Properties

Label 144.4.k.b.109.8
Level $144$
Weight $4$
Character 144.109
Analytic conductor $8.496$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,4,Mod(37,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.37"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.49627504083\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 109.8
Character \(\chi\) \(=\) 144.109
Dual form 144.4.k.b.37.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.987020 - 2.65062i) q^{2} +(-6.05158 - 5.23243i) q^{4} +(11.8955 - 11.8955i) q^{5} +0.485059i q^{7} +(-19.8422 + 10.8759i) q^{8} +(-19.7893 - 43.2714i) q^{10} +(30.9469 - 30.9469i) q^{11} +(-18.4511 - 18.4511i) q^{13} +(1.28571 + 0.478764i) q^{14} +(9.24327 + 63.3290i) q^{16} -135.964 q^{17} +(65.8832 + 65.8832i) q^{19} +(-134.229 + 9.74414i) q^{20} +(-51.4834 - 112.574i) q^{22} -128.108i q^{23} -158.004i q^{25} +(-67.1184 + 30.6952i) q^{26} +(2.53804 - 2.93538i) q^{28} +(-6.64817 - 6.64817i) q^{29} -15.1323 q^{31} +(176.984 + 38.0066i) q^{32} +(-134.199 + 360.389i) q^{34} +(5.77001 + 5.77001i) q^{35} +(51.4363 - 51.4363i) q^{37} +(239.660 - 109.603i) q^{38} +(-106.658 + 365.407i) q^{40} +410.253i q^{41} +(69.9911 - 69.9911i) q^{43} +(-349.206 + 25.3501i) q^{44} +(-339.567 - 126.446i) q^{46} +487.269 q^{47} +342.765 q^{49} +(-418.809 - 155.953i) q^{50} +(15.1142 + 208.202i) q^{52} +(217.138 - 217.138i) q^{53} -736.257i q^{55} +(-5.27547 - 9.62466i) q^{56} +(-24.1837 + 11.0599i) q^{58} +(293.944 - 293.944i) q^{59} +(207.076 + 207.076i) q^{61} +(-14.9359 + 40.1099i) q^{62} +(275.428 - 431.605i) q^{64} -438.968 q^{65} +(284.693 + 284.693i) q^{67} +(822.798 + 711.423i) q^{68} +(20.9892 - 9.59899i) q^{70} +614.701i q^{71} -486.171i q^{73} +(-85.5694 - 187.107i) q^{74} +(-53.9681 - 743.427i) q^{76} +(15.0111 + 15.0111i) q^{77} +960.347 q^{79} +(863.281 + 643.375i) q^{80} +(1087.42 + 404.928i) q^{82} +(-463.472 - 463.472i) q^{83} +(-1617.36 + 1617.36i) q^{85} +(-116.437 - 254.603i) q^{86} +(-277.480 + 950.633i) q^{88} -1278.38i q^{89} +(8.94987 - 8.94987i) q^{91} +(-670.318 + 775.258i) q^{92} +(480.945 - 1291.57i) q^{94} +1567.42 q^{95} -994.918 q^{97} +(338.316 - 908.539i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 20 q^{4} - 84 q^{8} + 72 q^{10} + 40 q^{11} + 348 q^{14} - 192 q^{16} + 24 q^{19} - 80 q^{20} + 704 q^{22} + 20 q^{26} - 344 q^{28} - 400 q^{29} - 744 q^{31} + 960 q^{32} - 704 q^{34} + 456 q^{35}+ \cdots - 6760 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.987020 2.65062i 0.348964 0.937136i
\(3\) 0 0
\(4\) −6.05158 5.23243i −0.756448 0.654054i
\(5\) 11.8955 11.8955i 1.06396 1.06396i 0.0661534 0.997809i \(-0.478927\pi\)
0.997809 0.0661534i \(-0.0210727\pi\)
\(6\) 0 0
\(7\) 0.485059i 0.0261907i 0.999914 + 0.0130954i \(0.00416851\pi\)
−0.999914 + 0.0130954i \(0.995831\pi\)
\(8\) −19.8422 + 10.8759i −0.876911 + 0.480653i
\(9\) 0 0
\(10\) −19.7893 43.2714i −0.625793 1.36836i
\(11\) 30.9469 30.9469i 0.848260 0.848260i −0.141656 0.989916i \(-0.545243\pi\)
0.989916 + 0.141656i \(0.0452428\pi\)
\(12\) 0 0
\(13\) −18.4511 18.4511i −0.393647 0.393647i 0.482338 0.875985i \(-0.339788\pi\)
−0.875985 + 0.482338i \(0.839788\pi\)
\(14\) 1.28571 + 0.478764i 0.0245443 + 0.00913964i
\(15\) 0 0
\(16\) 9.24327 + 63.3290i 0.144426 + 0.989516i
\(17\) −135.964 −1.93977 −0.969886 0.243558i \(-0.921685\pi\)
−0.969886 + 0.243558i \(0.921685\pi\)
\(18\) 0 0
\(19\) 65.8832 + 65.8832i 0.795508 + 0.795508i 0.982384 0.186876i \(-0.0598362\pi\)
−0.186876 + 0.982384i \(0.559836\pi\)
\(20\) −134.229 + 9.74414i −1.50072 + 0.108943i
\(21\) 0 0
\(22\) −51.4834 112.574i −0.498922 1.09095i
\(23\) 128.108i 1.16141i −0.814114 0.580705i \(-0.802777\pi\)
0.814114 0.580705i \(-0.197223\pi\)
\(24\) 0 0
\(25\) 158.004i 1.26403i
\(26\) −67.1184 + 30.6952i −0.506269 + 0.231532i
\(27\) 0 0
\(28\) 2.53804 2.93538i 0.0171302 0.0198119i
\(29\) −6.64817 6.64817i −0.0425702 0.0425702i 0.685501 0.728071i \(-0.259583\pi\)
−0.728071 + 0.685501i \(0.759583\pi\)
\(30\) 0 0
\(31\) −15.1323 −0.0876722 −0.0438361 0.999039i \(-0.513958\pi\)
−0.0438361 + 0.999039i \(0.513958\pi\)
\(32\) 176.984 + 38.0066i 0.977710 + 0.209959i
\(33\) 0 0
\(34\) −134.199 + 360.389i −0.676912 + 1.81783i
\(35\) 5.77001 + 5.77001i 0.0278660 + 0.0278660i
\(36\) 0 0
\(37\) 51.4363 51.4363i 0.228542 0.228542i −0.583541 0.812084i \(-0.698333\pi\)
0.812084 + 0.583541i \(0.198333\pi\)
\(38\) 239.660 109.603i 1.02310 0.467895i
\(39\) 0 0
\(40\) −106.658 + 365.407i −0.421604 + 1.44440i
\(41\) 410.253i 1.56270i 0.624092 + 0.781350i \(0.285469\pi\)
−0.624092 + 0.781350i \(0.714531\pi\)
\(42\) 0 0
\(43\) 69.9911 69.9911i 0.248222 0.248222i −0.572019 0.820241i \(-0.693839\pi\)
0.820241 + 0.572019i \(0.193839\pi\)
\(44\) −349.206 + 25.3501i −1.19647 + 0.0868562i
\(45\) 0 0
\(46\) −339.567 126.446i −1.08840 0.405291i
\(47\) 487.269 1.51225 0.756123 0.654430i \(-0.227091\pi\)
0.756123 + 0.654430i \(0.227091\pi\)
\(48\) 0 0
\(49\) 342.765 0.999314
\(50\) −418.809 155.953i −1.18457 0.441103i
\(51\) 0 0
\(52\) 15.1142 + 208.202i 0.0403068 + 0.555239i
\(53\) 217.138 217.138i 0.562757 0.562757i −0.367333 0.930090i \(-0.619729\pi\)
0.930090 + 0.367333i \(0.119729\pi\)
\(54\) 0 0
\(55\) 736.257i 1.80503i
\(56\) −5.27547 9.62466i −0.0125887 0.0229670i
\(57\) 0 0
\(58\) −24.1837 + 11.0599i −0.0547495 + 0.0250386i
\(59\) 293.944 293.944i 0.648613 0.648613i −0.304044 0.952658i \(-0.598337\pi\)
0.952658 + 0.304044i \(0.0983371\pi\)
\(60\) 0 0
\(61\) 207.076 + 207.076i 0.434646 + 0.434646i 0.890205 0.455559i \(-0.150561\pi\)
−0.455559 + 0.890205i \(0.650561\pi\)
\(62\) −14.9359 + 40.1099i −0.0305945 + 0.0821608i
\(63\) 0 0
\(64\) 275.428 431.605i 0.537946 0.842979i
\(65\) −438.968 −0.837651
\(66\) 0 0
\(67\) 284.693 + 284.693i 0.519115 + 0.519115i 0.917304 0.398188i \(-0.130361\pi\)
−0.398188 + 0.917304i \(0.630361\pi\)
\(68\) 822.798 + 711.423i 1.46734 + 1.26872i
\(69\) 0 0
\(70\) 20.9892 9.59899i 0.0358384 0.0163900i
\(71\) 614.701i 1.02749i 0.857944 + 0.513744i \(0.171742\pi\)
