Properties

Label 192.4.j.a.49.7
Level $192$
Weight $4$
Character 192.49
Analytic conductor $11.328$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,4,Mod(49,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 192.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3283667211\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 49.7
Character \(\chi\) \(=\) 192.49
Dual form 192.4.j.a.145.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.12132 - 2.12132i) q^{3} +(-11.7719 - 11.7719i) q^{5} -14.7089i q^{7} -9.00000i q^{9} +(24.9380 + 24.9380i) q^{11} +(-58.1345 + 58.1345i) q^{13} -49.9441 q^{15} -75.8798 q^{17} +(-51.8464 + 51.8464i) q^{19} +(-31.2023 - 31.2023i) q^{21} -149.444i q^{23} +152.157i q^{25} +(-19.0919 - 19.0919i) q^{27} +(48.5419 - 48.5419i) q^{29} -29.6074 q^{31} +105.803 q^{33} +(-173.153 + 173.153i) q^{35} +(-147.751 - 147.751i) q^{37} +246.644i q^{39} -225.232i q^{41} +(-81.7640 - 81.7640i) q^{43} +(-105.947 + 105.947i) q^{45} -46.5418 q^{47} +126.648 q^{49} +(-160.965 + 160.965i) q^{51} +(-156.105 - 156.105i) q^{53} -587.137i q^{55} +219.965i q^{57} +(238.199 + 238.199i) q^{59} +(-594.013 + 594.013i) q^{61} -132.380 q^{63} +1368.71 q^{65} +(-299.623 + 299.623i) q^{67} +(-317.018 - 317.018i) q^{69} -693.932i q^{71} -462.446i q^{73} +(322.774 + 322.774i) q^{75} +(366.811 - 366.811i) q^{77} +878.797 q^{79} -81.0000 q^{81} +(926.380 - 926.380i) q^{83} +(893.252 + 893.252i) q^{85} -205.946i q^{87} +350.770i q^{89} +(855.096 + 855.096i) q^{91} +(-62.8068 + 62.8068i) q^{93} +1220.66 q^{95} -766.194 q^{97} +(224.442 - 224.442i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 40 q^{11} - 120 q^{15} - 24 q^{19} + 400 q^{29} + 744 q^{31} + 456 q^{35} + 16 q^{37} - 1240 q^{43} - 1176 q^{49} - 744 q^{51} + 752 q^{53} + 1376 q^{59} - 912 q^{61} + 504 q^{63} + 976 q^{65} + 2256 q^{67}+ \cdots + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.12132 2.12132i 0.408248 0.408248i
\(4\) 0 0
\(5\) −11.7719 11.7719i −1.05291 1.05291i −0.998520 0.0543947i \(-0.982677\pi\)
−0.0543947 0.998520i \(-0.517323\pi\)
\(6\) 0 0
\(7\) 14.7089i 0.794207i −0.917774 0.397104i \(-0.870015\pi\)
0.917774 0.397104i \(-0.129985\pi\)
\(8\) 0 0
\(9\) 9.00000i 0.333333i
\(10\) 0 0
\(11\) 24.9380 + 24.9380i 0.683553 + 0.683553i 0.960799 0.277246i \(-0.0894216\pi\)
−0.277246 + 0.960799i \(0.589422\pi\)
\(12\) 0 0
\(13\) −58.1345 + 58.1345i −1.24028 + 1.24028i −0.280393 + 0.959885i \(0.590465\pi\)
−0.959885 + 0.280393i \(0.909535\pi\)
\(14\) 0 0
\(15\) −49.9441 −0.859701
\(16\) 0 0
\(17\) −75.8798 −1.08256 −0.541281 0.840842i \(-0.682060\pi\)
−0.541281 + 0.840842i \(0.682060\pi\)
\(18\) 0 0
\(19\) −51.8464 + 51.8464i −0.626020 + 0.626020i −0.947064 0.321045i \(-0.895966\pi\)
0.321045 + 0.947064i \(0.395966\pi\)
\(20\) 0 0
\(21\) −31.2023 31.2023i −0.324234 0.324234i
\(22\) 0 0
\(23\) 149.444i 1.35483i −0.735600 0.677416i \(-0.763100\pi\)
0.735600 0.677416i \(-0.236900\pi\)
\(24\) 0 0
\(25\) 152.157i 1.21726i
\(26\) 0 0
\(27\) −19.0919 19.0919i −0.136083 0.136083i
\(28\) 0 0
\(29\) 48.5419 48.5419i 0.310828 0.310828i −0.534402 0.845230i \(-0.679463\pi\)
0.845230 + 0.534402i \(0.179463\pi\)
\(30\) 0 0
\(31\) −29.6074 −0.171537 −0.0857685 0.996315i \(-0.527335\pi\)
−0.0857685 + 0.996315i \(0.527335\pi\)
\(32\) 0 0
\(33\) 105.803 0.558119
\(34\) 0 0
\(35\) −173.153 + 173.153i −0.836232 + 0.836232i
\(36\) 0 0
\(37\) −147.751 147.751i −0.656489 0.656489i 0.298058 0.954548i \(-0.403661\pi\)
−0.954548 + 0.298058i \(0.903661\pi\)
\(38\) 0 0
\(39\) 246.644i 1.01268i
\(40\) 0 0
\(41\) 225.232i 0.857933i −0.903320 0.428967i \(-0.858878\pi\)
0.903320 0.428967i \(-0.141122\pi\)
\(42\) 0 0
\(43\) −81.7640 81.7640i −0.289974 0.289974i 0.547096 0.837070i \(-0.315733\pi\)
−0.837070 + 0.547096i \(0.815733\pi\)
\(44\) 0 0
\(45\) −105.947 + 105.947i −0.350971 + 0.350971i
\(46\) 0 0
\(47\) −46.5418 −0.144443 −0.0722215 0.997389i \(-0.523009\pi\)
−0.0722215 + 0.997389i \(0.523009\pi\)
\(48\) 0 0
\(49\) 126.648 0.369235
\(50\) 0 0
\(51\) −160.965 + 160.965i −0.441954 + 0.441954i
\(52\) 0 0
\(53\) −156.105 156.105i −0.404578 0.404578i 0.475265 0.879843i \(-0.342352\pi\)
−0.879843 + 0.475265i \(0.842352\pi\)
\(54\) 0 0
\(55\) 587.137i 1.43945i
\(56\) 0 0
\(57\) 219.965i 0.511143i
\(58\) 0 0
\(59\) 238.199 + 238.199i 0.525608 + 0.525608i 0.919260 0.393652i \(-0.128788\pi\)
−0.393652 + 0.919260i \(0.628788\pi\)
\(60\) 0 0
\(61\) −594.013 + 594.013i −1.24681 + 1.24681i −0.289692 + 0.957120i \(0.593553\pi\)
−0.957120 + 0.289692i \(0.906447\pi\)
\(62\) 0 0
\(63\) −132.380 −0.264736
\(64\) 0 0
\(65\) 1368.71 2.61181
\(66\) 0 0
\(67\) −299.623 + 299.623i −0.546339 + 0.546339i −0.925380 0.379041i \(-0.876254\pi\)
0.379041 + 0.925380i \(0.376254\pi\)
\(68\) 0 0
\(69\) −317.018 317.018i −0.553108 0.553108i
\(70\) 0 0
\(71\) 693.932i 1.15992i −0.814644 0.579962i \(-0.803067\pi\)
0.814644 0.579962i \(-0.196933\pi\)
\(72\) 0 0
\(73\) 462.446i 0.741441i −0.928745 0.370720i \(-0.879111\pi\)
