.0i 1.44084i 0.693536 + 0.720422i \(0.256052\pi\)
−0.693536 + 0.720422i \(0.743948\pi\)
\(410\) 5356.19 + 9153.74i 0.645179 + 1.10261i
\(411\) 0 0
\(412\) −2007.71 + 3572.87i −0.240080 + 0.427240i
\(413\) −3503.65 + 3503.65i −0.417442 + 0.417442i
\(414\) 0 0
\(415\) 21810.6 2.57985
\(416\) −7063.04 + 13099.6i −0.832438 + 1.54390i
\(417\) 0 0
\(418\) 1851.85 7075.68i 0.216691 0.827949i
\(419\) −4342.25 + 4342.25i −0.506284 + 0.506284i −0.913384 0.407100i \(-0.866540\pi\)
0.407100 + 0.913384i \(0.366540\pi\)
\(420\) 0 0
\(421\) −8933.14 8933.14i −1.03414 1.03414i −0.999396 0.0347474i \(-0.988937\pi\)
−0.0347474 0.999396i \(-0.511063\pi\)
\(422\) 7698.69 + 13157.1i 0.888071 + 1.51772i
\(423\) 0 0
\(424\) −4994.59 + 87.2197i −0.572073 + 0.00999000i
\(425\) 11545.6i 1.31776i
\(426\) 0 0
\(427\) −8737.28 8737.28i −0.990227 0.990227i
\(428\) 1934.25 + 6896.57i 0.218447 + 0.778874i
\(429\) 0 0
\(430\) 5267.43 + 1378.59i 0.590739 + 0.154609i
\(431\) 6175.68 0.690191 0.345095 0.938568i \(-0.387847\pi\)
0.345095 + 0.938568i \(0.387847\pi\)
\(432\) 0 0
\(433\) 7.68815 0.000853276 0.000426638 1.00000i \(-0.499864\pi\)
0.000426638 1.00000i \(0.499864\pi\)
\(434\) 1191.62 + 311.872i 0.131797 + 0.0344939i
\(435\) 0 0
\(436\) −10717.9 + 3006.01i −1.17728 + 0.330187i
\(437\) −7748.11 7748.11i −0.848152 0.848152i
\(438\) 0 0
\(439\) 15185.1i 1.65090i −0.564477 0.825449i \(-0.690922\pi\)
0.564477 0.825449i \(-0.309078\pi\)
\(440\) −9556.78 9228.74i −1.03546 0.999915i
\(441\) 0 0
\(442\) 8911.26 + 15229.4i 0.958971 + 1.63888i
\(443\) 3404.98 + 3404.98i 0.365182 + 0.365182i 0.865716 0.500535i \(-0.166863\pi\)
−0.500535 + 0.865716i \(0.666863\pi\)
\(444\) 0 0
\(445\) 4129.24 4129.24i 0.439876 0.439876i
\(446\) −2215.21 + 8464.01i −0.235186 + 0.898615i
\(447\) 0 0
\(448\) 7526.38 262.944i 0.793723 0.0277297i
\(449\) −6766.99 −0.711257 −0.355628 0.934627i \(-0.615733\pi\)
−0.355628 + 0.934627i \(0.615733\pi\)
\(450\) 0 0
\(451\) −5616.82 + 5616.82i −0.586443 + 0.586443i
\(452\) 2315.76 + 1301.30i 0.240983 + 0.135416i
\(453\) 0 0
\(454\) 197.025 + 336.716i 0.0203675 + 0.0348081i
\(455\) 20132.3i 2.07432i
\(456\) 0 0
\(457\) 7528.20i 0.770578i −0.922796 0.385289i \(-0.874102\pi\)
0.922796 0.385289i \(-0.125898\pi\)
\(458\) 9898.18 5791.79i 1.00985 0.590901i
\(459\) 0 0
\(460\) −19164.1 + 5374.86i −1.94246 + 0.544792i
\(461\) −9029.85 + 9029.85i −0.912282 + 0.912282i −0.996451 0.0841690i \(-0.973176\pi\)
0.0841690 + 0.996451i \(0.473176\pi\)
\(462\) 0 0
\(463\) 8555.19 0.858733 0.429367 0.903130i \(-0.358737\pi\)
0.429367 + 0.903130i \(0.358737\pi\)
\(464\) −4269.13 1038.02i −0.427132 0.103856i
\(465\) 0 0
\(466\) 712.479 + 186.470i 0.0708261 + 0.0185366i
\(467\) −1326.73 + 1326.73i −0.131464 + 0.131464i −0.769777 0.638313i \(-0.779632\pi\)
0.638313 + 0.769777i \(0.279632\pi\)
\(468\) 0 0
\(469\) 4407.13 + 4407.13i 0.433907 + 0.433907i
\(470\) −1891.53 + 1106.80i −0.185638 + 0.108623i
\(471\) 0 0
\(472\) −7621.21 + 133.088i −0.743209 + 0.0129785i
\(473\) 4078.06i 0.396426i
\(474\) 0 0
\(475\) 7888.79 + 7888.79i 0.762027 + 0.762027i
\(476\) 4374.12 7784.08i 0.421193 0.749543i
\(477\) 0 0
\(478\) −811.835 + 3101.91i −0.0776830 + 0.296816i
\(479\) 6121.90 0.583960 0.291980 0.956424i \(-0.405686\pi\)
0.291980 + 0.956424i \(0.405686\pi\)
\(480\) 0 0
