Properties

Label 384.4.j.a.289.7
Level $384$
Weight $4$
Character 384.289
Analytic conductor $22.657$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [384,4,Mod(97,384)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("384.97"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(384, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 384 = 2^{7} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 384.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.6567334422\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 289.7
Character \(\chi\) \(=\) 384.289
Dual form 384.4.j.a.97.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.12132 + 2.12132i) q^{3} +(11.8955 - 11.8955i) q^{5} -0.485059i q^{7} +9.00000i q^{9} +(-30.9469 + 30.9469i) q^{11} +(18.4511 + 18.4511i) q^{13} +50.4682 q^{15} +135.964 q^{17} +(65.8832 + 65.8832i) q^{19} +(1.02897 - 1.02897i) q^{21} -128.108i q^{23} -158.004i q^{25} +(-19.0919 + 19.0919i) q^{27} +(-6.64817 - 6.64817i) q^{29} +15.1323 q^{31} -131.297 q^{33} +(-5.77001 - 5.77001i) q^{35} +(-51.4363 + 51.4363i) q^{37} +78.2813i q^{39} -410.253i q^{41} +(69.9911 - 69.9911i) q^{43} +(107.059 + 107.059i) q^{45} +487.269 q^{47} +342.765 q^{49} +(288.423 + 288.423i) q^{51} +(217.138 - 217.138i) q^{53} +736.257i q^{55} +279.519i q^{57} +(-293.944 + 293.944i) q^{59} +(-207.076 - 207.076i) q^{61} +4.36553 q^{63} +438.968 q^{65} +(284.693 + 284.693i) q^{67} +(271.759 - 271.759i) q^{69} +614.701i q^{71} -486.171i q^{73} +(335.178 - 335.178i) q^{75} +(15.0111 + 15.0111i) q^{77} -960.347 q^{79} -81.0000 q^{81} +(463.472 + 463.472i) q^{83} +(1617.36 - 1617.36i) q^{85} -28.2058i q^{87} +1278.38i q^{89} +(8.94987 - 8.94987i) q^{91} +(32.1004 + 32.1004i) q^{93} +1567.42 q^{95} -994.918 q^{97} +(-278.523 - 278.523i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 40 q^{11} - 120 q^{15} + 24 q^{19} - 400 q^{29} + 744 q^{31} - 456 q^{35} - 16 q^{37} + 1240 q^{43} - 1176 q^{49} + 744 q^{51} - 752 q^{53} - 1376 q^{59} + 912 q^{61} + 504 q^{63} + 976 q^{65} - 2256 q^{67}+ \cdots - 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/384\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(133\) \(257\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.12132 + 2.12132i 0.408248 + 0.408248i
\(4\) 0 0
\(5\) 11.8955 11.8955i 1.06396 1.06396i 0.0661534 0.997809i \(-0.478927\pi\)
0.997809 0.0661534i \(-0.0210727\pi\)
\(6\) 0 0
\(7\) 0.485059i 0.0261907i −0.999914 0.0130954i \(-0.995831\pi\)
0.999914 0.0130954i \(-0.00416851\pi\)
\(8\) 0 0
\(9\) 9.00000i 0.333333i
\(10\) 0 0
\(11\) −30.9469 + 30.9469i −0.848260 + 0.848260i −0.989916 0.141656i \(-0.954757\pi\)
0.141656 + 0.989916i \(0.454757\pi\)
\(12\) 0 0
\(13\) 18.4511 + 18.4511i 0.393647 + 0.393647i 0.875985 0.482338i \(-0.160212\pi\)
−0.482338 + 0.875985i \(0.660212\pi\)
\(14\) 0 0
\(15\) 50.4682 0.868722
\(16\) 0 0
\(17\) 135.964 1.93977 0.969886 0.243558i \(-0.0783148\pi\)
0.969886 + 0.243558i \(0.0783148\pi\)
\(18\) 0 0
\(19\) 65.8832 + 65.8832i 0.795508 + 0.795508i 0.982384 0.186876i \(-0.0598362\pi\)
−0.186876 + 0.982384i \(0.559836\pi\)
\(20\) 0 0
\(21\) 1.02897 1.02897i 0.0106923 0.0106923i
\(22\) 0 0
\(23\) 128.108i 1.16141i −0.814114 0.580705i \(-0.802777\pi\)
0.814114 0.580705i \(-0.197223\pi\)
\(24\) 0 0
\(25\) 158.004i 1.26403i
\(26\) 0 0
\(27\) −19.0919 + 19.0919i −0.136083 + 0.136083i
\(28\) 0 0
\(29\) −6.64817 6.64817i −0.0425702 0.0425702i 0.685501 0.728071i \(-0.259583\pi\)
−0.728071 + 0.685501i \(0.759583\pi\)
\(30\) 0 0