−0.857944 + 0.513744i \(0.828258\pi\)
\(72\) 0 0
\(73\) 486.171i 0.779479i −0.920925 0.389740i \(-0.872565\pi\)
0.920925 0.389740i \(-0.127435\pi\)
\(74\) −85.5694 187.107i −0.134422 0.293928i
\(75\) 0 0
\(76\) −53.9681 743.427i −0.0814548 1.12207i
\(77\) 15.0111 + 15.0111i 0.0222166 + 0.0222166i
\(78\) 0 0
\(79\) 960.347 1.36769 0.683845 0.729628i \(-0.260307\pi\)
0.683845 + 0.729628i \(0.260307\pi\)
\(80\) 863.281 + 643.375i 1.20647 + 0.899144i
\(81\) 0 0
\(82\) 1087.42 + 404.928i 1.46446 + 0.545327i
\(83\) −463.472 463.472i −0.612923 0.612923i 0.330784 0.943707i \(-0.392687\pi\)
−0.943707 + 0.330784i \(0.892687\pi\)
\(84\) 0 0
\(85\) −1617.36 + 1617.36i −2.06385 + 2.06385i
\(86\) −116.437 254.603i −0.145997 0.319238i
\(87\) 0 0
\(88\) −277.480 + 950.633i −0.336130 + 1.15157i
\(89\) 1278.38i 1.52257i −0.648420 0.761283i \(-0.724570\pi\)
0.648420 0.761283i \(-0.275430\pi\)
\(90\) 0 0
\(91\) 8.94987 8.94987i 0.0103099 0.0103099i
\(92\) −670.318 + 775.258i −0.759625 + 0.878546i
\(93\) 0 0
\(94\) 480.945 1291.57i 0.527720 1.41718i
\(95\) 1567.42 1.69278
\(96\) 0 0
\(97\) −994.918 −1.04143 −0.520714 0.853731i \(-0.674334\pi\)
−0.520714 + 0.853731i \(0.674334\pi\)
\(98\) 338.316 908.539i 0.348725 0.936493i
\(99\) 0 0
\(100\) −826.747 + 956.175i −0.826747 + 0.956175i
\(101\) −1317.80 + 1317.80i −1.29828 + 1.29828i −0.368750 + 0.929529i \(0.620214\pi\)
−0.929529 + 0.368750i \(0.879786\pi\)
\(102\) 0 0
\(103\) 1345.19i 1.28685i 0.765511 + 0.643423i \(0.222486\pi\)
−0.765511 + 0.643423i \(0.777514\pi\)
\(104\) 566.783 + 165.438i 0.534401 + 0.155986i
\(105\) 0 0
\(106\) −361.230 789.868i −0.330998 0.723762i
\(107\) −437.734 + 437.734i −0.395489 + 0.395489i −0.876639 0.481149i \(-0.840219\pi\)
0.481149 + 0.876639i \(0.340219\pi\)
\(108\) 0 0
\(109\) 173.959 + 173.959i 0.152864 + 0.152864i 0.779396 0.626532i \(-0.215526\pi\)
−0.626532 + 0.779396i \(0.715526\pi\)
\(110\) −1951.54 726.700i −1.69156 0.629892i
\(111\) 0 0
\(112\) −30.7183 + 4.48354i −0.0259162 + 0.00378263i
\(113\) −312.932 −0.260514 −0.130257 0.991480i \(-0.541580\pi\)
−0.130257 + 0.991480i \(0.541580\pi\)
\(114\) 0 0
\(115\) −1523.91 1523.91i −1.23570 1.23570i
\(116\) 5.44583 + 75.0181i 0.00435891 + 0.0600453i
\(117\) 0 0
\(118\) −489.005 1069.26i −0.381496 0.834182i
\(119\) 65.9507i 0.0508041i
\(120\) 0 0
\(121\) 584.427i 0.439089i
\(122\) 753.269 344.492i 0.558998 0.255646i
\(123\) 0 0
\(124\) 91.5743 + 79.1787i 0.0663194 + 0.0573424i
\(125\) −392.601 392.601i −0.280922 0.280922i
\(126\) 0 0
\(127\) 1457.94 1.01867 0.509335 0.860569i \(-0.329892\pi\)
0.509335 + 0.860569i \(0.329892\pi\)
\(128\) −872.169 1156.06i −0.602262 0.798298i
\(129\) 0 0
\(130\) −433.271 + 1163.54i −0.292310 + 0.784993i
\(131\) 203.507 + 203.507i 0.135729 + 0.135729i 0.771707 0.635978i \(-0.219403\pi\)
−0.635978 + 0.771707i \(0.719403\pi\)
\(132\) 0 0
\(133\) −31.9573 + 31.9573i −0.0208349 + 0.0208349i
\(134\) 1035.61 473.615i 0.667634 0.305329i
\(135\) 0 0
\(136\) 2697.83 1478.74i 1.70101 0.932357i
\(137\) 432.979i 0.270014i 0.990845 + 0.135007i \(0.0431056\pi\)
−0.990845 + 0.135007i \(0.956894\pi\)
\(138\) 0 0
\(139\) −1058.62 + 1058.62i −0.645975 + 0.645975i −0.952018 0.306043i \(-0.900995\pi\)
0.306043 + 0.952018i \(0.400995\pi\)
\(140\) −4.72649 65.1089i −0.00285329 0.0393050i
\(141\) 0 0
\(142\) 1629.34 + 606.723i 0.962895 + 0.358557i
\(143\) −1142.01 −0.667829
\(144\) 0 0
\(145\) −158.166 −0.0905861
\(146\) −1288.65 479.860i −0.730478 0.272010i
\(147\) 0 0
\(148\) −580.407 + 42.1339i −0.322359 + 0.0234012i
\(149\) −1703.13 + 1703.13i −0.936414 + 0.936414i −0.998096 0.0616815i \(-0.980354\pi\)
0.0616815 + 0.998096i \(0.480354\pi\)
\(150\) 0 0
\(151\) 541.560i 0.291864i −0.989295 0.145932i \(-0.953382\pi\)
0.989295 0.145932i \(-0.0466182\pi\)
\(152\) −2023.81 590.729i −1.07995 0.315227i
\(153\) 0 0
\(154\) 54.6050 24.9725i 0.0285727 0.0130671i
\(155\) −180.006 + 180.006i −0.0932800 + 0.0932800i
\(156\) 0 0
\(157\) −8.94805 8.94805i −0.00454861 0.00454861i 0.704829 0.709377i \(-0.251024\pi\)
−0.709377 + 0.704829i \(0.751024\pi\)
\(158\) 947.882 2545.52i 0.477275 1.28171i
\(159\) 0 0
\(160\) 2557.42 1653.21i 1.26364 0.816859i
\(161\) 62.1402 0.0304182
\(162\) 0 0
\(163\) −1308.41 1308.41i −0.628727 0.628727i 0.319021 0.947748i \(-0.396646\pi\)
−0.947748 + 0.319021i \(0.896646\pi\)
\(164\) 2146.62 2482.68i 1.02209 1.18210i
\(165\) 0 0
\(166\) −1685.94 + 771.031i −0.788281 + 0.360504i
\(167\) 2374.12i 1.10009i −0.835135 0.550045i \(-0.814610\pi\)
0.835135 0.550045i \(-0.185390\pi\)
\(168\) 0 0
\(169\) 1516.12i 0.690084i
\(170\) 2690.63 + 5883.36i 1.21390 + 2.65431i
\(171\) 0 0
\(172\) −789.781 + 57.3331i −0.350118 + 0.0254163i
\(173\) 1310.49 + 1310.49i 0.575922 + 0.575922i 0.933777 0.357855i \(-0.116492\pi\)
−0.357855 + 0.933777i \(0.616492\pi\)
\(174\) 0 0
\(175\) 76.6414 0.0331060
\(176\) 2245.89 + 1673.79i 0.961877 + 0.716855i
\(177\) 0 0
\(178\) −3388.51 1261.79i −1.42685 0.531321i
\(179\) −248.652 248.652i −0.103828 0.103828i 0.653285 0.757112i \(-0.273390\pi\)
−0.757112 + 0.653285i \(0.773390\pi\)
\(180\) 0 0
\(181\) 1152.86 1152.86i 0.473434 0.473434i −0.429590 0.903024i \(-0.641342\pi\)
0.903024 + 0.429590i \(0.141342\pi\)
\(182\) −14.8890 32.5564i −0.00606399 0.0132596i
\(183\) 0 0
\(184\) 1393.30 + 2541.96i 0.558235 + 1.01845i
\(185\) 1223.72i 0.486321i
\(186\) 0 0
\(187\) −4207.67 + 4207.67i −1.64543 + 1.64543i
\(188\) −2948.75 2549.60i −1.14393 0.989090i
\(189\) 0 0
\(190\) 1547.08 4154.65i 0.590721 1.58637i
\(191\) 457.697 0.173392 0.0866959 0.996235i \(-0.472369\pi\)
0.0866959 + 0.996235i \(0.472369\pi\)
\(192\) 0 0
\(193\) −61.7567 −0.0230329 −0.0115164 0.999934i \(-0.503666\pi\)
−0.0115164 + 0.999934i \(0.503666\pi\)
\(194\) −982.004 + 2637.15i −0.363422 + 0.975960i
\(195\) 0 0
\(196\) −2074.27 1793.49i −0.755929 0.653606i
\(197\) 613.568 613.568i 0.221903 0.221903i −0.587396 0.809299i \(-0.699847\pi\)
0.809299 + 0.587396i \(0.199847\pi\)
\(198\) 0 0
\(199\) 3343.30i 1.19095i 0.803372 + 0.595477i \(0.203037\pi\)