\(481\) 17178.9 1.62846
\(482\) 1946.21 7436.21i 0.183916 0.702718i
\(483\) 0 0
\(484\) −341.718 + 608.112i −0.0320922 + 0.0571104i
\(485\) −9019.59 9019.59i −0.844450 0.844450i
\(486\) 0 0
\(487\) 6508.23i 0.605577i −0.953058 0.302789i \(-0.902082\pi\)
0.953058 0.302789i \(-0.0979177\pi\)
\(488\) −331.890 19005.5i −0.0307867 1.76299i
\(489\) 0 0
\(490\) 5147.15 3011.79i 0.474540 0.277671i
\(491\) 8093.67 + 8093.67i 0.743915 + 0.743915i 0.973329 0.229414i \(-0.0736811\pi\)
−0.229414 + 0.973329i \(0.573681\pi\)
\(492\) 0 0
\(493\) −3683.35 + 3683.35i −0.336490 + 0.336490i
\(494\) 16494.6 + 4316.97i 1.50228 + 0.393177i
\(495\) 0 0
\(496\) 985.381 + 1618.51i 0.0892035 + 0.146518i
\(497\) 10207.0 0.921219
\(498\) 0 0
\(499\) −6772.14 + 6772.14i −0.607540 + 0.607540i −0.942303 0.334762i \(-0.891344\pi\)
0.334762 + 0.942303i \(0.391344\pi\)
\(500\) 3482.52 976.727i 0.311486 0.0873611i
\(501\) 0 0
\(502\) −3115.79 + 1823.17i −0.277021 + 0.162095i
\(503\) 3296.12i 0.292180i 0.989271 + 0.146090i \(0.0466689\pi\)
−0.989271 + 0.146090i \(0.953331\pi\)
\(504\) 0 0
\(505\) 23167.0i 2.04143i
\(506\) −7528.66 12866.5i −0.661443 1.13041i
\(507\) 0 0
\(508\) −4972.31 2794.10i −0.434273 0.244032i
\(509\) −6445.02 + 6445.02i −0.561239 + 0.561239i −0.929659 0.368421i \(-0.879899\pi\)
0.368421 + 0.929659i \(0.379899\pi\)
\(510\) 0 0
\(511\) 6802.08 0.588858
\(512\) 8609.69 + 7751.84i 0.743160 + 0.669113i
\(513\) 0 0
\(514\) 35.1429 134.276i 0.00301573 0.0115227i
\(515\) 6030.66 6030.66i 0.516005 0.516005i
\(516\) 0 0
\(517\) −1160.66 1160.66i −0.0987346 0.0987346i
\(518\) −4390.26 7502.96i −0.372388 0.636411i
\(519\) 0 0
\(520\) 21513.7 22278.4i 1.81430 1.87880i
\(521\) 15572.4i 1.30948i 0.755854 + 0.654740i \(0.227222\pi\)
−0.755854 + 0.654740i \(0.772778\pi\)
\(522\) 0 0
\(523\) 2333.98 + 2333.98i 0.195139 + 0.195139i 0.797913 0.602773i \(-0.205938\pi\)
−0.602773 + 0.797913i \(0.705938\pi\)
\(524\) −22218.5 + 6231.52i −1.85233 + 0.519513i
\(525\) 0 0
\(526\) −1226.80 321.078i −0.101694 0.0266153i
\(527\) 2246.60 0.185699
\(528\) 0 0
\(529\) −10166.4 −0.835572
\(530\) 10056.6 + 2632.03i 0.824212 + 0.215713i
\(531\) 0 0
\(532\) −2329.92 8307.33i −0.189877 0.677009i
\(533\) −13093.7 13093.7i −1.06408 1.06408i
\(534\) 0 0
\(535\) 14905.6i 1.20453i
\(536\) 167.407 + 9586.46i 0.0134904 + 0.772523i
\(537\) 0 0
\(538\) −9476.44 16195.3i −0.759402 1.29782i
\(539\) 3158.34 + 3158.34i 0.252392 + 0.252392i
\(540\) 0 0
\(541\) 8320.06 8320.06i 0.661196 0.661196i −0.294466 0.955662i \(-0.595142\pi\)
0.955662 + 0.294466i \(0.0951417\pi\)
\(542\) 222.159 848.839i 0.0176061 0.0672707i
\(543\) 0 0
\(544\) 13158.6 3939.61i 1.03708 0.310496i
\(545\) 23164.7 1.82067
\(546\) 0 0
\(547\) −10206.5 + 10206.5i −0.797801 + 0.797801i −0.982748 0.184947i \(-0.940789\pi\)
0.184947 + 0.982748i \(0.440789\pi\)
\(548\) 2983.39 5309.17i 0.232562 0.413862i
\(549\) 0 0
\(550\) 7665.36 + 13100.1i 0.594277 + 1.01562i
\(551\) 5033.44i 0.389168i
\(552\) 0 0
\(553\) 12926.2i 0.993989i
\(554\) 12164.3 7117.77i 0.932871 0.545858i
\(555\) 0 0
\(556\) −3904.32 13920.9i −0.297806 1.06183i
\(557\) −9984.48 + 9984.48i −0.759526 + 0.759526i −0.976236 0.216710i \(-0.930467\pi\)
0.216710 + 0.976236i \(0.430467\pi\)
\(558\) 0 0
\(559\) −9506.63 −0.719298
\(560\) −15228.3 3702.71i −1.14913 0.279407i