0.928745 0.370720i \(-0.120889\pi\)
\(74\) 0 0
\(75\) 322.774 + 322.774i 0.496943 + 0.496943i
\(76\) 0 0
\(77\) 366.811 366.811i 0.542883 0.542883i
\(78\) 0 0
\(79\) 878.797 1.25155 0.625775 0.780004i \(-0.284783\pi\)
0.625775 + 0.780004i \(0.284783\pi\)
\(80\) 0 0
\(81\) −81.0000 −0.111111
\(82\) 0 0
\(83\) 926.380 926.380i 1.22510 1.22510i 0.259306 0.965795i \(-0.416506\pi\)
0.965795 0.259306i \(-0.0834938\pi\)
\(84\) 0 0
\(85\) 893.252 + 893.252i 1.13984 + 1.13984i
\(86\) 0 0
\(87\) 205.946i 0.253790i
\(88\) 0 0
\(89\) 350.770i 0.417770i 0.977940 + 0.208885i \(0.0669834\pi\)
−0.977940 + 0.208885i \(0.933017\pi\)
\(90\) 0 0
\(91\) 855.096 + 855.096i 0.985038 + 0.985038i
\(92\) 0 0
\(93\) −62.8068 + 62.8068i −0.0700296 + 0.0700296i
\(94\) 0 0
\(95\) 1220.66 1.31829
\(96\) 0 0
\(97\) −766.194 −0.802013 −0.401006 0.916075i \(-0.631339\pi\)
−0.401006 + 0.916075i \(0.631339\pi\)
\(98\) 0 0
\(99\) 224.442 224.442i 0.227851 0.227851i
\(100\) 0 0
\(101\) −983.994 983.994i −0.969417 0.969417i 0.0301291 0.999546i \(-0.490408\pi\)
−0.999546 + 0.0301291i \(0.990408\pi\)
\(102\) 0 0
\(103\) 512.291i 0.490074i 0.969514 + 0.245037i \(0.0788000\pi\)
−0.969514 + 0.245037i \(0.921200\pi\)
\(104\) 0 0
\(105\) 734.624i 0.682781i
\(106\) 0 0
\(107\) −633.097 633.097i −0.571998 0.571998i 0.360688 0.932686i \(-0.382542\pi\)
−0.932686 + 0.360688i \(0.882542\pi\)
\(108\) 0 0
\(109\) 983.894 983.894i 0.864587 0.864587i −0.127280 0.991867i \(-0.540625\pi\)
0.991867 + 0.127280i \(0.0406246\pi\)
\(110\) 0 0
\(111\) −626.854 −0.536021
\(112\) 0 0
\(113\) 332.042 0.276424 0.138212 0.990403i \(-0.455864\pi\)
0.138212 + 0.990403i \(0.455864\pi\)
\(114\) 0 0
\(115\) −1759.24 + 1759.24i −1.42652 + 1.42652i
\(116\) 0 0
\(117\) 523.211 + 523.211i 0.413426 + 0.413426i
\(118\) 0 0
\(119\) 1116.11i 0.859778i
\(120\) 0 0
\(121\) 87.1933i 0.0655096i
\(122\) 0 0
\(123\) −477.788 477.788i −0.350250 0.350250i
\(124\) 0 0
\(125\) 319.692 319.692i 0.228753 0.228753i
\(126\) 0 0
\(127\) −712.949 −0.498141 −0.249071 0.968485i \(-0.580125\pi\)
−0.249071 + 0.968485i \(0.580125\pi\)
\(128\) 0 0
\(129\) −346.895 −0.236763
\(130\) 0 0
\(131\) 2039.63 2039.63i 1.36033 1.36033i 0.486843 0.873489i \(-0.338148\pi\)
0.873489 0.486843i \(-0.161852\pi\)
\(132\) 0 0
\(133\) 762.604 + 762.604i 0.497189 + 0.497189i
\(134\) 0 0
\(135\) 449.497i 0.286567i
\(136\) 0 0
\(137\) 761.248i 0.474728i −0.971421 0.237364i \(-0.923717\pi\)
0.971421 0.237364i \(-0.0762835\pi\)
\(138\) 0 0
\(139\) −1277.92 1277.92i −0.779798 0.779798i 0.199998 0.979796i \(-0.435906\pi\)
−0.979796 + 0.199998i \(0.935906\pi\)
\(140\) 0 0
\(141\) −98.7302 + 98.7302i −0.0589686 + 0.0589686i
\(142\) 0 0
\(143\) −2899.52 −1.69559
\(144\) 0 0
\(145\) −1142.86 −0.654550
\(146\) 0 0
\(147\) 268.660 268.660i 0.150740 0.150740i
\(148\) 0 0
\(149\) 746.651 + 746.651i 0.410524 + 0.410524i 0.881921 0.471397i \(-0.156250\pi\)
−0.471397 + 0.881921i \(0.656250\pi\)
\(150\) 0 0
\(151\) 1186.11i 0.639234i −0.947547 0.319617i \(-0.896446\pi\)
0.947547 0.319617i \(-0.103554\pi\)
\(152\) 0 0
\(153\) 682.918i 0.360854i
\(154\) 0 0
\(155\) 348.536 + 348.536i 0.180614 + 0.180614i
\(156\) 0 0
\(157\) 219.416 219.416i 0.111537 0.111537i −0.649136 0.760673i \(-0.724869\pi\)
0.760673 + 0.649136i \(0.224869\pi\)
\(158\) 0 0
\(159\) −662.297 −0.330337
\(160\) 0 0
\(161\) −2198.15 −1.07602
\(162\) 0 0
\(163\) −1321.49 + 1321.49i −0.635011 + 0.635011i −0.949321 0.314309i \(-0.898227\pi\)
0.314309 + 0.949321i \(0.398227\pi\)
\(164\) 0 0
\(165\) −1245.51 1245.51i −0.587651 0.587651i
\(166\) 0 0
\(167\) 1180.83i 0.547160i 0.961849 + 0.273580i \(0.0882078\pi\)
−0.961849 + 0.273580i \(0.911792\pi\)
\(168\) 0 0
\(169\) 4562.25i 2.07658i
\(170\) 0 0
\(171\) 466.617 + 466.617i 0.208673 + 0.208673i
\(172\) 0 0
\(173\) −1559.35 + 1559.35i −0.685289 + 0.685289i −0.961187 0.275898i \(-0.911025\pi\)
0.275898 + 0.961187i \(0.411025\pi\)
\(174\) 0 0
\(175\) 2238.07 0.966754
\(176\) 0 0
\(177\) 1010.59 0.429157
\(178\) 0 0
\(179\) −1718.83 + 1718.83i −0.717717 + 0.717717i −0.968137 0.250420i \(-0.919431\pi\)
0.250420 + 0.968137i \(0.419431\pi\)
\(180\) 0 0
\(181\) 703.803 + 703.803i 0.289023 + 0.289023i 0.836694 0.547671i \(-0.184485\pi\)
−0.547671 + 0.836694i \(0.684485\pi\)
\(182\) 0 0
\(183\) 2520.18i 1.01802i
\(184\) 0 0
\(185\) 3478.63i 1.38245i
\(186\) 0 0
\(187\) −1892.29 1892.29i −0.739989 0.739989i
\(188\) 0 0
\(189\) −280.821 + 280.821i −0.108078 + 0.108078i
\(190\) 0 0
\(191\) −290.013 −0.109867 −0.0549335 0.998490i \(-0.517495\pi\)
−0.0549335 + 0.998490i \(0.517495\pi\)
\(192\) 0 0
\(193\) −4295.94 −1.60222 −0.801111 0.598516i \(-0.795757\pi\)
−0.801111 + 0.598516i \(0.795757\pi\)
\(194\) 0 0
\(195\) 2903.48 2903.48i 1.06627 1.06627i
\(196\) 0 0
\(197\) 936.690 + 936.690i 0.338764 + 0.338764i 0.855902 0.517138i \(-0.173003\pi\)
−0.517138 + 0.855902i \(0.673003\pi\)
\(198\) 0 0
\(199\) 3333.18i 1.18735i 0.804705 + 0.593675i \(0.202324\pi\)