−0.803372 + 0.595477i \(0.796963\pi\)
\(200\) 1718.44 + 3135.16i 0.607561 + 1.10845i
\(201\) 0 0
\(202\) 2192.29 + 4793.69i 0.763610 + 1.66972i
\(203\) 3.22476 3.22476i 0.00111494 0.00111494i
\(204\) 0 0
\(205\) 4880.15 + 4880.15i 1.66266 + 1.66266i
\(206\) 3565.58 + 1327.73i 1.20595 + 0.449063i
\(207\) 0 0
\(208\) 997.940 1339.04i 0.332667 0.446372i
\(209\) 4077.77 1.34959
\(210\) 0 0
\(211\) −445.986 445.986i −0.145512 0.145512i 0.630598 0.776110i \(-0.282810\pi\)
−0.776110 + 0.630598i \(0.782810\pi\)
\(212\) −2450.18 + 177.868i −0.793770 + 0.0576226i
\(213\) 0 0
\(214\) 728.215 + 1592.32i 0.232616 + 0.508639i
\(215\) 1665.15i 0.528198i
\(216\) 0 0
\(217\) 7.34006i 0.00229620i
\(218\) 632.799 289.398i 0.196599 0.0899104i
\(219\) 0 0
\(220\) −3852.41 + 4455.52i −1.18059 + 1.36541i
\(221\) 2508.68 + 2508.68i 0.763585 + 0.763585i
\(222\) 0 0
\(223\) 6100.84 1.83203 0.916014 0.401146i \(-0.131388\pi\)
0.916014 + 0.401146i \(0.131388\pi\)
\(224\) −18.4355 + 85.8480i −0.00549898 + 0.0256070i
\(225\) 0 0
\(226\) −308.870 + 829.463i −0.0909103 + 0.244137i
\(227\) 3652.90 + 3652.90i 1.06807 + 1.06807i 0.997507 + 0.0705613i \(0.0224790\pi\)
0.0705613 + 0.997507i \(0.477521\pi\)
\(228\) 0 0
\(229\) 1707.86 1707.86i 0.492832 0.492832i −0.416365 0.909197i \(-0.636696\pi\)
0.909197 + 0.416365i \(0.136696\pi\)
\(230\) −5543.43 + 2535.17i −1.58923 + 0.726802i
\(231\) 0 0
\(232\) 204.220 + 59.6095i 0.0577917 + 0.0168688i
\(233\) 3019.27i 0.848924i −0.905446 0.424462i \(-0.860463\pi\)
0.905446 0.424462i \(-0.139537\pi\)
\(234\) 0 0
\(235\) 5796.29 5796.29i 1.60897 1.60897i
\(236\) −3316.86 + 240.783i −0.914870 + 0.0664138i
\(237\) 0 0
\(238\) −174.810 65.0946i −0.0476103 0.0177288i
\(239\) −2964.22 −0.802256 −0.401128 0.916022i \(-0.631382\pi\)
−0.401128 + 0.916022i \(0.631382\pi\)
\(240\) 0 0
\(241\) −2606.84 −0.696769 −0.348384 0.937352i \(-0.613270\pi\)
−0.348384 + 0.937352i \(0.613270\pi\)
\(242\) −1549.09 576.841i −0.411486 0.153226i
\(243\) 0 0
\(244\) −169.626 2336.65i −0.0445049 0.613069i
\(245\) 4077.35 4077.35i 1.06323 1.06323i
\(246\) 0 0
\(247\) 2431.23i 0.626298i
\(248\) 300.258 164.578i 0.0768807 0.0421399i
\(249\) 0 0
\(250\) −1428.14 + 653.131i −0.361294 + 0.165230i
\(251\) −3018.73 + 3018.73i −0.759126 + 0.759126i −0.976163 0.217037i \(-0.930361\pi\)
0.217037 + 0.976163i \(0.430361\pi\)
\(252\) 0 0
\(253\) −3964.56 3964.56i −0.985177 0.985177i
\(254\) 1439.01 3864.44i 0.355479 0.954632i
\(255\) 0 0
\(256\) −3925.12 + 1170.73i −0.958282 + 0.285824i
\(257\) −1988.50 −0.482644 −0.241322 0.970445i \(-0.577581\pi\)
−0.241322 + 0.970445i \(0.577581\pi\)
\(258\) 0 0
\(259\) 24.9496 + 24.9496i 0.00598570 + 0.00598570i
\(260\) 2656.45 + 2296.87i 0.633639 + 0.547869i
\(261\) 0 0
\(262\) 740.284 338.554i 0.174561 0.0798318i
\(263\) 6049.85i 1.41844i 0.704987 + 0.709220i \(0.250953\pi\)
−0.704987 + 0.709220i \(0.749047\pi\)
\(264\) 0 0
\(265\) 5165.90i 1.19751i
\(266\) 53.1641 + 116.249i 0.0122545 + 0.0267958i
\(267\) 0 0
\(268\) −233.205 3212.47i −0.0531540 0.732213i
\(269\) −3883.56 3883.56i −0.880242 0.880242i 0.113317 0.993559i \(-0.463852\pi\)
−0.993559 + 0.113317i \(0.963852\pi\)
\(270\) 0 0
\(271\) −3321.60 −0.744549 −0.372275 0.928123i \(-0.621422\pi\)
−0.372275 + 0.928123i \(0.621422\pi\)
\(272\) −1256.75 8610.47i −0.280154 1.91944i
\(273\) 0 0
\(274\) 1147.66 + 427.359i 0.253039 + 0.0942251i
\(275\) −4889.75 4889.75i −1.07223 1.07223i
\(276\) 0 0
\(277\) −3603.29 + 3603.29i −0.781591 + 0.781591i −0.980099 0.198508i \(-0.936390\pi\)
0.198508 + 0.980099i \(0.436390\pi\)
\(278\) 1761.11 + 3850.86i 0.379944 + 0.830789i
\(279\) 0 0
\(280\) −177.244 51.7356i −0.0378298 0.0110421i
\(281\) 823.661i 0.174859i −0.996171 0.0874297i \(-0.972135\pi\)
0.996171 0.0874297i \(-0.0278653\pi\)
\(282\) 0 0
\(283\) −2003.74 + 2003.74i −0.420883 + 0.420883i −0.885508 0.464624i \(-0.846189\pi\)
0.464624 + 0.885508i \(0.346189\pi\)
\(284\) 3216.38 3719.91i 0.672032 0.777240i
\(285\) 0 0
\(286\) −1127.19 + 3027.03i −0.233049 + 0.625847i
\(287\) −198.997 −0.0409283
\(288\) 0 0
\(289\) 13573.2 2.76272
\(290\) −156.113 + 419.239i −0.0316113 + 0.0848915i
\(291\) 0 0
\(292\) −2543.86 + 2942.10i −0.509822 + 0.589635i
\(293\) 1900.08 1900.08i 0.378852 0.378852i −0.491836 0.870688i \(-0.663674\pi\)
0.870688 + 0.491836i \(0.163674\pi\)
\(294\) 0 0
\(295\) 6993.19i 1.38020i
\(296\) −461.193 + 1580.03i −0.0905618 + 0.310261i
\(297\) 0 0
\(298\) 2833.33 + 6195.37i 0.550772 + 1.20432i
\(299\) −2363.74 + 2363.74i −0.457185 + 0.457185i
\(300\) 0 0
\(301\) 33.9499 + 33.9499i 0.00650112 + 0.00650112i
\(302\) −1435.47 534.531i −0.273517 0.101850i
\(303\) 0 0
\(304\) −3563.34 + 4781.30i −0.672275 + 0.902060i
\(305\) 4926.54 0.924894
\(306\) 0 0
\(307\) −3489.52 3489.52i −0.648721 0.648721i 0.303963 0.952684i \(-0.401690\pi\)
−0.952684 + 0.303963i \(0.901690\pi\)
\(308\) −12.2963 169.386i −0.00227483 0.0313365i
\(309\) 0 0
\(310\) 299.457 + 654.796i 0.0548646 + 0.119967i
\(311\) 1471.68i 0.268332i 0.990959 + 0.134166i \(0.0428356\pi\)
−0.990959 + 0.134166i \(0.957164\pi\)
\(312\) 0 0
\(313\) 1258.85i 0.227331i −0.993519 0.113665i \(-0.963741\pi\)
0.993519 0.113665i \(-0.0362592\pi\)
\(314\) −32.5498 + 14.8860i −0.00584997 + 0.00267537i
\(315\) 0 0
\(316\) −5811.62 5024.95i −1.03459 0.894543i
\(317\) 5902.41 + 5902.41i 1.04578 + 1.04578i 0.998901 + 0.0468795i \(0.0149277\pi\)
0.0468795 + 0.998901i \(0.485072\pi\)
\(318\) 0 0
\(319\) −411.481 −0.0722211
\(320\) −1857.80 8410.50i −0.324544 1.46925i
\(321\) 0 0
\(322\) 61.3336 164.710i 0.0106149 0.0285060i
\(323\) −8957.75 8957.75i −1.54310 1.54310i
\(324\) 0 0
\(325\) −2915.35 + 2915.35i −0.497583 + 0.497583i
\(326\) −4759.52 + 2176.67i −0.808606 + 0.369799i
\(327\) 0 0
\(328\) −4461.88 8140.33i −0.751116 1.37035i
\(329\) 236.355i 0.0396068i
\(330\) 0 0
\(331\) −3256.70 + 3256.70i −0.540798 + 0.540798i −0.923763 0.382965i \(-0.874903\pi\)
0.382965 + 0.923763i \(0.374903\pi\)
\(332\) 379.652 + 5229.82i 0.0627593 + 0.864529i