\(561\) 0 0
\(562\) −3747.97 980.921i −0.281314 0.0736257i
\(563\) 12193.3 12193.3i 0.912761 0.912761i −0.0837279 0.996489i \(-0.526683\pi\)
0.996489 + 0.0837279i \(0.0266827\pi\)
\(564\) 0 0
\(565\) −3908.78 3908.78i −0.291051 0.291051i
\(566\) −19247.7 + 11262.6i −1.42940 + 0.836397i
\(567\) 0 0
\(568\) 11295.1 + 10907.4i 0.834385 + 0.805744i
\(569\) 4990.14i 0.367659i −0.982958 0.183829i \(-0.941151\pi\)
0.982958 0.183829i \(-0.0588494\pi\)
\(570\) 0 0
\(571\) 6896.58 + 6896.58i 0.505451 + 0.505451i 0.913127 0.407676i \(-0.133661\pi\)
−0.407676 + 0.913127i \(0.633661\pi\)
\(572\) 20222.1 + 11363.4i 1.47820 + 0.830646i
\(573\) 0 0
\(574\) −2372.50 + 9065.01i −0.172520 + 0.659174i
\(575\) 22738.9 1.64918
\(576\) 0 0
\(577\) −12824.7 −0.925299 −0.462649 0.886541i \(-0.653101\pi\)
−0.462649 + 0.886541i \(0.653101\pi\)
\(578\) 604.948 2311.43i 0.0435338 0.166337i
\(579\) 0 0
\(580\) 7970.67 + 4478.98i 0.570628 + 0.320654i
\(581\) 13626.0 + 13626.0i 0.972984 + 0.972984i
\(582\) 0 0
\(583\) 7785.88i 0.553102i
\(584\) 7527.19 + 7268.81i 0.533352 + 0.515044i
\(585\) 0 0
\(586\) 5700.49 3335.57i 0.401852 0.235138i
\(587\) −15610.1 15610.1i −1.09761 1.09761i −0.994690 0.102920i \(-0.967181\pi\)
−0.102920 0.994690i \(-0.532819\pi\)
\(588\) 0 0
\(589\) 1535.04 1535.04i 0.107385 0.107385i
\(590\) 15345.3 + 4016.19i 1.07077 + 0.280244i
\(591\) 0 0
\(592\) 3159.52 12994.3i 0.219350 0.902132i
\(593\) −16469.9 −1.14054 −0.570268 0.821458i \(-0.693161\pi\)
−0.570268 + 0.821458i \(0.693161\pi\)
\(594\) 0 0
\(595\) −13138.8 + 13138.8i −0.905272 + 0.905272i
\(596\) 2281.18 + 8133.55i 0.156780 + 0.558999i
\(597\) 0 0
\(598\) 29993.9 17550.5i 2.05107 1.20016i
\(599\) 10220.6i 0.697164i 0.937278 + 0.348582i \(0.113337\pi\)
−0.937278 + 0.348582i \(0.886663\pi\)
\(600\) 0 0
\(601\) 16286.3i 1.10538i 0.833387 + 0.552690i \(0.186399\pi\)
−0.833387 + 0.552690i \(0.813601\pi\)
\(602\) 2429.53 + 4152.07i 0.164485 + 0.281106i
\(603\) 0 0
\(604\) 4648.47 8272.29i 0.313151 0.557276i
\(605\) 1026.43 1026.43i 0.0689760 0.0689760i
\(606\) 0 0
\(607\) −21362.6 −1.42847 −0.714235 0.699906i \(-0.753225\pi\)
−0.714235 + 0.699906i \(0.753225\pi\)
\(608\) 6299.06 11682.7i 0.420166 0.779270i
\(609\) 0 0
\(610\) −10015.4 + 38267.7i −0.664776 + 2.54002i
\(611\) 2705.69 2705.69i 0.179150 0.179150i
\(612\) 0 0
\(613\) 1189.98 + 1189.98i 0.0784057 + 0.0784057i 0.745222 0.666816i \(-0.232343\pi\)
−0.666816 + 0.745222i \(0.732343\pi\)
\(614\) 3899.87 + 6664.89i 0.256329 + 0.438067i
\(615\) 0 0
\(616\) −204.946 11736.2i −0.0134051 0.767635i
\(617\) 1361.21i 0.0888173i 0.999013 + 0.0444087i \(0.0141404\pi\)
−0.999013 + 0.0444087i \(0.985860\pi\)
\(618\) 0 0
\(619\) −5468.68 5468.68i −0.355097 0.355097i 0.506905 0.862002i \(-0.330789\pi\)
−0.862002 + 0.506905i \(0.830789\pi\)
\(620\) −1064.85 3796.74i −0.0689767 0.245937i
\(621\) 0 0
\(622\) 10855.1 + 2841.02i 0.699762 + 0.183142i
\(623\) 5159.44 0.331796
\(624\) 0 0
\(625\) 11492.9 0.735543
\(626\) −20055.4 5248.90i −1.28047 0.335125i
\(627\) 0 0
\(628\) −2390.18 + 670.361i −0.151876 + 0.0425961i
\(629\) −11211.3 11211.3i −0.710690 0.710690i
\(630\) 0 0
\(631\) 11369.6i 0.717303i 0.933472 + 0.358651i \(0.116763\pi\)
−0.933472 + 0.358651i \(0.883237\pi\)
\(632\) 13813.1 14304.1i 0.869392 0.900296i
\(633\) 0 0