−0.804705 + 0.593675i \(0.797676\pi\)
\(200\) 0 0
\(201\) 1271.19i 0.446084i
\(202\) 0 0
\(203\) −713.999 713.999i −0.246862 0.246862i
\(204\) 0 0
\(205\) −2651.41 + 2651.41i −0.903330 + 0.903330i
\(206\) 0 0
\(207\) −1344.99 −0.451611
\(208\) 0 0
\(209\) −2585.89 −0.855836
\(210\) 0 0
\(211\) 3810.99 3810.99i 1.24341 1.24341i 0.284831 0.958578i \(-0.408063\pi\)
0.958578 0.284831i \(-0.0919375\pi\)
\(212\) 0 0
\(213\) −1472.05 1472.05i −0.473537 0.473537i
\(214\) 0 0
\(215\) 1925.04i 0.610636i
\(216\) 0 0
\(217\) 435.493i 0.136236i
\(218\) 0 0
\(219\) −980.996 980.996i −0.302692 0.302692i
\(220\) 0 0
\(221\) 4411.23 4411.23i 1.34268 1.34268i
\(222\) 0 0
\(223\) 3093.27 0.928882 0.464441 0.885604i \(-0.346255\pi\)
0.464441 + 0.885604i \(0.346255\pi\)
\(224\) 0 0
\(225\) 1369.41 0.405752
\(226\) 0 0
\(227\) −97.5310 + 97.5310i −0.0285170 + 0.0285170i −0.721222 0.692705i \(-0.756419\pi\)
0.692705 + 0.721222i \(0.256419\pi\)
\(228\) 0 0
\(229\) 2867.04 + 2867.04i 0.827334 + 0.827334i 0.987147 0.159813i \(-0.0510892\pi\)
−0.159813 + 0.987147i \(0.551089\pi\)
\(230\) 0 0
\(231\) 1556.25i 0.443262i
\(232\) 0 0
\(233\) 260.384i 0.0732116i −0.999330 0.0366058i \(-0.988345\pi\)
0.999330 0.0366058i \(-0.0116546\pi\)
\(234\) 0 0
\(235\) 547.888 + 547.888i 0.152086 + 0.152086i
\(236\) 0 0
\(237\) 1864.21 1864.21i 0.510943 0.510943i
\(238\) 0 0
\(239\) −1133.63 −0.306814 −0.153407 0.988163i \(-0.549025\pi\)
−0.153407 + 0.988163i \(0.549025\pi\)
\(240\) 0 0
\(241\) 2717.65 0.726386 0.363193 0.931714i \(-0.381686\pi\)
0.363193 + 0.931714i \(0.381686\pi\)
\(242\) 0 0
\(243\) −171.827 + 171.827i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −1490.89 1490.89i −0.388773 0.388773i
\(246\) 0 0
\(247\) 6028.13i 1.55288i
\(248\) 0 0
\(249\) 3930.30i 1.00029i
\(250\) 0 0
\(251\) −902.500 902.500i −0.226953 0.226953i 0.584465 0.811419i \(-0.301304\pi\)
−0.811419 + 0.584465i \(0.801304\pi\)
\(252\) 0 0
\(253\) 3726.82 3726.82i 0.926101 0.926101i
\(254\) 0 0
\(255\) 3789.75 0.930679
\(256\) 0 0
\(257\) −49.0728 −0.0119108 −0.00595541 0.999982i \(-0.501896\pi\)
−0.00595541 + 0.999982i \(0.501896\pi\)
\(258\) 0 0
\(259\) −2173.26 + 2173.26i −0.521388 + 0.521388i
\(260\) 0 0
\(261\) −436.877 436.877i −0.103609 0.103609i
\(262\) 0 0
\(263\) 448.347i 0.105119i −0.998618 0.0525594i \(-0.983262\pi\)
0.998618 0.0525594i \(-0.0167379\pi\)
\(264\) 0 0
\(265\) 3675.31i 0.851973i
\(266\) 0 0
\(267\) 744.095 + 744.095i 0.170554 + 0.170554i
\(268\) 0 0
\(269\) −4691.01 + 4691.01i −1.06326 + 1.06326i −0.0653970 + 0.997859i \(0.520831\pi\)
−0.997859 + 0.0653970i \(0.979169\pi\)
\(270\) 0 0
\(271\) −310.218 −0.0695365 −0.0347683 0.999395i \(-0.511069\pi\)
−0.0347683 + 0.999395i \(0.511069\pi\)
\(272\) 0 0
\(273\) 3627.87 0.804280
\(274\) 0 0
\(275\) −3794.49 + 3794.49i −0.832060 + 0.832060i
\(276\) 0 0
\(277\) 3523.42 + 3523.42i 0.764267 + 0.764267i 0.977091 0.212823i \(-0.0682659\pi\)
−0.212823 + 0.977091i \(0.568266\pi\)
\(278\) 0 0
\(279\) 266.467i 0.0571790i
\(280\) 0 0
\(281\) 1369.74i 0.290789i 0.989374 + 0.145395i \(0.0464452\pi\)
−0.989374 + 0.145395i \(0.953555\pi\)
\(282\) 0 0
\(283\) 5575.17 + 5575.17i 1.17106 + 1.17106i 0.981958 + 0.189100i \(0.0605570\pi\)
0.189100 + 0.981958i \(0.439443\pi\)
\(284\) 0 0
\(285\) 2589.42 2589.42i 0.538190 0.538190i
\(286\) 0 0
\(287\) −3312.91 −0.681377
\(288\) 0 0
\(289\) 844.738 0.171939
\(290\) 0 0
\(291\) −1625.34 + 1625.34i −0.327420 + 0.327420i
\(292\) 0 0
\(293\) −1651.17 1651.17i −0.329222 0.329222i 0.523068 0.852291i \(-0.324787\pi\)
−0.852291 + 0.523068i \(0.824787\pi\)
\(294\) 0 0
\(295\) 5608.13i 1.10684i
\(296\) 0 0
\(297\) 952.226i 0.186040i
\(298\) 0 0
\(299\) 8687.84 + 8687.84i 1.68037 + 1.68037i
\(300\) 0 0
\(301\) −1202.66 + 1202.66i −0.230300 + 0.230300i
\(302\) 0 0
\(303\) −4174.73 −0.791526
\(304\) 0 0
\(305\) 13985.4 2.62557
\(306\) 0 0
\(307\) 1930.51 1930.51i 0.358892 0.358892i −0.504512 0.863404i \(-0.668328\pi\)
0.863404 + 0.504512i \(0.168328\pi\)
\(308\) 0 0
\(309\) 1086.73 + 1086.73i 0.200072 + 0.200072i
\(310\) 0 0
\(311\) 3967.14i 0.723331i 0.932308 + 0.361665i \(0.117792\pi\)
−0.932308 + 0.361665i \(0.882208\pi\)
\(312\) 0 0
\(313\) 7329.46i 1.32360i −0.749682 0.661798i \(-0.769794\pi\)
0.749682 0.661798i \(-0.230206\pi\)
\(314\) 0 0
\(315\) 1558.37 + 1558.37i 0.278744 + 0.278744i
\(316\) 0 0
\(317\) −3264.85 + 3264.85i −0.578461 + 0.578461i −0.934479 0.356018i \(-0.884134\pi\)
0.356018 + 0.934479i \(0.384134\pi\)
\(318\) 0 0
\(319\) 2421.07 0.424935
\(320\) 0 0
\(321\) −2686.00 −0.467035
\(322\) 0 0
\(323\) 3934.09 3934.09i 0.677705 0.677705i
\(324\) 0 0
\(325\) −8845.58 8845.58i −1.50974 1.50974i
\(326\) 0 0
\(327\) 4174.31i 0.705932i
\(328\) 0 0
\(329\) 684.580i 0.114718i
\(330\) 0 0
\(331\) −7640.33 7640.33i −1.26873 1.26873i −0.946743 0.321991i \(-0.895648\pi\)
−0.321991 0.946743i \(-0.604352\pi\)
\(332\) 0 0
\(333\) −1329.76 + 1329.76i −0.218830 + 0.218830i