\(333\) 0 0
\(334\) −6292.90 2343.31i −1.03093 0.383893i
\(335\) 6773.10 1.10464
\(336\) 0 0
\(337\) −4882.53 −0.789224 −0.394612 0.918848i \(-0.629121\pi\)
−0.394612 + 0.918848i \(0.629121\pi\)
\(338\) −4018.65 1496.44i −0.646703 0.240815i
\(339\) 0 0
\(340\) 18250.3 1324.85i 2.91106 0.211324i
\(341\) −468.298 + 468.298i −0.0743688 + 0.0743688i
\(342\) 0 0
\(343\) 332.637i 0.0523635i
\(344\) −627.562 + 2150.00i −0.0983601 + 0.336977i
\(345\) 0 0
\(346\) 4767.09 2180.13i 0.740694 0.338741i
\(347\) −1744.70 + 1744.70i −0.269914 + 0.269914i −0.829066 0.559151i \(-0.811127\pi\)
0.559151 + 0.829066i \(0.311127\pi\)
\(348\) 0 0
\(349\) 6212.48 + 6212.48i 0.952855 + 0.952855i 0.998938 0.0460825i \(-0.0146737\pi\)
−0.0460825 + 0.998938i \(0.514674\pi\)
\(350\) 75.6467 203.147i 0.0115528 0.0310248i
\(351\) 0 0
\(352\) 6653.32 4300.94i 1.00745 0.651253i
\(353\) −683.045 −0.102988 −0.0514941 0.998673i \(-0.516398\pi\)
−0.0514941 + 0.998673i \(0.516398\pi\)
\(354\) 0 0
\(355\) 7312.16 + 7312.16i 1.09321 + 1.09321i
\(356\) −6689.06 + 7736.24i −0.995841 + 1.15174i
\(357\) 0 0
\(358\) −904.508 + 413.658i −0.133533 + 0.0610684i
\(359\) 4019.67i 0.590947i 0.955351 + 0.295473i \(0.0954773\pi\)
−0.955351 + 0.295473i \(0.904523\pi\)
\(360\) 0 0
\(361\) 1822.20i 0.265665i
\(362\) −1917.90 4193.70i −0.278460 0.608884i
\(363\) 0 0
\(364\) −100.990 + 7.33126i −0.0145421 + 0.00105567i
\(365\) −5783.23 5783.23i −0.829337 0.829337i
\(366\) 0 0
\(367\) −8041.99 −1.14384 −0.571919 0.820310i \(-0.693801\pi\)
−0.571919 + 0.820310i \(0.693801\pi\)
\(368\) 8112.97 1184.14i 1.14923 0.167738i
\(369\) 0 0
\(370\) −3243.61 1207.83i −0.455749 0.169709i
\(371\) 105.325 + 105.325i 0.0147390 + 0.0147390i
\(372\) 0 0
\(373\) 805.266 805.266i 0.111783 0.111783i −0.649003 0.760786i \(-0.724814\pi\)
0.760786 + 0.649003i \(0.224814\pi\)
\(374\) 6999.89 + 15306.0i 0.967795 + 2.11619i
\(375\) 0 0
\(376\) −9668.51 + 5299.51i −1.32610 + 0.726865i
\(377\) 245.332i 0.0335152i
\(378\) 0 0
\(379\) 519.461 519.461i 0.0704034 0.0704034i −0.671028 0.741432i \(-0.734147\pi\)
0.741432 + 0.671028i \(0.234147\pi\)
\(380\) −9485.39 8201.44i −1.28050 1.10717i
\(381\) 0 0
\(382\) 451.757 1213.18i 0.0605075 0.162492i
\(383\) −2907.38 −0.387886 −0.193943 0.981013i \(-0.562128\pi\)
−0.193943 + 0.981013i \(0.562128\pi\)
\(384\) 0 0
\(385\) 357.128 0.0472752
\(386\) −60.9552 + 163.694i −0.00803766 + 0.0215849i
\(387\) 0 0
\(388\) 6020.83 + 5205.84i 0.787786 + 0.681151i
\(389\) −6046.78 + 6046.78i −0.788133 + 0.788133i −0.981188 0.193055i \(-0.938160\pi\)
0.193055 + 0.981188i \(0.438160\pi\)
\(390\) 0 0
\(391\) 17418.1i 2.25287i
\(392\) −6801.22 + 3727.88i −0.876310 + 0.480323i
\(393\) 0 0
\(394\) −1020.73 2231.94i −0.130517 0.285390i
\(395\) 11423.8 11423.8i 1.45517 1.45517i
\(396\) 0 0
\(397\) −4121.17 4121.17i −0.520996 0.520996i 0.396876 0.917872i \(-0.370094\pi\)
−0.917872 + 0.396876i \(0.870094\pi\)
\(398\) 8861.81 + 3299.90i 1.11609 + 0.415601i
\(399\) 0 0
\(400\) 10006.2 1460.48i 1.25078 0.182560i
\(401\) −3991.60 −0.497084 −0.248542 0.968621i \(-0.579951\pi\)
−0.248542 + 0.968621i \(0.579951\pi\)
\(402\) 0 0
\(403\) 279.207 + 279.207i 0.0345119 + 0.0345119i
\(404\) 14870.1 1079.47i 1.83122 0.132935i
\(405\) 0 0
\(406\) −5.36471 11.7305i −0.000655779 0.00143393i
\(407\) 3183.59i 0.387727i
\(408\) 0 0
\(409\) 7470.32i 0.903138i 0.892236 + 0.451569i \(0.149136\pi\)
−0.892236 + 0.451569i \(0.850864\pi\)
\(410\) 17752.2 8118.62i 2.13834 0.977927i
\(411\) 0 0
\(412\) 7038.59 8140.50i 0.841667 0.973431i
\(413\) 142.580 + 142.580i 0.0169877 + 0.0169877i
\(414\) 0 0
\(415\) −11026.4 −1.30425
\(416\) −2564.29 3966.82i −0.302223 0.467522i
\(417\) 0 0
\(418\) 4024.84 10808.6i 0.470960 1.26475i
\(419\) 11052.5 + 11052.5i 1.28866 + 1.28866i 0.935601 + 0.353059i \(0.114858\pi\)
0.353059 + 0.935601i \(0.385142\pi\)
\(420\) 0 0
\(421\) 2747.59 2747.59i 0.318075 0.318075i −0.529952 0.848027i \(-0.677790\pi\)
0.848027 + 0.529952i \(0.177790\pi\)
\(422\) −1622.34 + 741.943i −0.187143 + 0.0855858i
\(423\) 0 0
\(424\) −1946.92 + 6670.06i −0.222997 + 0.763979i
\(425\) 21482.9i 2.45194i
\(426\) 0 0
\(427\) −100.444 + 100.444i −0.0113837 + 0.0113837i
\(428\) 4939.40 358.569i 0.557838 0.0404955i
\(429\) 0 0
\(430\) −4413.69 1643.54i −0.494993 0.184322i
\(431\) −11.7027 −0.00130789 −0.000653945 1.00000i \(-0.500208\pi\)
−0.000653945 1.00000i \(0.500208\pi\)
\(432\) 0 0
\(433\) −8291.16 −0.920202 −0.460101 0.887866i \(-0.652187\pi\)
−0.460101 + 0.887866i \(0.652187\pi\)
\(434\) −19.4557 7.24479i −0.00215185 0.000801292i
\(435\) 0 0
\(436\) −142.498 1962.95i −0.0156523 0.215615i
\(437\) 8440.19 8440.19i 0.923911 0.923911i
\(438\) 0 0
\(439\) 14287.6i 1.55332i −0.629918 0.776661i \(-0.716912\pi\)
0.629918 0.776661i \(-0.283088\pi\)
\(440\) 8007.48 + 14609.0i 0.867594 + 1.58285i
\(441\) 0 0
\(442\) 9125.69 4173.45i 0.982047 0.449119i
\(443\) 5070.34 5070.34i 0.543790 0.543790i −0.380847 0.924638i \(-0.624368\pi\)
0.924638 + 0.380847i \(0.124368\pi\)
\(444\) 0 0
\(445\) −15207.0 15207.0i −1.61995 1.61995i
\(446\) 6021.65 16171.0i 0.639313 1.71686i
\(447\) 0 0
\(448\) 209.354 + 133.599i 0.0220783 + 0.0140892i
\(449\) −16521.3 −1.73650 −0.868249 0.496128i \(-0.834755\pi\)
−0.868249 + 0.496128i \(0.834755\pi\)
\(450\) 0 0
\(451\) 12696.1 + 12696.1i 1.32558 + 1.32558i
\(452\) 1893.73 + 1637.39i 0.197066 + 0.170391i
\(453\) 0 0
\(454\) 13287.9 6076.97i 1.37364 0.628208i
\(455\) 212.926i 0.0219387i
\(456\) 0 0
\(457\) 3323.22i 0.340161i −0.985430 0.170080i \(-0.945597\pi\)
0.985430 0.170080i \(-0.0544028\pi\)
\(458\) −2841.20 6212.58i −0.289870 0.633832i
\(459\) 0 0
\(460\) 1248.31 + 17195.8i 0.126527 + 1.74295i
\(461\) 1193.80 + 1193.80i 0.120609 + 0.120609i 0.764835 0.644226i \(-0.222820\pi\)
−0.644226 + 0.764835i \(0.722820\pi\)
\(462\) 0 0
\(463\) 6199.48 0.622277 0.311139 0.950365i \(-0.399290\pi\)
0.311139 + 0.950365i \(0.399290\pi\)
\(464\) 359.571 482.473i 0.0359756 0.0482721i
\(465\) 0 0
\(466\) −8002.95 2980.09i −0.795557 0.296244i