\(634\) −6595.42 11271.6i −0.413151 0.706075i
\(635\) 8392.79 + 8392.79i 0.524500 + 0.524500i
\(636\) 0 0
\(637\) −7362.60 + 7362.60i −0.457954 + 0.457954i
\(638\) −1733.82 + 6624.70i −0.107590 + 0.411089i
\(639\) 0 0
\(640\) −12894.9 20370.6i −0.796430 1.25816i
\(641\) −9280.18 −0.571833 −0.285917 0.958255i \(-0.592298\pi\)
−0.285917 + 0.958255i \(0.592298\pi\)
\(642\) 0 0
\(643\) −9377.81 + 9377.81i −0.575155 + 0.575155i −0.933565 0.358409i \(-0.883319\pi\)
0.358409 + 0.933565i \(0.383319\pi\)
\(644\) −15330.6 8614.75i −0.938058 0.527125i
\(645\) 0 0
\(646\) −7947.37 13582.1i −0.484032 0.827212i
\(647\) 1950.32i 0.118508i 0.998243 + 0.0592542i \(0.0188723\pi\)
−0.998243 + 0.0592542i \(0.981128\pi\)
\(648\) 0 0
\(649\) 11880.4i 0.718562i
\(650\) −30538.5 + 17869.2i −1.84280 + 1.07829i
\(651\) 0 0
\(652\) −14395.5 + 4037.42i −0.864677 + 0.242512i
\(653\) 8699.36 8699.36i 0.521336 0.521336i −0.396639 0.917975i \(-0.629823\pi\)
0.917975 + 0.396639i \(0.129823\pi\)
\(654\) 0 0
\(655\) 48020.9 2.86463
\(656\) −12312.4 + 7496.06i −0.732804 + 0.446147i
\(657\) 0 0
\(658\) −1873.19 490.253i −0.110980 0.0290457i
\(659\) −7958.47 + 7958.47i −0.470437 + 0.470437i −0.902056 0.431619i \(-0.857942\pi\)
0.431619 + 0.902056i \(0.357942\pi\)
\(660\) 0 0
\(661\) 7483.62 + 7483.62i 0.440362 + 0.440362i 0.892134 0.451772i \(-0.149208\pi\)
−0.451772 + 0.892134i \(0.649208\pi\)
\(662\) 26377.5 15434.5i 1.54863 0.906159i
\(663\) 0 0
\(664\) 517.591 + 29639.6i 0.0302507 + 1.73229i
\(665\) 17954.7i 1.04700i
\(666\) 0 0
\(667\) 7254.28 + 7254.28i 0.421120 + 0.421120i
\(668\) 4627.79 8235.49i 0.268046 0.477007i
\(669\) 0 0
\(670\) 5051.83 19302.4i 0.291297 1.11301i
\(671\) −29627.0 −1.70452
\(672\) 0 0
\(673\) 3592.82 0.205785 0.102892 0.994692i \(-0.467190\pi\)
0.102892 + 0.994692i \(0.467190\pi\)
\(674\) 7430.48 28390.9i 0.424646 1.62252i
\(675\) 0 0
\(676\) −17879.8 + 31818.5i −1.01729 + 1.81034i
\(677\) 16494.8 + 16494.8i 0.936408 + 0.936408i 0.998096 0.0616872i \(-0.0196481\pi\)
−0.0616872 + 0.998096i \(0.519648\pi\)
\(678\) 0 0
\(679\) 11269.9i 0.636964i
\(680\) −28579.7 + 499.082i −1.61174 + 0.0281455i
\(681\) 0 0
\(682\) 2549.08 1491.56i 0.143122 0.0837460i
\(683\) −20875.1 20875.1i −1.16949 1.16949i −0.982328 0.187166i \(-0.940070\pi\)
−0.187166 0.982328i \(-0.559930\pi\)
\(684\) 0 0
\(685\) −8961.36 + 8961.36i −0.499848 + 0.499848i
\(686\) 18902.1 + 4947.08i 1.05202 + 0.275336i
\(687\) 0 0
\(688\) −1748.45 + 7190.92i −0.0968880 + 0.398476i
\(689\) −18150.2 −1.00358
\(690\) 0 0
\(691\) 22267.3 22267.3i 1.22589 1.22589i 0.260382 0.965506i \(-0.416151\pi\)
0.965506 0.260382i \(-0.0838487\pi\)
\(692\) −16986.6 + 4764.14i −0.933138 + 0.261713i
\(693\) 0 0
\(694\) −13213.1 + 7731.47i −0.722712 + 0.422886i
\(695\) 30087.2i 1.64212i
\(696\) 0 0
\(697\) 17090.5i 0.928765i
\(698\) −1582.92 2705.21i −0.0858373 0.146696i
\(699\) 0 0
\(700\) 15608.9 + 8771.17i 0.842803 + 0.473598i
\(701\) 12419.0 12419.0i 0.669129 0.669129i −0.288385 0.957515i \(-0.593118\pi\)
0.957515 + 0.288385i \(0.0931183\pi\)
\(702\) 0 0
\(703\) −15320.7 −0.821950
\(704\) 12314.7 13206.3i 0.659270 0.707003i
\(705\) 0 0
\(706\) 6553.60 25040.4i 0.349360 1.33486i
\(707\) −14473.5 + 14473.5i −0.769918 + 0.769918i
\(708\) 0 0
\(709\) −17027.9 17027.9i −0.901970 0.901970i 0.0936362 0.995606i \(-0.470151\pi\)