\(334\) 0 0
\(335\) 7054.28 1.15050
\(336\) 0 0
\(337\) 10375.8 1.67716 0.838582 0.544775i \(-0.183385\pi\)
0.838582 + 0.544775i \(0.183385\pi\)
\(338\) 0 0
\(339\) 704.368 704.368i 0.112850 0.112850i
\(340\) 0 0
\(341\) −738.349 738.349i −0.117255 0.117255i
\(342\) 0 0
\(343\) 6908.01i 1.08746i
\(344\) 0 0
\(345\) 7463.83i 1.16475i
\(346\) 0 0
\(347\) −3827.22 3827.22i −0.592092 0.592092i 0.346104 0.938196i \(-0.387504\pi\)
−0.938196 + 0.346104i \(0.887504\pi\)
\(348\) 0 0
\(349\) 783.575 783.575i 0.120183 0.120183i −0.644457 0.764640i \(-0.722917\pi\)
0.764640 + 0.644457i \(0.222917\pi\)
\(350\) 0 0
\(351\) 2219.80 0.337561
\(352\) 0 0
\(353\) −9151.32 −1.37982 −0.689909 0.723896i \(-0.742349\pi\)
−0.689909 + 0.723896i \(0.742349\pi\)
\(354\) 0 0
\(355\) −8168.92 + 8168.92i −1.22130 + 1.22130i
\(356\) 0 0
\(357\) 2367.63 + 2367.63i 0.351003 + 0.351003i
\(358\) 0 0
\(359\) 290.943i 0.0427727i −0.999771 0.0213863i \(-0.993192\pi\)
0.999771 0.0213863i \(-0.00680800\pi\)
\(360\) 0 0
\(361\) 1482.91i 0.216199i
\(362\) 0 0
\(363\) −184.965 184.965i −0.0267442 0.0267442i
\(364\) 0 0
\(365\) −5443.88 + 5443.88i −0.780674 + 0.780674i
\(366\) 0 0
\(367\) 5526.68 0.786077 0.393039 0.919522i \(-0.371424\pi\)
0.393039 + 0.919522i \(0.371424\pi\)
\(368\) 0 0
\(369\) −2027.08 −0.285978
\(370\) 0 0
\(371\) −2296.13 + 2296.13i −0.321319 + 0.321319i
\(372\) 0 0
\(373\) −978.030 978.030i −0.135765 0.135765i 0.635958 0.771724i \(-0.280605\pi\)
−0.771724 + 0.635958i \(0.780605\pi\)
\(374\) 0 0
\(375\) 1356.34i 0.186776i
\(376\) 0 0
\(377\) 5643.92i 0.771026i
\(378\) 0 0
\(379\) 4408.79 + 4408.79i 0.597531 + 0.597531i 0.939655 0.342124i \(-0.111146\pi\)
−0.342124 + 0.939655i \(0.611146\pi\)
\(380\) 0 0
\(381\) −1512.39 + 1512.39i −0.203365 + 0.203365i
\(382\) 0 0
\(383\) −6799.13 −0.907101 −0.453550 0.891231i \(-0.649843\pi\)
−0.453550 + 0.891231i \(0.649843\pi\)
\(384\) 0 0
\(385\) −8636.15 −1.14322
\(386\) 0 0
\(387\) −735.876 + 735.876i −0.0966581 + 0.0966581i
\(388\) 0 0
\(389\) −5520.37 5520.37i −0.719521 0.719521i 0.248986 0.968507i \(-0.419903\pi\)
−0.968507 + 0.248986i \(0.919903\pi\)
\(390\) 0 0
\(391\) 11339.7i 1.46669i
\(392\) 0 0
\(393\) 8653.43i 1.11071i
\(394\) 0 0
\(395\) −10345.1 10345.1i −1.31777 1.31777i
\(396\) 0 0
\(397\) −4743.70 + 4743.70i −0.599696 + 0.599696i −0.940232 0.340536i \(-0.889392\pi\)
0.340536 + 0.940232i \(0.389392\pi\)
\(398\) 0 0
\(399\) 3235.45 0.405953
\(400\) 0 0
\(401\) −1674.92 −0.208582 −0.104291 0.994547i \(-0.533257\pi\)
−0.104291 + 0.994547i \(0.533257\pi\)
\(402\) 0 0
\(403\) 1721.21 1721.21i 0.212754 0.212754i
\(404\) 0 0
\(405\) 953.527 + 953.527i 0.116990 + 0.116990i
\(406\) 0 0
\(407\) 7369.22i 0.897491i
\(408\) 0 0
\(409\) 11918.0i 1.44084i 0.693536 + 0.720422i \(0.256052\pi\)
−0.693536 + 0.720422i \(0.743948\pi\)
\(410\) 0 0
\(411\) −1614.85 1614.85i −0.193807 0.193807i
\(412\) 0 0
\(413\) 3503.65 3503.65i 0.417442 0.417442i
\(414\) 0 0
\(415\) −21810.6 −2.57985
\(416\) 0 0
\(417\) −5421.76 −0.636702
\(418\) 0 0
\(419\) −4342.25 + 4342.25i −0.506284 + 0.506284i −0.913384 0.407100i \(-0.866540\pi\)
0.407100 + 0.913384i \(0.366540\pi\)
\(420\) 0 0
\(421\) −8933.14 8933.14i −1.03414 1.03414i −0.999396 0.0347474i \(-0.988937\pi\)
−0.0347474 0.999396i \(-0.511063\pi\)
\(422\) 0 0
\(423\) 418.877i 0.0481477i
\(424\) 0 0
\(425\) 11545.6i 1.31776i
\(426\) 0 0
\(427\) 8737.28 + 8737.28i 0.990227 + 0.990227i
\(428\) 0 0
\(429\) −6150.80 + 6150.80i −0.692223 + 0.692223i
\(430\) 0 0
\(431\) 6175.68 0.690191 0.345095 0.938568i \(-0.387847\pi\)
0.345095 + 0.938568i \(0.387847\pi\)
\(432\) 0 0
\(433\) 7.68815 0.000853276 0.000426638 1.00000i \(-0.499864\pi\)
0.000426638 1.00000i \(0.499864\pi\)
\(434\) 0 0
\(435\) −2424.38 + 2424.38i −0.267219 + 0.267219i
\(436\) 0 0
\(437\) 7748.11 + 7748.11i 0.848152 + 0.848152i
\(438\) 0 0
\(439\) 15185.1i 1.65090i 0.564477 + 0.825449i \(0.309078\pi\)
−0.564477 + 0.825449i \(0.690922\pi\)
\(440\) 0 0
\(441\) 1139.83i 0.123078i
\(442\) 0 0
\(443\) 3404.98 + 3404.98i 0.365182 + 0.365182i 0.865716 0.500535i \(-0.166863\pi\)
−0.500535 + 0.865716i \(0.666863\pi\)
\(444\) 0 0
\(445\) 4129.24 4129.24i 0.439876 0.439876i
\(446\) 0 0
\(447\) 3167.77 0.335191
\(448\) 0 0
\(449\) 6766.99 0.711257 0.355628 0.934627i \(-0.384267\pi\)
0.355628 + 0.934627i \(0.384267\pi\)
\(450\) 0 0
\(451\) 5616.82 5616.82i 0.586443 0.586443i
\(452\) 0 0
\(453\) −2516.12 2516.12i −0.260966 0.260966i
\(454\) 0 0
\(455\) 20132.3i 2.07432i
\(456\) 0 0
\(457\) 7528.20i 0.770578i −0.922796 0.385289i \(-0.874102\pi\)
0.922796 0.385289i \(-0.125898\pi\)
\(458\) 0 0
\(459\) 1448.69 + 1448.69i 0.147318 + 0.147318i
\(460\) 0 0
\(461\) 9029.85 9029.85i 0.912282 0.912282i −0.0841690 0.996451i \(-0.526824\pi\)
0.996451 + 0.0841690i \(0.0268236\pi\)
\(462\) 0 0
\(463\) −8555.19 −0.858733 −0.429367 0.903130i \(-0.641263\pi\)
−0.429367 + 0.903130i \(0.641263\pi\)
\(464\) 0 0
\(465\) 1478.71 0.147470
\(466\) 0 0