\(467\) 2566.04 + 2566.04i 0.254265 + 0.254265i 0.822717 0.568451i \(-0.192457\pi\)
−0.568451 + 0.822717i \(0.692457\pi\)
\(468\) 0 0
\(469\) −138.093 + 138.093i −0.0135960 + 0.0135960i
\(470\) −9642.72 21084.8i −0.946352 2.06930i
\(471\) 0 0
\(472\) −2635.59 + 9029.40i −0.257018 + 0.880534i
\(473\) 4332.02i 0.421113i
\(474\) 0 0
\(475\) 10409.8 10409.8i 1.00555 1.00555i
\(476\) −345.082 + 399.106i −0.0332286 + 0.0384306i
\(477\) 0 0
\(478\) −2925.74 + 7857.02i −0.279959 + 0.751823i
\(479\) −4563.85 −0.435339 −0.217670 0.976023i \(-0.569846\pi\)
−0.217670 + 0.976023i \(0.569846\pi\)
\(480\) 0 0
\(481\) −1898.11 −0.179930
\(482\) −2573.00 + 6909.74i −0.243147 + 0.652967i
\(483\) 0 0
\(484\) −3057.98 + 3536.71i −0.287188 + 0.332148i
\(485\) −11835.0 + 11835.0i −1.10804 + 1.10804i
\(486\) 0 0
\(487\) 1099.80i 0.102334i −0.998690 0.0511672i \(-0.983706\pi\)
0.998690 0.0511672i \(-0.0162941\pi\)
\(488\) −6361.00 1856.71i −0.590060 0.172232i
\(489\) 0 0
\(490\) −6783.07 14831.9i −0.625363 1.36742i
\(491\) −11017.7 + 11017.7i −1.01267 + 1.01267i −0.0127523 + 0.999919i \(0.504059\pi\)
−0.999919 + 0.0127523i \(0.995941\pi\)
\(492\) 0 0
\(493\) 903.913 + 903.913i 0.0825764 + 0.0825764i
\(494\) −6444.28 2399.68i −0.586927 0.218556i
\(495\) 0 0
\(496\) −139.872 958.312i −0.0126622 0.0867530i
\(497\) −298.167 −0.0269107
\(498\) 0 0
\(499\) −3603.08 3603.08i −0.323238 0.323238i 0.526770 0.850008i \(-0.323403\pi\)
−0.850008 + 0.526770i \(0.823403\pi\)
\(500\) 321.598 + 4430.11i 0.0287646 + 0.396241i
\(501\) 0 0
\(502\) 5021.96 + 10981.1i 0.446496 + 0.976312i
\(503\) 17947.0i 1.59089i −0.606028 0.795443i \(-0.707238\pi\)
0.606028 0.795443i \(-0.292762\pi\)
\(504\) 0 0
\(505\) 31351.7i 2.76264i
\(506\) −14421.7 + 6595.45i −1.26704 + 0.579453i
\(507\) 0 0
\(508\) −8822.82 7628.56i −0.770570 0.666265i
\(509\) −1844.54 1844.54i −0.160625 0.160625i 0.622219 0.782843i \(-0.286231\pi\)
−0.782843 + 0.622219i \(0.786231\pi\)
\(510\) 0 0
\(511\) 235.822 0.0204151
\(512\) −771.004 + 11559.6i −0.0665506 + 0.997783i
\(513\) 0 0
\(514\) −1962.69 + 5270.77i −0.168426 + 0.452303i
\(515\) 16001.6 + 16001.6i 1.36916 + 1.36916i
\(516\) 0 0
\(517\) 15079.5 15079.5i 1.28278 1.28278i
\(518\) 90.7578 41.5062i 0.00769821 0.00352062i
\(519\) 0 0
\(520\) 8710.11 4774.19i 0.734545 0.402619i
\(521\) 5221.57i 0.439081i 0.975603 + 0.219541i \(0.0704558\pi\)
−0.975603 + 0.219541i \(0.929544\pi\)
\(522\) 0 0
\(523\) −581.412 + 581.412i −0.0486106 + 0.0486106i −0.730994 0.682384i \(-0.760943\pi\)
0.682384 + 0.730994i \(0.260943\pi\)
\(524\) −166.702 2296.37i −0.0138977 0.191446i
\(525\) 0 0
\(526\) 16035.9 + 5971.33i 1.32927 + 0.494985i
\(527\) 2057.45 0.170064
\(528\) 0 0
\(529\) −4244.75 −0.348874
\(530\) −13692.9 5098.85i −1.12223 0.417887i
\(531\) 0 0
\(532\) 360.606 26.1777i 0.0293877 0.00213336i
\(533\) 7569.61 7569.61i 0.615152 0.615152i
\(534\) 0 0
\(535\) 10414.1i 0.841572i
\(536\) −8745.23 2552.64i −0.704732 0.205704i
\(537\) 0 0
\(538\) −14127.0 + 6460.70i −1.13208 + 0.517733i
\(539\) 10607.5 10607.5i 0.847678 0.847678i
\(540\) 0 0
\(541\) 4813.94 + 4813.94i 0.382564 + 0.382564i 0.872025 0.489461i \(-0.162806\pi\)
−0.489461 + 0.872025i \(0.662806\pi\)
\(542\) −3278.49 + 8804.30i −0.259821 + 0.697744i
\(543\) 0 0
\(544\) −24063.5 5167.53i −1.89654 0.407272i
\(545\) 4138.64 0.325284
\(546\) 0 0
\(547\) −10287.7 10287.7i −0.804154 0.804154i 0.179588 0.983742i \(-0.442524\pi\)
−0.983742 + 0.179588i \(0.942524\pi\)
\(548\) 2265.53 2620.21i 0.176604 0.204251i
\(549\) 0 0
\(550\) −17787.1 + 8134.59i −1.37899 + 0.630654i
\(551\) 876.006i 0.0677298i
\(552\) 0 0
\(553\) 465.825i 0.0358208i
\(554\) 5994.44 + 13107.5i 0.459710 + 1.00520i
\(555\) 0 0
\(556\) 11945.4 867.162i 0.911149 0.0661436i
\(557\) −16473.4 16473.4i −1.25315 1.25315i −0.954302 0.298843i \(-0.903399\pi\)
−0.298843 0.954302i \(-0.596601\pi\)
\(558\) 0 0
\(559\) −2582.82 −0.195424
\(560\) −312.075 + 418.743i −0.0235492 + 0.0315984i
\(561\) 0 0
\(562\) −2183.21 812.970i −0.163867 0.0610197i
\(563\) 3846.62 + 3846.62i 0.287950 + 0.287950i 0.836269 0.548319i \(-0.184732\pi\)
−0.548319 + 0.836269i \(0.684732\pi\)
\(564\) 0 0
\(565\) −3722.47 + 3722.47i −0.277178 + 0.277178i
\(566\) 3333.42 + 7288.89i 0.247552 + 0.541298i
\(567\) 0 0
\(568\) −6685.45 12197.0i −0.493865 0.901015i
\(569\) 16206.0i 1.19401i −0.802239 0.597003i \(-0.796358\pi\)
0.802239 0.597003i \(-0.203642\pi\)
\(570\) 0 0
\(571\) 15842.4 15842.4i 1.16109 1.16109i 0.176858 0.984236i \(-0.443407\pi\)
0.984236 0.176858i \(-0.0565933\pi\)
\(572\) 6910.96 + 5975.49i 0.505178 + 0.436797i
\(573\) 0 0
\(574\) −196.414 + 527.466i −0.0142825 + 0.0383554i
\(575\) −20241.7 −1.46806
\(576\) 0 0
\(577\) −18218.5 −1.31446 −0.657231 0.753689i \(-0.728272\pi\)
−0.657231 + 0.753689i \(0.728272\pi\)
\(578\) 13397.1 35977.5i 0.964090 2.58904i
\(579\) 0 0
\(580\) 957.156 + 827.594i 0.0685237 + 0.0592482i
\(581\) 224.811 224.811i 0.0160529 0.0160529i
\(582\) 0 0
\(583\) 13439.5i 0.954728i
\(584\) 5287.56 + 9646.71i 0.374659 + 0.683534i
\(585\) 0 0
\(586\) −3160.97 6911.79i −0.222830 0.487241i
\(587\) −3225.64 + 3225.64i −0.226808 + 0.226808i −0.811358 0.584550i \(-0.801271\pi\)
0.584550 + 0.811358i \(0.301271\pi\)
\(588\) 0 0
\(589\) −996.964 996.964i −0.0697439 0.0697439i
\(590\) −18536.3 6902.42i −1.29344 0.481641i
\(591\) 0 0
\(592\) 3732.85 + 2781.97i 0.259154 + 0.193139i
\(593\) 15436.7 1.06898 0.534492 0.845174i \(-0.320503\pi\)
0.534492 + 0.845174i \(0.320503\pi\)
\(594\) 0 0
\(595\) −784.514 784.514i −0.0540537 0.0540537i
\(596\) 19218.1 1395.11i 1.32081 0.0958827i
\(597\) 0 0
\(598\) 3932.31 + 8598.43i 0.268903 + 0.587986i
\(599\) 13650.7i 0.931142i −0.885010 0.465571i \(-0.845849\pi\)
0.885010 0.465571i \(-0.154151\pi\)
\(600\) 0 0
\(601\) 27042.7i 1.83543i 0.397236 + 0.917716i \(0.369969\pi\)
−0.397236 + 0.917716i \(0.630031\pi\)
\(602\) 123.497 56.4790i 0.00836109 0.00382377i
\(603\) 0 0
\(604\) −2833.68 + 3277.30i −0.190895 + 0.220780i