−0.995606 + 0.0936362i \(0.970151\pi\)
\(710\) −16502.3 28202.4i −0.872281 1.49073i
\(711\) 0 0
\(712\) 5709.45 + 5513.47i 0.300521 + 0.290205i
\(713\) 4424.64i 0.232404i
\(714\) 0 0
\(715\) −34132.9 34132.9i −1.78531 1.78531i
\(716\) 18723.9 5251.39i 0.977296 0.274097i
\(717\) 0 0
\(718\) −796.097 208.355i −0.0413790 0.0108297i
\(719\) −9987.52 −0.518041 −0.259021 0.965872i \(-0.583400\pi\)
−0.259021 + 0.965872i \(0.583400\pi\)
\(720\) 0 0
\(721\) 7535.25 0.389220
\(722\) 4057.63 + 1061.97i 0.209154 + 0.0547400i
\(723\) 0 0
\(724\) −2150.27 7666.79i −0.110379 0.393555i
\(725\) −7385.99 7385.99i −0.378357 0.378357i
\(726\) 0 0
\(727\) 18495.4i 0.943545i 0.881720 + 0.471772i \(0.156386\pi\)
−0.881720 + 0.471772i \(0.843614\pi\)
\(728\) 27358.9 477.763i 1.39284 0.0243229i
\(729\) 0 0
\(730\) −10997.3 18794.5i −0.557575 0.952897i
\(731\) 6204.24 + 6204.24i 0.313915 + 0.313915i
\(732\) 0 0
\(733\) 3852.08 3852.08i 0.194106 0.194106i −0.603362 0.797468i \(-0.706172\pi\)
0.797468 + 0.603362i \(0.206172\pi\)
\(734\) −3957.86 + 15122.5i −0.199029 + 0.760464i
\(735\) 0 0
\(736\) −7758.99 25915.6i −0.388587 1.29791i
\(737\) 14944.0 0.746904
\(738\) 0 0
\(739\) 16168.9 16168.9i 0.804846 0.804846i −0.179003 0.983849i \(-0.557287\pi\)
0.983849 + 0.179003i \(0.0572871\pi\)
\(740\) −13633.0 + 24261.0i −0.677244 + 1.20521i
\(741\) 0 0
\(742\) 4638.49 + 7927.18i 0.229493 + 0.392205i
\(743\) 36990.3i 1.82644i −0.407471 0.913218i \(-0.633589\pi\)
0.407471 0.913218i \(-0.366411\pi\)
\(744\) 0 0
\(745\) 17579.1i 0.864492i
\(746\) −3376.55 + 1975.75i −0.165716 + 0.0969667i
\(747\) 0 0
\(748\) −5781.35 20613.4i −0.282603 1.00762i
\(749\) 9312.18 9312.18i 0.454285 0.454285i
\(750\) 0 0
\(751\) −10125.3 −0.491981 −0.245990 0.969272i \(-0.579113\pi\)
−0.245990 + 0.969272i \(0.579113\pi\)
\(752\) −1548.99 2544.24i −0.0751140 0.123376i
\(753\) 0 0
\(754\) −15443.3 4041.82i −0.745903 0.195218i
\(755\) −13962.8 + 13962.8i −0.673059 + 0.673059i
\(756\) 0 0
\(757\) −8998.60 8998.60i −0.432047 0.432047i 0.457277 0.889324i \(-0.348825\pi\)
−0.889324 + 0.457277i \(0.848825\pi\)
\(758\) −15220.9 + 8906.32i −0.729351 + 0.426770i
\(759\) 0 0
\(760\) −19186.6 + 19868.7i −0.915754 + 0.948305i
\(761\) 25265.9i 1.20353i −0.798672 0.601766i \(-0.794464\pi\)
0.798672 0.601766i \(-0.205536\pi\)
\(762\) 0 0
\(763\) 14472.0 + 14472.0i 0.686661 + 0.686661i
\(764\) 2022.64 + 1136.58i 0.0957807 + 0.0538222i
\(765\) 0 0
\(766\) −4869.11 + 18604.2i −0.229671 + 0.877544i
\(767\) −27695.2 −1.30380
\(768\) 0 0
\(769\) −28077.3 −1.31664 −0.658318 0.752740i \(-0.728732\pi\)
−0.658318 + 0.752740i \(0.728732\pi\)
\(770\) −6184.67 + 23630.8i −0.289455 + 1.10597i
\(771\) 0 0
\(772\) 29961.2 + 16836.2i 1.39680 + 0.784905i
\(773\) 8413.75 + 8413.75i 0.391490 + 0.391490i 0.875218 0.483728i \(-0.160718\pi\)
−0.483728 + 0.875218i \(0.660718\pi\)
\(774\) 0 0
\(775\) 4504.97i 0.208804i
\(776\) 12043.2 12471.3i 0.557120 0.576924i
\(777\) 0 0
\(778\) 19058.5 11151.9i 0.878254 0.513899i
\(779\) 11677.4 + 11677.4i 0.537083 + 0.537083i
\(780\) 0 0
\(781\) 17305.3 17305.3i 0.792870 0.792870i
\(782\) −31028.6 8120.81i −1.41890 0.371355i
\(783\) 0 0
\(784\) 4215.04 + 6923.28i 0.192011 + 0.315383i
\(785\) 5165.89 0.234877
\(786\) 0 0