\(467\) −1326.73 + 1326.73i −0.131464 + 0.131464i −0.769777 0.638313i \(-0.779632\pi\)
0.638313 + 0.769777i \(0.279632\pi\)
\(468\) 0 0
\(469\) 4407.13 + 4407.13i 0.433907 + 0.433907i
\(470\) 0 0
\(471\) 930.901i 0.0910693i
\(472\) 0 0
\(473\) 4078.06i 0.396426i
\(474\) 0 0
\(475\) −7888.79 7888.79i −0.762027 0.762027i
\(476\) 0 0
\(477\) −1404.94 + 1404.94i −0.134859 + 0.134859i
\(478\) 0 0
\(479\) 6121.90 0.583960 0.291980 0.956424i \(-0.405686\pi\)
0.291980 + 0.956424i \(0.405686\pi\)
\(480\) 0 0
\(481\) 17178.9 1.62846
\(482\) 0 0
\(483\) −4662.99 + 4662.99i −0.439282 + 0.439282i
\(484\) 0 0
\(485\) 9019.59 + 9019.59i 0.844450 + 0.844450i
\(486\) 0 0
\(487\) 6508.23i 0.605577i 0.953058 + 0.302789i \(0.0979177\pi\)
−0.953058 + 0.302789i \(0.902082\pi\)
\(488\) 0 0
\(489\) 5606.59i 0.518484i
\(490\) 0 0
\(491\) 8093.67 + 8093.67i 0.743915 + 0.743915i 0.973329 0.229414i \(-0.0736811\pi\)
−0.229414 + 0.973329i \(0.573681\pi\)
\(492\) 0 0
\(493\) −3683.35 + 3683.35i −0.336490 + 0.336490i
\(494\) 0 0
\(495\) −5284.23 −0.479815
\(496\) 0 0
\(497\) −10207.0 −0.921219
\(498\) 0 0
\(499\) 6772.14 6772.14i 0.607540 0.607540i −0.334762 0.942303i \(-0.608656\pi\)
0.942303 + 0.334762i \(0.108656\pi\)
\(500\) 0 0
\(501\) 2504.93 + 2504.93i 0.223377 + 0.223377i
\(502\) 0 0
\(503\) 3296.12i 0.292180i 0.989271 + 0.146090i \(0.0466689\pi\)
−0.989271 + 0.146090i \(0.953331\pi\)
\(504\) 0 0
\(505\) 23167.0i 2.04143i
\(506\) 0 0
\(507\) −9677.99 9677.99i −0.847761 0.847761i
\(508\) 0 0
\(509\) 6445.02 6445.02i 0.561239 0.561239i −0.368421 0.929659i \(-0.620101\pi\)
0.929659 + 0.368421i \(0.120101\pi\)
\(510\) 0 0
\(511\) −6802.08 −0.588858
\(512\) 0 0
\(513\) 1979.69 0.170381
\(514\) 0 0
\(515\) 6030.66 6030.66i 0.516005 0.516005i
\(516\) 0 0
\(517\) −1160.66 1160.66i −0.0987346 0.0987346i
\(518\) 0 0
\(519\) 6615.75i 0.559536i
\(520\) 0 0
\(521\) 15572.4i 1.30948i −0.755854 0.654740i \(-0.772778\pi\)
0.755854 0.654740i \(-0.227222\pi\)
\(522\) 0 0
\(523\) −2333.98 2333.98i −0.195139 0.195139i 0.602773 0.797913i \(-0.294062\pi\)
−0.797913 + 0.602773i \(0.794062\pi\)
\(524\) 0 0
\(525\) 4747.66 4747.66i 0.394676 0.394676i
\(526\) 0 0
\(527\) 2246.60 0.185699
\(528\) 0 0
\(529\) −10166.4 −0.835572
\(530\) 0 0
\(531\) 2143.79 2143.79i 0.175203 0.175203i
\(532\) 0 0
\(533\) 13093.7 + 13093.7i 1.06408 + 1.06408i
\(534\) 0 0
\(535\) 14905.6i 1.20453i
\(536\) 0 0
\(537\) 7292.38i 0.586014i
\(538\) 0 0
\(539\) 3158.34 + 3158.34i 0.252392 + 0.252392i
\(540\) 0 0
\(541\) 8320.06 8320.06i 0.661196 0.661196i −0.294466 0.955662i \(-0.595142\pi\)
0.955662 + 0.294466i \(0.0951417\pi\)
\(542\) 0 0
\(543\) 2985.98 0.235987
\(544\) 0 0
\(545\) −23164.7 −1.82067
\(546\) 0 0
\(547\) 10206.5 10206.5i 0.797801 0.797801i −0.184947 0.982748i \(-0.559211\pi\)
0.982748 + 0.184947i \(0.0592113\pi\)
\(548\) 0 0
\(549\) 5346.11 + 5346.11i 0.415604 + 0.415604i
\(550\) 0 0
\(551\) 5033.44i 0.389168i
\(552\) 0 0
\(553\) 12926.2i 0.993989i
\(554\) 0 0
\(555\) 7379.29 + 7379.29i 0.564384 + 0.564384i
\(556\) 0 0
\(557\) 9984.48 9984.48i 0.759526 0.759526i −0.216710 0.976236i \(-0.569533\pi\)
0.976236 + 0.216710i \(0.0695325\pi\)
\(558\) 0 0
\(559\) 9506.63 0.719298
\(560\) 0 0
\(561\) −8028.30 −0.604198
\(562\) 0 0
\(563\) 12193.3 12193.3i 0.912761 0.912761i −0.0837279 0.996489i \(-0.526683\pi\)
0.996489 + 0.0837279i \(0.0266827\pi\)
\(564\) 0 0
\(565\) −3908.78 3908.78i −0.291051 0.291051i
\(566\) 0 0
\(567\) 1191.42i 0.0882452i
\(568\) 0 0
\(569\) 4990.14i 0.367659i 0.982958 + 0.183829i \(0.0588494\pi\)
−0.982958 + 0.183829i \(0.941151\pi\)
\(570\) 0 0
\(571\) −6896.58 6896.58i −0.505451 0.505451i 0.407676 0.913127i \(-0.366339\pi\)
−0.913127 + 0.407676i \(0.866339\pi\)
\(572\) 0 0
\(573\) −615.211 + 615.211i −0.0448530 + 0.0448530i
\(574\) 0 0
\(575\) 22738.9 1.64918
\(576\) 0 0
\(577\) −12824.7 −0.925299 −0.462649 0.886541i \(-0.653101\pi\)
−0.462649 + 0.886541i \(0.653101\pi\)
\(578\) 0 0
\(579\) −9113.07 + 9113.07i −0.654104 + 0.654104i
\(580\) 0 0
\(581\) −13626.0 13626.0i −0.972984 0.972984i
\(582\) 0 0
\(583\) 7785.88i 0.553102i
\(584\) 0 0
\(585\) 12318.4i 0.870605i
\(586\) 0 0
\(587\) −15610.1 15610.1i −1.09761 1.09761i −0.994690 0.102920i \(-0.967181\pi\)
−0.102920 0.994690i \(-0.532819\pi\)
\(588\) 0 0
\(589\) 1535.04 1535.04i 0.107385 0.107385i
\(590\) 0 0
\(591\) 3974.04 0.276599
\(592\) 0 0
\(593\) 16469.9 1.14054 0.570268 0.821458i \(-0.306839\pi\)
0.570268 + 0.821458i \(0.306839\pi\)
\(594\) 0 0
\(595\) 13138.8 13138.8i 0.905272 0.905272i
\(596\) 0 0
\(597\) 7070.74 + 7070.74i 0.484734 + 0.484734i
\(598\) 0 0
\(599\) 10220.6i 0.697164i 0.937278 + 0.348582i \(0.113337\pi\)
−0.937278 + 0.348582i \(0.886663\pi\)
\(600\) 0 0
\(601\) 16286.3i 1.10538i 0.833387 + 0.552690i \(0.186399\pi\)
−0.833387 + 0.552690i \(0.813601\pi\)
\(602\) 0 0
\(603\) 2696.60 + 2696.60i 0.182113 + 0.182113i
\(604\) 0 0
\(605\) −1026.43 + 1026.43i −0.0689760 + 0.0689760i
\(606\) 0 0