\(605\) −6952.03 6952.03i −0.467174 0.467174i
\(606\) 0 0
\(607\) −3562.32 −0.238205 −0.119102 0.992882i \(-0.538002\pi\)
−0.119102 + 0.992882i \(0.538002\pi\)
\(608\) 9156.31 + 14164.3i 0.610752 + 0.944800i
\(609\) 0 0
\(610\) 4862.59 13058.4i 0.322755 0.866752i
\(611\) −8990.64 8990.64i −0.595290 0.595290i
\(612\) 0 0
\(613\) 11418.0 11418.0i 0.752315 0.752315i −0.222595 0.974911i \(-0.571453\pi\)
0.974911 + 0.222595i \(0.0714529\pi\)
\(614\) −12693.6 + 5805.17i −0.834321 + 0.381559i
\(615\) 0 0
\(616\) −461.114 134.594i −0.0301604 0.00880350i
\(617\) 3981.62i 0.259796i −0.991527 0.129898i \(-0.958535\pi\)
0.991527 0.129898i \(-0.0414649\pi\)
\(618\) 0 0
\(619\) 6160.23 6160.23i 0.400001 0.400001i −0.478232 0.878233i \(-0.658722\pi\)
0.878233 + 0.478232i \(0.158722\pi\)
\(620\) 2031.19 147.451i 0.131572 0.00955126i
\(621\) 0 0
\(622\) 3900.87 + 1452.58i 0.251464 + 0.0936384i
\(623\) 620.092 0.0398771
\(624\) 0 0
\(625\) 10410.2 0.666252
\(626\) −3336.74 1242.51i −0.213040 0.0793304i
\(627\) 0 0
\(628\) 7.32978 + 100.970i 0.000465748 + 0.00641583i
\(629\) −6993.48 + 6993.48i −0.443320 + 0.443320i
\(630\) 0 0
\(631\) 670.100i 0.0422761i −0.999777 0.0211381i \(-0.993271\pi\)
0.999777 0.0211381i \(-0.00672896\pi\)
\(632\) −19055.4 + 10444.7i −1.19934 + 0.657384i
\(633\) 0 0
\(634\) 21470.8 9819.25i 1.34498 0.615098i
\(635\) 17342.8 17342.8i 1.08383 1.08383i
\(636\) 0 0
\(637\) −6324.38 6324.38i −0.393377 0.393377i
\(638\) −406.140 + 1090.68i −0.0252026 + 0.0676810i
\(639\) 0 0
\(640\) −24126.7 3377.01i −1.49014 0.208575i
\(641\) 3038.11 0.187204 0.0936022 0.995610i \(-0.470162\pi\)
0.0936022 + 0.995610i \(0.470162\pi\)
\(642\) 0 0
\(643\) 11363.4 + 11363.4i 0.696934 + 0.696934i 0.963748 0.266814i \(-0.0859710\pi\)
−0.266814 + 0.963748i \(0.585971\pi\)
\(644\) −376.046 325.144i −0.0230098 0.0198952i
\(645\) 0 0
\(646\) −32585.1 + 14902.1i −1.98459 + 0.907610i
\(647\) 25695.9i 1.56137i 0.624923 + 0.780687i \(0.285131\pi\)
−0.624923 + 0.780687i \(0.714869\pi\)
\(648\) 0 0
\(649\) 18193.3i 1.10039i
\(650\) 4849.97 + 10605.0i 0.292664 + 0.639941i
\(651\) 0 0
\(652\) 1071.78 + 14764.1i 0.0643775 + 0.886821i
\(653\) 20933.8 + 20933.8i 1.25452 + 1.25452i 0.953673 + 0.300847i \(0.0972692\pi\)
0.300847 + 0.953673i \(0.402731\pi\)
\(654\) 0 0
\(655\) 4841.61 0.288821
\(656\) −25980.9 + 3792.08i −1.54632 + 0.225695i
\(657\) 0 0
\(658\) 626.486 + 233.287i 0.0371170 + 0.0138214i
\(659\) −5253.27 5253.27i −0.310529 0.310529i 0.534586 0.845114i \(-0.320468\pi\)
−0.845114 + 0.534586i \(0.820468\pi\)
\(660\) 0 0
\(661\) 3182.14 3182.14i 0.187248 0.187248i −0.607257 0.794505i \(-0.707730\pi\)
0.794505 + 0.607257i \(0.207730\pi\)
\(662\) 5417.84 + 11846.7i 0.318082 + 0.695521i
\(663\) 0 0
\(664\) 14237.0 + 4155.63i 0.832082 + 0.242876i
\(665\) 760.293i 0.0443352i
\(666\) 0 0
\(667\) −851.686 + 851.686i −0.0494414 + 0.0494414i
\(668\) −12422.4 + 14367.2i −0.719519 + 0.832161i
\(669\) 0 0
\(670\) 6685.19 17952.9i 0.385480 1.03520i
\(671\) 12816.8 0.737385
\(672\) 0 0
\(673\) 27736.4 1.58865 0.794325 0.607493i \(-0.207825\pi\)
0.794325 + 0.607493i \(0.207825\pi\)
\(674\) −4819.16 + 12941.7i −0.275411 + 0.739610i
\(675\) 0 0
\(676\) −7932.97 + 9174.90i −0.451353 + 0.522013i
\(677\) −6076.45 + 6076.45i −0.344959 + 0.344959i −0.858228 0.513269i \(-0.828434\pi\)
0.513269 + 0.858228i \(0.328434\pi\)
\(678\) 0 0
\(679\) 482.594i 0.0272758i
\(680\) 14501.7 49682.2i 0.817816 2.80180i
\(681\) 0 0
\(682\) 779.061 + 1703.50i 0.0437416 + 0.0956457i
\(683\) 2360.09 2360.09i 0.132220 0.132220i −0.637900 0.770120i \(-0.720197\pi\)
0.770120 + 0.637900i \(0.220197\pi\)
\(684\) 0 0
\(685\) 5150.48 + 5150.48i 0.287284 + 0.287284i
\(686\) 881.694 + 328.319i 0.0490717 + 0.0182730i
\(687\) 0 0
\(688\) 5079.42 + 3785.52i 0.281469 + 0.209770i
\(689\) −8012.84 −0.443055
\(690\) 0 0
\(691\) 10248.5 + 10248.5i 0.564211 + 0.564211i 0.930501 0.366290i \(-0.119372\pi\)
−0.366290 + 0.930501i \(0.619372\pi\)
\(692\) −1073.48 14787.6i −0.0589707 0.812340i
\(693\) 0 0
\(694\) 2902.48 + 6346.58i 0.158756 + 0.347137i
\(695\) 25185.4i 1.37459i
\(696\) 0 0
\(697\) 55779.7i 3.03128i
\(698\) 22598.8 10335.1i 1.22547 0.560442i
\(699\) 0 0
\(700\) −463.802 401.021i −0.0250429 0.0216531i
\(701\) 5637.61 + 5637.61i 0.303751 + 0.303751i 0.842480 0.538728i \(-0.181095\pi\)
−0.538728 + 0.842480i \(0.681095\pi\)
\(702\) 0 0
\(703\) 6777.57 0.363614
\(704\) −4833.20 21880.5i −0.258747 1.17138i
\(705\) 0 0
\(706\) −674.179 + 1810.49i −0.0359392 + 0.0965139i
\(707\) −639.212 639.212i −0.0340029 0.0340029i
\(708\) 0 0
\(709\) −1798.00 + 1798.00i −0.0952402 + 0.0952402i −0.753122 0.657881i \(-0.771453\pi\)
0.657881 + 0.753122i \(0.271453\pi\)
\(710\) 26599.0 12164.5i 1.40598 0.642994i
\(711\) 0 0
\(712\) 13903.6 + 25366.0i 0.731826 + 1.33516i
\(713\) 1938.57i 0.101823i
\(714\) 0 0
\(715\) −13584.7 + 13584.7i −0.710545 + 0.710545i
\(716\) 203.683 + 2805.80i 0.0106313 + 0.146449i
\(717\) 0 0
\(718\) 10654.6 + 3967.49i 0.553797 + 0.206219i
\(719\) 35035.3 1.81724 0.908622 0.417620i \(-0.137136\pi\)
0.908622 + 0.417620i \(0.137136\pi\)
\(720\) 0 0
\(721\) −652.495 −0.0337034
\(722\) 4829.96 + 1798.55i 0.248965 + 0.0927078i
\(723\) 0 0
\(724\) −13008.9 + 944.364i −0.667780 + 0.0484765i
\(725\) −1050.44 + 1050.44i −0.0538101 + 0.0538101i
\(726\) 0 0
\(727\) 24515.4i 1.25066i 0.780362 + 0.625328i \(0.215035\pi\)
−0.780362 + 0.625328i \(0.784965\pi\)
\(728\) −80.2472 + 274.923i −0.00408539 + 0.0139963i
\(729\) 0 0
\(730\) −21037.3 + 9620.98i −1.06661 + 0.487792i
\(731\) −9516.28 + 9516.28i −0.481494 + 0.481494i
\(732\) 0 0
\(733\) −23583.9 23583.9i −1.18839 1.18839i −0.977512 0.210878i \(-0.932368\pi\)
−0.210878 0.977512i \(-0.567632\pi\)
\(734\) −7937.60 + 21316.3i −0.399159 + 1.07193i
\(735\) 0 0
\(736\) 4868.96 22673.2i 0.243848 1.13552i
\(737\) 17620.7 0.880689
\(738\) 0 0
\(739\) −17246.2 17246.2i −0.858472 0.858472i 0.132686 0.991158i \(-0.457640\pi\)
−0.991158 + 0.132686i \(0.957640\pi\)
\(740\) −6403.01 + 7405.42i −0.318080 + 0.367877i