\(787\) 8677.71 8677.71i 0.393046 0.393046i −0.482726 0.875772i \(-0.660353\pi\)
0.875772 + 0.482726i \(0.160353\pi\)
\(788\) 2861.79 + 10203.7i 0.129374 + 0.461285i
\(789\) 0 0
\(790\) −35715.6 + 20898.5i −1.60849 + 0.941185i
\(791\) 4883.98i 0.219538i
\(792\) 0 0
\(793\) 69065.3i 3.09279i
\(794\) 9582.88 + 16377.1i 0.428317 + 0.731994i
\(795\) 0 0
\(796\) −13063.0 + 23246.6i −0.581665 + 1.03512i
\(797\) −16951.1 + 16951.1i −0.753374 + 0.753374i −0.975107 0.221733i \(-0.928829\pi\)
0.221733 + 0.975107i \(0.428829\pi\)
\(798\) 0 0
\(799\) −3531.58 −0.156369
\(800\) 7899.87 + 26386.2i 0.349128 + 1.16611i
\(801\) 0 0
\(802\) 1199.47 4583.01i 0.0528114 0.201785i
\(803\) 11532.5 11532.5i 0.506814 0.506814i
\(804\) 0 0
\(805\) 25876.5 + 25876.5i 1.13295 + 1.13295i
\(806\) 3477.07 + 5942.32i 0.151954 + 0.259689i
\(807\) 0 0
\(808\) −31483.0 + 549.782i −1.37075 + 0.0239372i
\(809\) 39305.4i 1.70816i −0.520138 0.854082i \(-0.674120\pi\)
0.520138 0.854082i \(-0.325880\pi\)
\(810\) 0 0
\(811\) 25524.4 + 25524.4i 1.10516 + 1.10516i 0.993778 + 0.111378i \(0.0355263\pi\)
0.111378 + 0.993778i \(0.464474\pi\)
\(812\) 2181.42 + 7777.86i 0.0942769 + 0.336145i
\(813\) 0 0
\(814\) −20164.1 5277.37i −0.868247 0.227238i
\(815\) 31112.9 1.33722
\(816\) 0 0
\(817\) 8478.34 0.363059
\(818\) 32610.7 + 8534.89i 1.39389 + 0.364811i
\(819\) 0 0
\(820\) 28882.8 8100.63i 1.23004 0.344983i
\(821\) 20817.5 + 20817.5i 0.884939 + 0.884939i 0.994032 0.109093i \(-0.0347945\pi\)
−0.109093 + 0.994032i \(0.534794\pi\)
\(822\) 0 0
\(823\) 8625.74i 0.365339i −0.983174 0.182670i \(-0.941526\pi\)
0.983174 0.182670i \(-0.0584739\pi\)
\(824\) 8338.53 + 8052.30i 0.352532 + 0.340431i
\(825\) 0 0
\(826\) 7077.82 + 12096.0i 0.298147 + 0.509533i
\(827\) 16592.0 + 16592.0i 0.697654 + 0.697654i 0.963904 0.266250i \(-0.0857848\pi\)
−0.266250 + 0.963904i \(0.585785\pi\)
\(828\) 0 0
\(829\) −11523.3 + 11523.3i −0.482777 + 0.482777i −0.906018 0.423240i \(-0.860893\pi\)
0.423240 + 0.906018i \(0.360893\pi\)
\(830\) 15619.4 59679.5i 0.653200 2.49579i
\(831\) 0 0
\(832\) 30786.0 + 28707.5i 1.28283 + 1.19622i
\(833\) 9609.99 0.399720
\(834\) 0 0
\(835\) −13900.7 + 13900.7i −0.576112 + 0.576112i
\(836\) −18034.7 10134.3i −0.746106 0.419261i
\(837\) 0 0
\(838\) 8771.91 + 14991.2i 0.361600 + 0.617975i
\(839\) 1709.60i 0.0703482i −0.999381 0.0351741i \(-0.988801\pi\)
0.999381 0.0351741i \(-0.0111986\pi\)
\(840\) 0 0
\(841\) 19676.4i 0.806772i
\(842\) −30840.8 + 18046.1i −1.26228 + 0.738609i
\(843\) 0 0
\(844\) 41514.5 11643.4i 1.69312 0.474860i
\(845\) 53706.5 53706.5i 2.18646 2.18646i
\(846\) 0 0
\(847\) 1282.52 0.0520282
\(848\) −3338.16 + 13729.0i −0.135180 + 0.555962i
\(849\) 0 0
\(850\) 31591.9 + 8268.26i 1.27482 + 0.333646i
\(851\) −22080.4 + 22080.4i −0.889433 + 0.889433i
\(852\) 0 0
\(853\) −27950.1 27950.1i −1.12191 1.12191i −0.991453 0.130462i \(-0.958354\pi\)
−0.130462 0.991453i \(-0.541646\pi\)
\(854\) −30164.6 + 17650.4i −1.20868 + 0.707243i
\(855\) 0 0
\(856\) 20256.0 353.727i 0.808805 0.0141240i
\(857\) 20208.0i 0.805477i −0.915315 0.402739i \(-0.868058\pi\)
0.915315 0.402739i \(-0.131942\pi\)
\(858\) 0 0
\(859\) −6906.75 6906.75i −0.274337 0.274337i 0.556507 0.830843i \(-0.312141\pi\)
−0.830843 + 0.556507i \(0.812141\pi\)
\(860\) 7544.40 13425.8i 0.299142 0.532345i
\(861\) 0 0
\(862\) 4422.64 16898.3i 0.174751 0.667702i