\(607\) 21362.6 1.42847 0.714235 0.699906i \(-0.246775\pi\)
0.714235 + 0.699906i \(0.246775\pi\)
\(608\) 0 0
\(609\) −3029.24 −0.201562
\(610\) 0 0
\(611\) 2705.69 2705.69i 0.179150 0.179150i
\(612\) 0 0
\(613\) 1189.98 + 1189.98i 0.0784057 + 0.0784057i 0.745222 0.666816i \(-0.232343\pi\)
−0.666816 + 0.745222i \(0.732343\pi\)
\(614\) 0 0
\(615\) 11249.0i 0.737566i
\(616\) 0 0
\(617\) 1361.21i 0.0888173i −0.999013 0.0444087i \(-0.985860\pi\)
0.999013 0.0444087i \(-0.0141404\pi\)
\(618\) 0 0
\(619\) 5468.68 + 5468.68i 0.355097 + 0.355097i 0.862002 0.506905i \(-0.169211\pi\)
−0.506905 + 0.862002i \(0.669211\pi\)
\(620\) 0 0
\(621\) −2853.16 + 2853.16i −0.184369 + 0.184369i
\(622\) 0 0
\(623\) 5159.44 0.331796
\(624\) 0 0
\(625\) 11492.9 0.735543
\(626\) 0 0
\(627\) −5485.50 + 5485.50i −0.349393 + 0.349393i
\(628\) 0 0
\(629\) 11211.3 + 11211.3i 0.710690 + 0.710690i
\(630\) 0 0
\(631\) 11369.6i 0.717303i −0.933472 0.358651i \(-0.883237\pi\)
0.933472 0.358651i \(-0.116763\pi\)
\(632\) 0 0
\(633\) 16168.7i 1.01524i
\(634\) 0 0
\(635\) 8392.79 + 8392.79i 0.524500 + 0.524500i
\(636\) 0 0
\(637\) −7362.60 + 7362.60i −0.457954 + 0.457954i
\(638\) 0 0
\(639\) −6245.39 −0.386641
\(640\) 0 0
\(641\) 9280.18 0.571833 0.285917 0.958255i \(-0.407702\pi\)
0.285917 + 0.958255i \(0.407702\pi\)
\(642\) 0 0
\(643\) 9377.81 9377.81i 0.575155 0.575155i −0.358409 0.933565i \(-0.616681\pi\)
0.933565 + 0.358409i \(0.116681\pi\)
\(644\) 0 0
\(645\) 4083.63 + 4083.63i 0.249291 + 0.249291i
\(646\) 0 0
\(647\) 1950.32i 0.118508i 0.998243 + 0.0592542i \(0.0188723\pi\)
−0.998243 + 0.0592542i \(0.981128\pi\)
\(648\) 0 0
\(649\) 11880.4i 0.718562i
\(650\) 0 0
\(651\) 923.820 + 923.820i 0.0556180 + 0.0556180i
\(652\) 0 0
\(653\) −8699.36 + 8699.36i −0.521336 + 0.521336i −0.917975 0.396639i \(-0.870177\pi\)
0.396639 + 0.917975i \(0.370177\pi\)
\(654\) 0 0
\(655\) −48020.9 −2.86463
\(656\) 0 0
\(657\) −4162.01 −0.247147
\(658\) 0 0
\(659\) −7958.47 + 7958.47i −0.470437 + 0.470437i −0.902056 0.431619i \(-0.857942\pi\)
0.431619 + 0.902056i \(0.357942\pi\)
\(660\) 0 0
\(661\) 7483.62 + 7483.62i 0.440362 + 0.440362i 0.892134 0.451772i \(-0.149208\pi\)
−0.451772 + 0.892134i \(0.649208\pi\)
\(662\) 0 0
\(663\) 18715.3i 1.09629i
\(664\) 0 0
\(665\) 17954.7i 1.04700i
\(666\) 0 0
\(667\) −7254.28 7254.28i −0.421120 0.421120i
\(668\) 0 0
\(669\) 6561.82 6561.82i 0.379215 0.379215i
\(670\) 0 0
\(671\) −29627.0 −1.70452
\(672\) 0 0
\(673\) 3592.82 0.205785 0.102892 0.994692i \(-0.467190\pi\)
0.102892 + 0.994692i \(0.467190\pi\)
\(674\) 0 0
\(675\) 2904.97 2904.97i 0.165648 0.165648i
\(676\) 0 0
\(677\) −16494.8 16494.8i −0.936408 0.936408i 0.0616872 0.998096i \(-0.480352\pi\)
−0.998096 + 0.0616872i \(0.980352\pi\)
\(678\) 0 0
\(679\) 11269.9i 0.636964i
\(680\) 0 0
\(681\) 413.789i 0.0232840i
\(682\) 0 0
\(683\) −20875.1 20875.1i −1.16949 1.16949i −0.982328 0.187166i \(-0.940070\pi\)
−0.187166 0.982328i \(-0.559930\pi\)
\(684\) 0 0
\(685\) −8961.36 + 8961.36i −0.499848 + 0.499848i
\(686\) 0 0
\(687\) 12163.8 0.675515
\(688\) 0 0
\(689\) 18150.2 1.00358
\(690\) 0 0
\(691\) −22267.3 + 22267.3i −1.22589 + 1.22589i −0.260382 + 0.965506i \(0.583849\pi\)
−0.965506 + 0.260382i \(0.916151\pi\)
\(692\) 0 0
\(693\) −3301.30 3301.30i −0.180961 0.180961i
\(694\) 0 0
\(695\) 30087.2i 1.64212i
\(696\) 0 0
\(697\) 17090.5i 0.928765i
\(698\) 0 0
\(699\) −552.357 552.357i −0.0298885 0.0298885i
\(700\) 0 0
\(701\) −12419.0 + 12419.0i −0.669129 + 0.669129i −0.957515 0.288385i \(-0.906882\pi\)
0.288385 + 0.957515i \(0.406882\pi\)
\(702\) 0 0
\(703\) 15320.7 0.821950
\(704\) 0 0
\(705\) 2324.49 0.124178
\(706\) 0 0
\(707\) −14473.5 + 14473.5i −0.769918 + 0.769918i
\(708\) 0 0
\(709\) −17027.9 17027.9i −0.901970 0.901970i 0.0936362 0.995606i \(-0.470151\pi\)
−0.995606 + 0.0936362i \(0.970151\pi\)
\(710\) 0 0
\(711\) 7909.17i 0.417183i
\(712\) 0 0
\(713\) 4424.64i 0.232404i
\(714\) 0 0
\(715\) 34132.9 + 34132.9i 1.78531 + 1.78531i
\(716\) 0 0
\(717\) −2404.79 + 2404.79i −0.125256 + 0.125256i
\(718\) 0 0
\(719\) −9987.52 −0.518041 −0.259021 0.965872i \(-0.583400\pi\)
−0.259021 + 0.965872i \(0.583400\pi\)
\(720\) 0 0
\(721\) 7535.25 0.389220
\(722\) 0 0
\(723\) 5765.00 5765.00i 0.296546 0.296546i
\(724\) 0 0
\(725\) 7385.99 + 7385.99i 0.378357 + 0.378357i
\(726\) 0 0
\(727\) 18495.4i 0.943545i −0.881720 0.471772i \(-0.843614\pi\)
0.881720 0.471772i \(-0.156386\pi\)
\(728\) 0 0
\(729\) 729.000i 0.0370370i
\(730\) 0 0
\(731\) 6204.24 + 6204.24i 0.313915 + 0.313915i
\(732\) 0 0
\(733\) 3852.08 3852.08i 0.194106 0.194106i −0.603362 0.797468i \(-0.706172\pi\)
0.797468 + 0.603362i \(0.206172\pi\)
\(734\) 0 0
\(735\) −6325.30 −0.317432
\(736\) 0 0
\(737\) −14944.0 −0.746904
\(738\) 0 0
\(739\) −16168.9 + 16168.9i −0.804846 + 0.804846i −0.983849 0.179003i \(-0.942713\pi\)
0.179003 + 0.983849i \(0.442713\pi\)
\(740\) 0 0
\(741\) −12787.6 12787.6i −0.633959 0.633959i
\(742\) 0 0