\(741\) 0 0
\(742\) 383.133 175.218i 0.0189559 0.00866908i
\(743\) 14249.5i 0.703587i −0.936078 0.351793i \(-0.885572\pi\)
0.936078 0.351793i \(-0.114428\pi\)
\(744\) 0 0
\(745\) 40519.0i 1.99262i
\(746\) −1339.64 2929.27i −0.0657477 0.143764i
\(747\) 0 0
\(748\) 47479.4 3446.71i 2.32088 0.168481i
\(749\) −212.327 212.327i −0.0103582 0.0103582i
\(750\) 0 0
\(751\) 10260.0 0.498524 0.249262 0.968436i \(-0.419812\pi\)
0.249262 + 0.968436i \(0.419812\pi\)
\(752\) 4503.96 + 30858.3i 0.218408 + 1.49639i
\(753\) 0 0
\(754\) 650.282 + 242.148i 0.0314083 + 0.0116956i
\(755\) −6442.11 6442.11i −0.310533 0.310533i
\(756\) 0 0
\(757\) −18953.4 + 18953.4i −0.910005 + 0.910005i −0.996272 0.0862671i \(-0.972506\pi\)
0.0862671 + 0.996272i \(0.472506\pi\)
\(758\) −864.175 1889.61i −0.0414093 0.0905459i
\(759\) 0 0
\(760\) −31101.2 + 17047.2i −1.48442 + 0.813640i
\(761\) 24434.3i 1.16392i 0.813218 + 0.581960i \(0.197714\pi\)
−0.813218 + 0.581960i \(0.802286\pi\)
\(762\) 0 0
\(763\) −84.3802 + 84.3802i −0.00400363 + 0.00400363i
\(764\) −2769.79 2394.87i −0.131162 0.113408i
\(765\) 0 0
\(766\) −2869.65 + 7706.37i −0.135358 + 0.363502i
\(767\) −10847.1 −0.510649
\(768\) 0 0
\(769\) −6752.03 −0.316625 −0.158312 0.987389i \(-0.550605\pi\)
−0.158312 + 0.987389i \(0.550605\pi\)
\(770\) 352.493 946.612i 0.0164974 0.0443033i
\(771\) 0 0
\(772\) 373.726 + 323.138i 0.0174232 + 0.0150648i
\(773\) 18608.6 18608.6i 0.865854 0.865854i −0.126157 0.992010i \(-0.540264\pi\)
0.992010 + 0.126157i \(0.0402642\pi\)
\(774\) 0 0
\(775\) 2390.96i 0.110821i
\(776\) 19741.4 10820.7i 0.913240 0.500566i
\(777\) 0 0
\(778\) 10059.4 + 21996.0i 0.463557 + 1.01362i
\(779\) −27028.8 + 27028.8i −1.24314 + 1.24314i
\(780\) 0 0
\(781\) 19023.1 + 19023.1i 0.871576 + 0.871576i
\(782\) 46168.9 + 17192.1i 2.11125 + 0.786172i
\(783\) 0 0
\(784\) 3168.27 + 21706.9i 0.144327 + 0.988837i
\(785\) −212.883 −0.00967911
\(786\) 0 0
\(787\) 23406.2 + 23406.2i 1.06016 + 1.06016i 0.998071 + 0.0620850i \(0.0197750\pi\)
0.0620850 + 0.998071i \(0.480225\pi\)
\(788\) −6923.51 + 502.603i −0.312995 + 0.0227214i
\(789\) 0 0
\(790\) −19004.6 41555.6i −0.855890 1.87150i
\(791\) 151.790i 0.00682307i
\(792\) 0 0
\(793\) 7641.56i 0.342194i
\(794\) −14991.3 + 6855.98i −0.670054 + 0.306435i
\(795\) 0 0
\(796\) 17493.6 20232.2i 0.778949 0.900895i
\(797\) −1487.10 1487.10i −0.0660925 0.0660925i 0.673288 0.739380i \(-0.264881\pi\)
−0.739380 + 0.673288i \(0.764881\pi\)
\(798\) 0 0
\(799\) −66251.1 −2.93341
\(800\) 6005.20 27964.3i 0.265395 1.23586i
\(801\) 0 0
\(802\) −3939.79 + 10580.2i −0.173465 + 0.465835i
\(803\) −15045.5 15045.5i −0.661201 0.661201i
\(804\) 0 0
\(805\) 739.186 739.186i 0.0323638 0.0323638i
\(806\) 1015.65 464.489i 0.0443857 0.0202989i
\(807\) 0 0
\(808\) 11815.8 40480.4i 0.514454 1.76250i
\(809\) 10505.2i 0.456542i 0.973598 + 0.228271i \(0.0733072\pi\)
−0.973598 + 0.228271i \(0.926693\pi\)
\(810\) 0 0
\(811\) −27073.1 + 27073.1i −1.17221 + 1.17221i −0.190531 + 0.981681i \(0.561021\pi\)
−0.981681 + 0.190531i \(0.938979\pi\)
\(812\) −36.3882 + 2.64155i −0.00157263 + 0.000114163i
\(813\) 0 0
\(814\) −8438.49 3142.27i −0.363352 0.135303i
\(815\) −31128.3 −1.33788
\(816\) 0 0
\(817\) 9222.48 0.394925
\(818\) 19801.0 + 7373.36i 0.846363 + 0.315163i
\(819\) 0 0
\(820\) −3997.56 55067.7i −0.170245 2.34518i
\(821\) 9907.96 9907.96i 0.421182 0.421182i −0.464429 0.885610i \(-0.653740\pi\)
0.885610 + 0.464429i \(0.153740\pi\)
\(822\) 0 0
\(823\) 17501.8i 0.741281i −0.928776 0.370640i \(-0.879138\pi\)
0.928776 0.370640i \(-0.120862\pi\)
\(824\) −14630.1 26691.5i −0.618526 1.12845i
\(825\) 0 0
\(826\) 518.655 237.196i 0.0218478 0.00999166i
\(827\) −7074.02 + 7074.02i −0.297446 + 0.297446i −0.840013 0.542567i \(-0.817453\pi\)
0.542567 + 0.840013i \(0.317453\pi\)
\(828\) 0 0
\(829\) 21066.1 + 21066.1i 0.882576 + 0.882576i 0.993796 0.111220i \(-0.0354758\pi\)
−0.111220 + 0.993796i \(0.535476\pi\)
\(830\) −10883.3 + 29226.9i −0.455138 + 1.22226i
\(831\) 0 0
\(832\) −13045.5 + 2881.63i −0.543597 + 0.120075i
\(833\) −46603.7 −1.93844
\(834\) 0 0
\(835\) −28241.3 28241.3i −1.17046 1.17046i
\(836\) −24677.0 21336.7i −1.02090 0.882708i
\(837\) 0 0
\(838\) 40204.9 18386.9i 1.65735 0.757953i
\(839\) 30444.6i 1.25276i −0.779519 0.626379i \(-0.784536\pi\)
0.779519 0.626379i \(-0.215464\pi\)
\(840\) 0 0
\(841\) 24300.6i 0.996376i
\(842\) −4570.90 9994.76i −0.187083 0.409076i
\(843\) 0 0
\(844\) 365.329 + 5032.52i 0.0148994 + 0.205244i
\(845\) −18034.9 18034.9i −0.734224 0.734224i
\(846\) 0 0
\(847\) 283.482 0.0115001
\(848\) 15758.2 + 11744.0i 0.638134 + 0.475580i
\(849\) 0 0
\(850\) 56943.0 + 21204.1i 2.29780 + 0.855639i
\(851\) −6589.41 6589.41i −0.265431 0.265431i
\(852\) 0 0
\(853\) −882.218 + 882.218i −0.0354122 + 0.0354122i −0.724591 0.689179i \(-0.757971\pi\)
0.689179 + 0.724591i \(0.257971\pi\)
\(854\) 167.099 + 365.380i 0.00669557 + 0.0146406i
\(855\) 0 0
\(856\) 3924.86 13446.4i 0.156716 0.536902i
\(857\) 8006.81i 0.319145i −0.987186 0.159572i \(-0.948988\pi\)
0.987186 0.159572i \(-0.0510116\pi\)
\(858\) 0 0
\(859\) −20266.0 + 20266.0i −0.804967 + 0.804967i −0.983867 0.178900i \(-0.942746\pi\)
0.178900 + 0.983867i \(0.442746\pi\)
\(860\) −8712.81 + 10076.8i −0.345470 + 0.399554i
\(861\) 0 0
\(862\) −11.5508 + 31.0195i −0.000456407 + 0.00122567i
\(863\) −41478.0 −1.63607 −0.818034 0.575169i \(-0.804936\pi\)
−0.818034 + 0.575169i \(0.804936\pi\)
\(864\) 0 0
\(865\) 31177.7 1.22552
\(866\) −8183.54 + 21976.7i −0.321118 + 0.862355i
\(867\) 0 0
\(868\) −38.4064 + 44.4190i −0.00150184 + 0.00173696i
\(869\) 29719.8 29719.8i 1.16016 1.16016i
\(870\) 0 0
\(871\) 10505.8i 0.408696i
\(872\) −5343.69 1559.77i −0.207523 0.0605738i
\(873\) 0 0
\(874\) −14041.1 30702.4i −0.543418 1.18824i
\(875\) 190.435 190.435i 0.00735756 0.00735756i
\(876\) 0 0
\(877\) 6027.15 + 6027.15i 0.232067 + 0.232067i 0.813555 0.581488i \(-0.197529\pi\)
−0.581488 + 0.813555i \(0.697529\pi\)
\(878\) −37870.9 14102.1i −1.45567 0.542054i
\(879\) 0 0