\(863\) −16342.0 −0.644599 −0.322300 0.946638i \(-0.604456\pi\)
−0.322300 + 0.946638i \(0.604456\pi\)
\(864\) 0 0
\(865\) 36713.1 1.44310
\(866\) 5.50577 21.0368i 0.000216043 0.000825473i
\(867\) 0 0
\(868\) 1706.73 3037.26i 0.0667399 0.118769i
\(869\) −21915.4 21915.4i −0.855501 0.855501i
\(870\) 0 0
\(871\) 34836.9i 1.35523i
\(872\) 549.726 + 31479.8i 0.0213487 + 1.22252i
\(873\) 0 0
\(874\) −26749.6 + 15652.2i −1.03526 + 0.605770i
\(875\) −4702.32 4702.32i −0.181677 0.181677i
\(876\) 0 0
\(877\) 517.041 517.041i 0.0199079 0.0199079i −0.697083 0.716991i \(-0.745519\pi\)
0.716991 + 0.697083i \(0.245519\pi\)
\(878\) −41550.4 10874.6i −1.59710 0.417995i
\(879\) 0 0
\(880\) −32096.2 + 19540.9i −1.22950 + 0.748548i
\(881\) 22171.2 0.847861 0.423931 0.905695i \(-0.360650\pi\)
0.423931 + 0.905695i \(0.360650\pi\)
\(882\) 0 0
\(883\) 589.293 589.293i 0.0224590 0.0224590i −0.695788 0.718247i \(-0.744945\pi\)
0.718247 + 0.695788i \(0.244945\pi\)
\(884\) 48053.2 13477.3i 1.82829 0.512771i
\(885\) 0 0
\(886\) 11755.4 6878.50i 0.445744 0.260821i
\(887\) 13685.0i 0.518034i −0.965873 0.259017i \(-0.916601\pi\)
0.965873 0.259017i \(-0.0833985\pi\)
\(888\) 0 0
\(889\) 10486.7i 0.395627i
\(890\) −8341.60 14255.8i −0.314170 0.536916i
\(891\) 0 0
\(892\) 21573.4 + 12122.8i 0.809787 + 0.455046i
\(893\) −2413.03 + 2413.03i −0.0904242 + 0.0904242i
\(894\) 0 0
\(895\) −40467.9 −1.51139
\(896\) 4670.43 20782.5i 0.174139 0.774881i
\(897\) 0 0
\(898\) −4846.10 + 18516.3i −0.180085 + 0.688081i
\(899\) −1437.20 + 1437.20i −0.0533184 + 0.0533184i
\(900\) 0 0
\(901\) 11845.2 + 11845.2i 0.437981 + 0.437981i
\(902\) 11346.7 + 19391.5i 0.418851 + 0.715817i
\(903\) 0 0
\(904\) 5219.10 5404.62i 0.192019 0.198844i
\(905\) 16570.2i 0.608634i
\(906\) 0 0
\(907\) −32330.9 32330.9i −1.18361 1.18361i −0.978803 0.204804i \(-0.934344\pi\)
−0.204804 0.978803i \(-0.565656\pi\)
\(908\) 1062.44 297.978i 0.0388308 0.0108907i
\(909\) 0 0
\(910\) −55087.3 14417.5i −2.00673 0.525203i
\(911\) 36436.3 1.32513 0.662563 0.749006i \(-0.269469\pi\)
0.662563 + 0.749006i \(0.269469\pi\)
\(912\) 0 0
\(913\) 46204.1 1.67484
\(914\) −20599.1 5391.22i −0.745469 0.195105i
\(915\) 0 0
\(916\) −8759.43 31231.8i −0.315960 1.12656i
\(917\) 30000.8 + 30000.8i 1.08039 + 1.08039i
\(918\) 0 0
\(919\) 18351.8i 0.658726i 0.944203 + 0.329363i \(0.106834\pi\)
−0.944203 + 0.329363i \(0.893166\pi\)
\(920\) 982.932 + 56287.2i 0.0352242 + 2.01710i
\(921\) 0 0
\(922\) 18241.5 + 31174.7i 0.651573 + 1.11354i
\(923\) 40341.4 + 40341.4i 1.43863 + 1.43863i
\(924\) 0 0
\(925\) 22481.4 22481.4i 0.799116 0.799116i
\(926\) 6126.69 23409.3i 0.217425 0.830752i
\(927\) 0 0
\(928\) −5897.59 + 10938.1i −0.208618 + 0.386919i
\(929\) −25908.3 −0.914989 −0.457495 0.889212i \(-0.651253\pi\)
−0.457495 + 0.889212i \(0.651253\pi\)
\(930\) 0 0
\(931\) 6566.22 6566.22i 0.231148 0.231148i
\(932\) 1020.47 1815.99i 0.0358653 0.0638249i
\(933\) 0 0
\(934\) 2680.16 + 4580.39i 0.0938944 + 0.160466i
\(935\) 44551.8i 1.55829i
\(936\) 0 0
\(937\) 41822.4i 1.45814i −0.684438 0.729071i \(-0.739953\pi\)
0.684438 0.729071i \(-0.260047\pi\)
\(938\) 15215.2 8902.96i 0.529630 0.309906i
\(939\) 0 0
\(940\) 1673.91 + 5968.35i 0.0580820 + 0.207092i
\(941\) −35805.6 + 35805.6i −1.24041 + 1.24041i −0.280585 + 0.959829i \(0.590529\pi\)