\(743\) 36990.3i 1.82644i −0.407471 0.913218i \(-0.633589\pi\)
0.407471 0.913218i \(-0.366411\pi\)
\(744\) 0 0
\(745\) 17579.1i 0.864492i
\(746\) 0 0
\(747\) −8337.42 8337.42i −0.408367 0.408367i
\(748\) 0 0
\(749\) −9312.18 + 9312.18i −0.454285 + 0.454285i
\(750\) 0 0
\(751\) 10125.3 0.491981 0.245990 0.969272i \(-0.420887\pi\)
0.245990 + 0.969272i \(0.420887\pi\)
\(752\) 0 0
\(753\) −3828.98 −0.185307
\(754\) 0 0
\(755\) −13962.8 + 13962.8i −0.673059 + 0.673059i
\(756\) 0 0
\(757\) −8998.60 8998.60i −0.432047 0.432047i 0.457277 0.889324i \(-0.348825\pi\)
−0.889324 + 0.457277i \(0.848825\pi\)
\(758\) 0 0
\(759\) 15811.6i 0.756158i
\(760\) 0 0
\(761\) 25265.9i 1.20353i 0.798672 + 0.601766i \(0.205536\pi\)
−0.798672 + 0.601766i \(0.794464\pi\)
\(762\) 0 0
\(763\) −14472.0 14472.0i −0.686661 0.686661i
\(764\) 0 0
\(765\) 8039.27 8039.27i 0.379948 0.379948i
\(766\) 0 0
\(767\) −27695.2 −1.30380
\(768\) 0 0
\(769\) −28077.3 −1.31664 −0.658318 0.752740i \(-0.728732\pi\)
−0.658318 + 0.752740i \(0.728732\pi\)
\(770\) 0 0
\(771\) −104.099 + 104.099i −0.00486257 + 0.00486257i
\(772\) 0 0
\(773\) −8413.75 8413.75i −0.391490 0.391490i 0.483728 0.875218i \(-0.339282\pi\)
−0.875218 + 0.483728i \(0.839282\pi\)
\(774\) 0 0
\(775\) 4504.97i 0.208804i
\(776\) 0 0
\(777\) 9220.35i 0.425712i
\(778\) 0 0
\(779\) 11677.4 + 11677.4i 0.537083 + 0.537083i
\(780\) 0 0
\(781\) 17305.3 17305.3i 0.792870 0.792870i
\(782\) 0 0
\(783\) −1853.51 −0.0845966
\(784\) 0 0
\(785\) −5165.89 −0.234877
\(786\) 0 0
\(787\) −8677.71 + 8677.71i −0.393046 + 0.393046i −0.875772 0.482726i \(-0.839647\pi\)
0.482726 + 0.875772i \(0.339647\pi\)
\(788\) 0 0
\(789\) −951.088 951.088i −0.0429146 0.0429146i
\(790\) 0 0
\(791\) 4883.98i 0.219538i
\(792\) 0 0
\(793\) 69065.3i 3.09279i
\(794\) 0 0
\(795\) 7796.52 + 7796.52i 0.347816 + 0.347816i
\(796\) 0 0
\(797\) 16951.1 16951.1i 0.753374 0.753374i −0.221733 0.975107i \(-0.571171\pi\)
0.975107 + 0.221733i \(0.0711715\pi\)
\(798\) 0 0
\(799\) 3531.58 0.156369
\(800\) 0 0
\(801\) 3156.93 0.139257
\(802\) 0 0
\(803\) 11532.5 11532.5i 0.506814 0.506814i
\(804\) 0 0
\(805\) 25876.5 + 25876.5i 1.13295 + 1.13295i
\(806\) 0 0
\(807\) 19902.3i 0.868145i
\(808\) 0 0
\(809\) 39305.4i 1.70816i 0.520138 + 0.854082i \(0.325880\pi\)
−0.520138 + 0.854082i \(0.674120\pi\)
\(810\) 0 0
\(811\) −25524.4 25524.4i −1.10516 1.10516i −0.993778 0.111378i \(-0.964474\pi\)
−0.111378 0.993778i \(-0.535526\pi\)
\(812\) 0 0
\(813\) −658.072 + 658.072i −0.0283882 + 0.0283882i
\(814\) 0 0
\(815\) 31112.9 1.33722
\(816\) 0 0
\(817\) 8478.34 0.363059
\(818\) 0 0
\(819\) 7695.87 7695.87i 0.328346 0.328346i
\(820\) 0 0
\(821\) −20817.5 20817.5i −0.884939 0.884939i 0.109093 0.994032i \(-0.465206\pi\)
−0.994032 + 0.109093i \(0.965206\pi\)
\(822\) 0 0
\(823\) 8625.74i 0.365339i 0.983174 + 0.182670i \(0.0584739\pi\)
−0.983174 + 0.182670i \(0.941526\pi\)
\(824\) 0 0
\(825\) 16098.7i 0.679374i
\(826\) 0 0
\(827\) 16592.0 + 16592.0i 0.697654 + 0.697654i 0.963904 0.266250i \(-0.0857848\pi\)
−0.266250 + 0.963904i \(0.585785\pi\)
\(828\) 0 0
\(829\) −11523.3 + 11523.3i −0.482777 + 0.482777i −0.906018 0.423240i \(-0.860893\pi\)
0.423240 + 0.906018i \(0.360893\pi\)
\(830\) 0 0
\(831\) 14948.6 0.624022
\(832\) 0 0
\(833\) −9609.99 −0.399720
\(834\) 0 0
\(835\) 13900.7 13900.7i 0.576112 0.576112i
\(836\) 0 0
\(837\) 565.261 + 565.261i 0.0233432 + 0.0233432i
\(838\) 0 0
\(839\) 1709.60i 0.0703482i −0.999381 0.0351741i \(-0.988801\pi\)
0.999381 0.0351741i \(-0.0111986\pi\)
\(840\) 0 0
\(841\) 19676.4i 0.806772i
\(842\) 0 0
\(843\) 2905.66 + 2905.66i 0.118714 + 0.118714i
\(844\) 0 0
\(845\) −53706.5 + 53706.5i −2.18646 + 2.18646i
\(846\) 0 0
\(847\) −1282.52 −0.0520282
\(848\) 0 0
\(849\) 23653.4 0.956165
\(850\) 0 0
\(851\) −22080.4 + 22080.4i −0.889433 + 0.889433i
\(852\) 0 0
\(853\) −27950.1 27950.1i −1.12191 1.12191i −0.991453 0.130462i \(-0.958354\pi\)
−0.130462 0.991453i \(-0.541646\pi\)
\(854\) 0 0
\(855\) 10986.0i 0.439430i
\(856\) 0 0
\(857\) 20208.0i 0.805477i 0.915315 + 0.402739i \(0.131942\pi\)
−0.915315 + 0.402739i \(0.868058\pi\)
\(858\) 0 0
\(859\) 6906.75 + 6906.75i 0.274337 + 0.274337i 0.830843 0.556507i \(-0.187859\pi\)
−0.556507 + 0.830843i \(0.687859\pi\)
\(860\) 0 0
\(861\) −7027.75 + 7027.75i −0.278171 + 0.278171i
\(862\) 0 0
\(863\) −16342.0 −0.644599 −0.322300 0.946638i \(-0.604456\pi\)
−0.322300 + 0.946638i \(0.604456\pi\)
\(864\) 0 0
\(865\) 36713.1 1.44310
\(866\) 0 0
\(867\) 1791.96 1791.96i 0.0701939 0.0701939i
\(868\) 0 0
\(869\) 21915.4 + 21915.4i 0.855501 + 0.855501i
\(870\) 0 0
\(871\) 34836.9i 1.35523i
\(872\) 0 0
\(873\) 6895.75i 0.267338i
\(874\) 0 0
\(875\) −4702.32 4702.32i −0.181677 0.181677i
\(876\) 0 0
\(877\) 517.041 517.041i 0.0199079 0.0199079i −0.697083 0.716991i \(-0.745519\pi\)
0.716991 + 0.697083i \(0.245519\pi\)
\(878\) 0 0
\(879\) −7005.31 −0.268809
\(880\) 0 0
\(881\) −22171.2 −0.847861 −0.423931 0.905695i \(-0.639350\pi\)