\(880\) 46626.4 6805.42i 1.78611 0.260694i
\(881\) 40154.3 1.53556 0.767782 0.640712i \(-0.221361\pi\)
0.767782 + 0.640712i \(0.221361\pi\)
\(882\) 0 0
\(883\) 4435.93 + 4435.93i 0.169061 + 0.169061i 0.786567 0.617505i \(-0.211857\pi\)
−0.617505 + 0.786567i \(0.711857\pi\)
\(884\) −2054.98 28308.0i −0.0781861 1.07704i
\(885\) 0 0
\(886\) −8435.02 18444.1i −0.319842 0.699369i
\(887\) 3275.31i 0.123984i 0.998077 + 0.0619921i \(0.0197454\pi\)
−0.998077 + 0.0619921i \(0.980255\pi\)
\(888\) 0 0
\(889\) 707.186i 0.0266797i
\(890\) −55317.5 + 25298.3i −2.08342 + 0.952811i
\(891\) 0 0
\(892\) −36919.7 31922.2i −1.38583 1.19825i
\(893\) 32102.9 + 32102.9i 1.20300 + 1.20300i
\(894\) 0 0
\(895\) −5915.67 −0.220937
\(896\) 560.758 423.054i 0.0209080 0.0157737i
\(897\) 0 0
\(898\) −16306.8 + 43791.7i −0.605976 + 1.62734i
\(899\) 100.602 + 100.602i 0.00373222 + 0.00373222i
\(900\) 0 0
\(901\) −29522.9 + 29522.9i −1.09162 + 1.09162i
\(902\) 46183.8 21121.2i 1.70482 0.779666i
\(903\) 0 0
\(904\) 6209.26 3403.42i 0.228448 0.125217i
\(905\) 27427.7i 1.00743i
\(906\) 0 0
\(907\) 18595.8 18595.8i 0.680775 0.680775i −0.279400 0.960175i \(-0.590135\pi\)
0.960175 + 0.279400i \(0.0901354\pi\)
\(908\) −2992.27 41219.4i −0.109363 1.50651i
\(909\) 0 0
\(910\) −564.385 210.162i −0.0205596 0.00765583i
\(911\) 25144.8 0.914472 0.457236 0.889345i \(-0.348839\pi\)
0.457236 + 0.889345i \(0.348839\pi\)
\(912\) 0 0
\(913\) −28686.1 −1.03984
\(914\) −8808.59 3280.08i −0.318777 0.118704i
\(915\) 0 0
\(916\) −19271.5 + 1398.99i −0.695141 + 0.0504628i
\(917\) −98.7128 + 98.7128i −0.00355484 + 0.00355484i
\(918\) 0 0
\(919\) 18292.8i 0.656608i −0.944572 0.328304i \(-0.893523\pi\)
0.944572 0.328304i \(-0.106477\pi\)
\(920\) 46811.7 + 13663.8i 1.67754 + 0.489655i
\(921\) 0 0
\(922\) 4342.61 1986.00i 0.155115 0.0709387i
\(923\) 11341.9 11341.9i 0.404467 0.404467i
\(924\) 0 0
\(925\) −8127.14 8127.14i −0.288885 0.288885i
\(926\) 6119.02 16432.5i 0.217153 0.583158i
\(927\) 0 0
\(928\) −923.949 1429.30i −0.0326833 0.0505593i
\(929\) −16680.0 −0.589078 −0.294539 0.955640i \(-0.595166\pi\)
−0.294539 + 0.955640i \(0.595166\pi\)
\(930\) 0 0
\(931\) 22582.4 + 22582.4i 0.794962 + 0.794962i
\(932\) −15798.2 + 18271.4i −0.555242 + 0.642167i
\(933\) 0 0
\(934\) 9334.32 4268.86i 0.327011 0.149552i
\(935\) 100104.i 3.50135i
\(936\) 0 0
\(937\) 2053.17i 0.0715839i −0.999359 0.0357920i \(-0.988605\pi\)
0.999359 0.0357920i \(-0.0113954\pi\)
\(938\) 229.731 + 502.332i 0.00799679 + 0.0174858i
\(939\) 0 0
\(940\) −65405.5 + 4748.02i −2.26946 + 0.164748i
\(941\) 17468.5 + 17468.5i 0.605160 + 0.605160i 0.941677 0.336517i \(-0.109249\pi\)
−0.336517 + 0.941677i \(0.609249\pi\)
\(942\) 0 0
\(943\) 52556.8 1.81494
\(944\) 21332.1 + 15898.1i 0.735490 + 0.548136i
\(945\) 0 0
\(946\) −11482.6 4275.80i −0.394641 0.146954i
\(947\) −22999.8 22999.8i −0.789223 0.789223i 0.192144 0.981367i \(-0.438456\pi\)
−0.981367 + 0.192144i \(0.938456\pi\)
\(948\) 0 0
\(949\) −8970.37 + 8970.37i −0.306839 + 0.306839i
\(950\) −17317.8 37867.2i −0.591435 1.29324i
\(951\) 0 0
\(952\) 717.275 + 1308.61i 0.0244191 + 0.0445507i
\(953\) 29341.4i 0.997336i −0.866793 0.498668i \(-0.833823\pi\)
0.866793 0.498668i \(-0.166177\pi\)
\(954\) 0 0
\(955\) 5444.52 5444.52i 0.184482 0.184482i
\(956\) 17938.2 + 15510.1i 0.606865 + 0.524719i
\(957\) 0 0
\(958\) −4504.61 + 12097.0i −0.151918 + 0.407972i
\(959\) −210.020 −0.00707186
\(960\) 0 0
\(961\) −29562.0 −0.992314
\(962\) −1873.47 + 5031.17i −0.0627891 + 0.168619i
\(963\) 0 0
\(964\) 15775.5 + 13640.1i 0.527069 + 0.455724i
\(965\) −734.625 + 734.625i −0.0245061 + 0.0245061i
\(966\) 0 0
\(967\) 8861.99i 0.294708i 0.989084 + 0.147354i \(0.0470756\pi\)
−0.989084 + 0.147354i \(0.952924\pi\)
\(968\) 6356.19 + 11596.3i 0.211049 + 0.385042i
\(969\) 0 0
\(970\) 19688.7 + 43051.5i 0.651718 + 1.42505i
\(971\) −38037.4 + 38037.4i −1.25714 + 1.25714i −0.304681 + 0.952454i \(0.598550\pi\)
−0.952454 + 0.304681i \(0.901450\pi\)
\(972\) 0 0
\(973\) −513.491 513.491i −0.0169186 0.0169186i
\(974\) −2915.16 1085.53i −0.0959013 0.0357111i
\(975\) 0 0
\(976\) −11199.9 + 15028.0i −0.367315 + 0.492863i
\(977\) −26081.9 −0.854078 −0.427039 0.904233i \(-0.640443\pi\)
−0.427039 + 0.904233i \(0.640443\pi\)
\(978\) 0 0
\(979\) −39562.1 39562.1i −1.29153 1.29153i
\(980\) −46008.8 + 3339.95i −1.49969 + 0.108868i
\(981\) 0 0
\(982\) 18329.0 + 40078.4i 0.595624 + 1.30240i
\(983\) 28987.6i 0.940552i −0.882520 0.470276i \(-0.844154\pi\)
0.882520 0.470276i \(-0.155846\pi\)
\(984\) 0 0
\(985\) 14597.3i 0.472193i
\(986\) 3288.11 1503.75i 0.106202 0.0485691i
\(987\) 0 0
\(988\) −12721.3 + 14712.8i −0.409633 + 0.473762i
\(989\) −8966.45 8966.45i −0.288288 0.288288i
\(990\) 0 0
\(991\) 33373.6 1.06977 0.534887 0.844923i \(-0.320354\pi\)
0.534887 + 0.844923i \(0.320354\pi\)
\(992\) −2678.18 575.127i −0.0857180 0.0184076i
\(993\) 0 0
\(994\) −294.297 + 790.327i −0.00939086 + 0.0252189i
\(995\) 39770.1 + 39770.1i 1.26713 + 1.26713i
\(996\) 0 0
\(997\) −5283.79 + 5283.79i −0.167843 + 0.167843i −0.786031 0.618188i \(-0.787867\pi\)
0.618188 + 0.786031i \(0.287867\pi\)
\(998\) −13106.7 + 5994.08i −0.415717 + 0.190120i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.4.k.b.109.8 24
3.2 odd 2 48.4.j.a.13.5 24
4.3 odd 2 576.4.k.b.145.12 24
12.11 even 2 192.4.j.a.145.1 24
16.5 even 4 inner 144.4.k.b.37.8 24
16.11 odd 4 576.4.k.b.433.12 24
24.5 odd 2 384.4.j.b.289.6 24
24.11 even 2 384.4.j.a.289.7 24
48.5 odd 4 48.4.j.a.37.5 yes 24
48.11 even 4 192.4.j.a.49.1 24
48.29 odd 4 384.4.j.b.97.6 24
48.35 even 4 384.4.j.a.97.7 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.j.a.13.5 24 3.2 odd 2
48.4.j.a.37.5 yes 24 48.5 odd 4
144.4.k.b.37.8 24 16.5 even 4 inner
144.4.k.b.109.8 24 1.1 even 1 trivial
192.4.j.a.49.1 24 48.11 even 4
192.4.j.a.145.1 24 12.11 even 2
384.4.j.a.97.7 24 48.35 even 4
384.4.j.a.289.7 24 24.11 even 2
384.4.j.b.97.6 24 48.29 odd 4
384.4.j.b.289.6 24 24.5 odd 2
576.4.k.b.145.12 24 4.3 odd 2
576.4.k.b.433.12 24 16.11 odd 4