−0.959829 + 0.280585i \(0.909471\pi\)
\(942\) 0 0
\(943\) 33659.4 1.16236
\(944\) −5093.67 + 20949.0i −0.175619 + 0.722278i
\(945\) 0 0
\(946\) 11158.7 + 2920.45i 0.383509 + 0.100372i
\(947\) −4833.07 + 4833.07i −0.165844 + 0.165844i −0.785150 0.619306i \(-0.787414\pi\)
0.619306 + 0.785150i \(0.287414\pi\)
\(948\) 0 0
\(949\) 26884.1 + 26884.1i 0.919593 + 0.919593i
\(950\) 27235.3 15936.4i 0.930136 0.544257i
\(951\) 0 0
\(952\) −18166.8 17543.2i −0.618477 0.597247i
\(953\) 54695.5i 1.85914i 0.368645 + 0.929570i \(0.379822\pi\)
−0.368645 + 0.929570i \(0.620178\pi\)
\(954\) 0 0
\(955\) −3414.02 3414.02i −0.115681 0.115681i
\(956\) 7906.28 + 4442.79i 0.267476 + 0.150304i
\(957\) 0 0
\(958\) 4384.12 16751.2i 0.147854 0.564932i
\(959\) −11197.1 −0.377033
\(960\) 0 0
\(961\) −28914.4 −0.970575
\(962\) 12302.4 47005.9i 0.412314 1.57540i
\(963\) 0 0
\(964\) −18953.7 10650.7i −0.633254 0.355846i
\(965\) −50571.6 50571.6i −1.68700 1.68700i
\(966\) 0 0
\(967\) 11587.6i 0.385350i −0.981263 0.192675i \(-0.938284\pi\)
0.981263 0.192675i \(-0.0617163\pi\)
\(968\) 1419.24 + 1370.52i 0.0471240 + 0.0455064i
\(969\) 0 0
\(970\) −31139.3 + 18220.7i −1.03074 + 0.603126i
\(971\) −36545.7 36545.7i −1.20784 1.20784i −0.971727 0.236109i \(-0.924128\pi\)
−0.236109 0.971727i \(-0.575872\pi\)
\(972\) 0 0
\(973\) −18796.8 + 18796.8i −0.619321 + 0.619321i
\(974\) −17808.3 4660.79i −0.585845 0.153328i
\(975\) 0 0
\(976\) −52241.8 12702.4i −1.71334 0.416592i
\(977\) −11161.4 −0.365490 −0.182745 0.983160i \(-0.558498\pi\)
−0.182745 + 0.983160i \(0.558498\pi\)
\(978\) 0 0
\(979\) 8747.49 8747.49i 0.285568 0.285568i
\(980\) −4554.98 16240.8i −0.148473 0.529381i
\(981\) 0 0
\(982\) 27942.6 16350.2i 0.908028 0.531321i
\(983\) 52855.9i 1.71500i −0.514486 0.857499i \(-0.672017\pi\)
0.514486 0.857499i \(-0.327983\pi\)
\(984\) 0 0
\(985\) 22053.3i 0.713378i
\(986\) 7440.83 + 12716.4i 0.240329 + 0.410723i
\(987\) 0 0
\(988\) 23624.7 42041.9i 0.760732 1.35378i
\(989\) 12219.1 12219.1i 0.392867 0.392867i
\(990\) 0 0
\(991\) −50245.9 −1.61061 −0.805305 0.592861i \(-0.797998\pi\)
−0.805305 + 0.592861i \(0.797998\pi\)
\(992\) 5134.33 1537.19i 0.164330 0.0491995i
\(993\) 0 0
\(994\) 7309.60 27929.0i 0.233246 0.891202i
\(995\) 39238.0 39238.0i 1.25018 1.25018i
\(996\) 0 0
\(997\) −3886.25 3886.25i −0.123449 0.123449i 0.642683 0.766132i \(-0.277821\pi\)
−0.766132 + 0.642683i \(0.777821\pi\)
\(998\) 13680.6 + 23380.2i 0.433919 + 0.741569i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.4.k.b.37.7 24
3.2 odd 2 48.4.j.a.37.6 yes 24
4.3 odd 2 576.4.k.b.433.11 24
12.11 even 2 192.4.j.a.49.7 24
16.3 odd 4 576.4.k.b.145.11 24
16.13 even 4 inner 144.4.k.b.109.7 24
24.5 odd 2 384.4.j.b.97.12 24
24.11 even 2 384.4.j.a.97.1 24
48.5 odd 4 384.4.j.b.289.12 24
48.11 even 4 384.4.j.a.289.1 24
48.29 odd 4 48.4.j.a.13.6 24
48.35 even 4 192.4.j.a.145.7 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.j.a.13.6 24 48.29 odd 4
48.4.j.a.37.6 yes 24 3.2 odd 2
144.4.k.b.37.7 24 1.1 even 1 trivial
144.4.k.b.109.7 24 16.13 even 4 inner
192.4.j.a.49.7 24 12.11 even 2
192.4.j.a.145.7 24 48.35 even 4
384.4.j.a.97.1 24 24.11 even 2
384.4.j.a.289.1 24 48.11 even 4
384.4.j.b.97.12 24 24.5 odd 2
384.4.j.b.289.12 24 48.5 odd 4
576.4.k.b.145.11 24 16.3 odd 4
576.4.k.b.433.11 24 4.3 odd 2