−0.423931 + 0.905695i \(0.639350\pi\)
\(882\) 0 0
\(883\) −589.293 + 589.293i −0.0224590 + 0.0224590i −0.718247 0.695788i \(-0.755055\pi\)
0.695788 + 0.718247i \(0.255055\pi\)
\(884\) 0 0
\(885\) −11896.6 11896.6i −0.451866 0.451866i
\(886\) 0 0
\(887\) 13685.0i 0.518034i −0.965873 0.259017i \(-0.916601\pi\)
0.965873 0.259017i \(-0.0833985\pi\)
\(888\) 0 0
\(889\) 10486.7i 0.395627i
\(890\) 0 0
\(891\) −2019.98 2019.98i −0.0759504 0.0759504i
\(892\) 0 0
\(893\) 2413.03 2413.03i 0.0904242 0.0904242i
\(894\) 0 0
\(895\) 40467.9 1.51139
\(896\) 0 0
\(897\) 36859.4 1.37202
\(898\) 0 0
\(899\) −1437.20 + 1437.20i −0.0533184 + 0.0533184i
\(900\) 0 0
\(901\) 11845.2 + 11845.2i 0.437981 + 0.437981i
\(902\) 0 0
\(903\) 5102.46i 0.188039i
\(904\) 0 0
\(905\) 16570.2i 0.608634i
\(906\) 0 0
\(907\) 32330.9 + 32330.9i 1.18361 + 1.18361i 0.978803 + 0.204804i \(0.0656557\pi\)
0.204804 + 0.978803i \(0.434344\pi\)
\(908\) 0 0
\(909\) −8855.95 + 8855.95i −0.323139 + 0.323139i
\(910\) 0 0
\(911\) 36436.3 1.32513 0.662563 0.749006i \(-0.269469\pi\)
0.662563 + 0.749006i \(0.269469\pi\)
\(912\) 0 0
\(913\) 46204.1 1.67484
\(914\) 0 0
\(915\) 29667.4 29667.4i 1.07189 1.07189i
\(916\) 0 0
\(917\) −30000.8 30000.8i −1.08039 1.08039i
\(918\) 0 0
\(919\) 18351.8i 0.658726i −0.944203 0.329363i \(-0.893166\pi\)
0.944203 0.329363i \(-0.106834\pi\)
\(920\) 0 0
\(921\) 8190.45i 0.293034i
\(922\) 0 0
\(923\) 40341.4 + 40341.4i 1.43863 + 1.43863i
\(924\) 0 0
\(925\) 22481.4 22481.4i 0.799116 0.799116i
\(926\) 0 0
\(927\) 4610.62 0.163358
\(928\) 0 0
\(929\) 25908.3 0.914989 0.457495 0.889212i \(-0.348747\pi\)
0.457495 + 0.889212i \(0.348747\pi\)
\(930\) 0 0
\(931\) −6566.22 + 6566.22i −0.231148 + 0.231148i
\(932\) 0 0
\(933\) 8415.58 + 8415.58i 0.295299 + 0.295299i
\(934\) 0 0
\(935\) 44551.8i 1.55829i
\(936\) 0 0
\(937\) 41822.4i 1.45814i −0.684438 0.729071i \(-0.739953\pi\)
0.684438 0.729071i \(-0.260047\pi\)
\(938\) 0 0
\(939\) −15548.1 15548.1i −0.540356 0.540356i
\(940\) 0 0
\(941\) 35805.6 35805.6i 1.24041 1.24041i 0.280585 0.959829i \(-0.409471\pi\)
0.959829 0.280585i \(-0.0905285\pi\)
\(942\) 0 0
\(943\) −33659.4 −1.16236
\(944\) 0 0
\(945\) 6611.62 0.227594
\(946\) 0 0
\(947\) −4833.07 + 4833.07i −0.165844 + 0.165844i −0.785150 0.619306i \(-0.787414\pi\)
0.619306 + 0.785150i \(0.287414\pi\)
\(948\) 0 0
\(949\) 26884.1 + 26884.1i 0.919593 + 0.919593i
\(950\) 0 0
\(951\) 13851.6i 0.472312i
\(952\) 0 0
\(953\) 54695.5i 1.85914i −0.368645 0.929570i \(-0.620178\pi\)
0.368645 0.929570i \(-0.379822\pi\)
\(954\) 0 0
\(955\) 3414.02 + 3414.02i 0.115681 + 0.115681i
\(956\) 0 0
\(957\) 5135.87 5135.87i 0.173479 0.173479i
\(958\) 0 0
\(959\) −11197.1 −0.377033
\(960\) 0 0
\(961\) −28914.4 −0.970575
\(962\) 0 0
\(963\) −5697.88 + 5697.88i −0.190666 + 0.190666i
\(964\) 0 0
\(965\) 50571.6 + 50571.6i 1.68700 + 1.68700i
\(966\) 0 0
\(967\) 11587.6i 0.385350i 0.981263 + 0.192675i \(0.0617163\pi\)
−0.981263 + 0.192675i \(0.938284\pi\)
\(968\) 0 0
\(969\) 16690.9i 0.553343i
\(970\) 0 0
\(971\) −36545.7 36545.7i −1.20784 1.20784i −0.971727 0.236109i \(-0.924128\pi\)
−0.236109 0.971727i \(-0.575872\pi\)
\(972\) 0 0
\(973\) −18796.8 + 18796.8i −0.619321 + 0.619321i
\(974\) 0 0
\(975\) −37528.6 −1.23270
\(976\) 0 0
\(977\) 11161.4 0.365490 0.182745 0.983160i \(-0.441502\pi\)
0.182745 + 0.983160i \(0.441502\pi\)
\(978\) 0 0
\(979\) −8747.49 + 8747.49i −0.285568 + 0.285568i
\(980\) 0 0
\(981\) −8855.05 8855.05i −0.288196 0.288196i
\(982\) 0 0
\(983\) 52855.9i 1.71500i −0.514486 0.857499i \(-0.672017\pi\)
0.514486 0.857499i \(-0.327983\pi\)
\(984\) 0 0
\(985\) 22053.3i 0.713378i
\(986\) 0 0
\(987\) 1452.21 + 1452.21i 0.0468333 + 0.0468333i
\(988\) 0 0
\(989\) −12219.1 + 12219.1i −0.392867 + 0.392867i
\(990\) 0 0
\(991\) 50245.9 1.61061 0.805305 0.592861i \(-0.202002\pi\)
0.805305 + 0.592861i \(0.202002\pi\)
\(992\) 0 0
\(993\) −32415.2 −1.03592
\(994\) 0 0
\(995\) 39238.0 39238.0i 1.25018 1.25018i
\(996\) 0 0
\(997\) −3886.25 3886.25i −0.123449 0.123449i 0.642683 0.766132i \(-0.277821\pi\)
−0.766132 + 0.642683i \(0.777821\pi\)
\(998\) 0 0
\(999\) 5641.69i 0.178674i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.4.j.a.49.7 24
3.2 odd 2 576.4.k.b.433.11 24
4.3 odd 2 48.4.j.a.37.6 yes 24
8.3 odd 2 384.4.j.b.97.12 24
8.5 even 2 384.4.j.a.97.1 24
12.11 even 2 144.4.k.b.37.7 24
16.3 odd 4 48.4.j.a.13.6 24
16.5 even 4 384.4.j.a.289.1 24
16.11 odd 4 384.4.j.b.289.12 24
16.13 even 4 inner 192.4.j.a.145.7 24
48.29 odd 4 576.4.k.b.145.11 24
48.35 even 4 144.4.k.b.109.7 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.j.a.13.6 24 16.3 odd 4
48.4.j.a.37.6 yes 24 4.3 odd 2
144.4.k.b.37.7 24 12.11 even 2
144.4.k.b.109.7 24 48.35 even 4
192.4.j.a.49.7 24 1.1 even 1 trivial
192.4.j.a.145.7 24 16.13 even 4 inner
384.4.j.a.97.1 24 8.5 even 2
384.4.j.a.289.1 24 16.5 even 4
384.4.j.b.97.12 24 8.3 odd 2
384.4.j.b.289.12 24 16.11 odd 4
576.4.k.b.145.11 24 48.29 odd 4
576.4.k.b.433.11 24 3.2 odd 2