\(31\) 15.1323 0.0876722 0.0438361 0.999039i \(-0.486042\pi\)
0.0438361 + 0.999039i \(0.486042\pi\)
\(32\) 0 0
\(33\) −131.297 −0.692601
\(34\) 0 0
\(35\) −5.77001 5.77001i −0.0278660 0.0278660i
\(36\) 0 0
\(37\) −51.4363 + 51.4363i −0.228542 + 0.228542i −0.812084 0.583541i \(-0.801667\pi\)
0.583541 + 0.812084i \(0.301667\pi\)
\(38\) 0 0
\(39\) 78.2813i 0.321411i
\(40\) 0 0
\(41\) 410.253i 1.56270i −0.624092 0.781350i \(-0.714531\pi\)
0.624092 0.781350i \(-0.285469\pi\)
\(42\) 0 0
\(43\) 69.9911 69.9911i 0.248222 0.248222i −0.572019 0.820241i \(-0.693839\pi\)
0.820241 + 0.572019i \(0.193839\pi\)
\(44\) 0 0
\(45\) 107.059 + 107.059i 0.354654 + 0.354654i
\(46\) 0 0
\(47\) 487.269 1.51225 0.756123 0.654430i \(-0.227091\pi\)
0.756123 + 0.654430i \(0.227091\pi\)
\(48\) 0 0
\(49\) 342.765 0.999314
\(50\) 0 0
\(51\) 288.423 + 288.423i 0.791909 + 0.791909i
\(52\) 0 0
\(53\) 217.138 217.138i 0.562757 0.562757i −0.367333 0.930090i \(-0.619729\pi\)
0.930090 + 0.367333i \(0.119729\pi\)
\(54\) 0 0
\(55\) 736.257i 1.80503i
\(56\) 0 0
\(57\) 279.519i 0.649529i
\(58\) 0 0
\(59\) −293.944 + 293.944i −0.648613 + 0.648613i −0.952658 0.304044i \(-0.901663\pi\)
0.304044 + 0.952658i \(0.401663\pi\)
\(60\) 0 0
\(61\) −207.076 207.076i −0.434646 0.434646i 0.455559 0.890205i \(-0.349439\pi\)
−0.890205 + 0.455559i \(0.849439\pi\)
\(62\) 0 0
\(63\) 4.36553 0.00873025
\(64\) 0 0
\(65\) 438.968 0.837651
\(66\) 0 0
\(67\) 284.693 + 284.693i 0.519115 + 0.519115i 0.917304 0.398188i \(-0.130361\pi\)
−0.398188 + 0.917304i \(0.630361\pi\)
\(68\) 0 0
\(69\) 271.759 271.759i 0.474144 0.474144i
\(70\) 0 0
\(71\) 614.701i 1.02749i 0.857944 + 0.513744i \(0.171742\pi\)
−0.857944 + 0.513744i \(0.828258\pi\)
\(72\) 0 0
\(73\) 486.171i 0.779479i −0.920925 0.389740i \(-0.872565\pi\)
0.920925 0.389740i \(-0.127435\pi\)
\(74\) 0 0
\(75\) 335.178 335.178i 0.516040 0.516040i
\(76\) 0 0
\(77\) 15.0111 + 15.0111i 0.0222166 + 0.0222166i
\(78\) 0 0
\(79\) −960.347 −1.36769 −0.683845 0.729628i \(-0.739693\pi\)
−0.683845 + 0.729628i \(0.739693\pi\)
\(80\) 0 0
\(81\) −81.0000 −0.111111
\(82\) 0 0
\(83\) 463.472 + 463.472i 0.612923 + 0.612923i 0.943707 0.330784i \(-0.107313\pi\)
−0.330784 + 0.943707i \(0.607313\pi\)
\(84\) 0 0
\(85\) 1617.36 1617.36i 2.06385 2.06385i
\(86\) 0 0
\(87\) 28.2058i 0.0347584i
\(88\) 0 0
\(89\) 1278.38i 1.52257i 0.648420 + 0.761283i \(0.275430\pi\)
−0.648420 + 0.761283i \(0.724570\pi\)
\(90\) 0 0
\(91\) 8.94987 8.94987i 0.0103099 0.0103099i
\(92\) 0 0
\(93\) 32.1004 + 32.1004i 0.0357920 + 0.0357920i
\(94\) 0 0
\(95\) 1567.42 1.69278
\(96\) 0 0
\(97\) −994.918 −1.04143 −0.520714 0.853731i \(-0.674334\pi\)
−0.520714 + 0.853731i \(0.674334\pi\)
\(98\) 0 0
\(99\) −278.523 278.523i −0.282753 0.282753i
\(100\) 0 0
\(101\) −1317.80 + 1317.80i −1.29828 + 1.29828i −0.368750 + 0.929529i \(0.620214\pi\)
−0.929529 + 0.368750i \(0.879786\pi\)
\(102\) 0 0
\(103\) 1345.19i 1.28685i −0.765511 0.643423i \(-0.777514\pi\)
0.765511 0.643423i \(-0.222486\pi\)
\(104\) 0 0
\(105\) 24.4801i 0.0227525i
\(106\) 0 0
\(107\) 437.734 437.734i 0.395489 0.395489i −0.481149 0.876639i \(-0.659781\pi\)
0.876639 + 0.481149i \(0.159781\pi\)
\(108\) 0 0
\(109\) −173.959 173.959i −0.152864 0.152864i 0.626532 0.779396i \(-0.284474\pi\)
−0.779396 + 0.626532i \(0.784474\pi\)
\(110\) 0 0
\(111\) −218.226 −0.186604
\(112\) 0 0
\(113\) 312.932 0.260514 0.130257 0.991480i \(-0.458420\pi\)
0.130257 + 0.991480i \(0.458420\pi\)
\(114\) 0 0
\(115\) −1523.91 1523.91i −1.23570 1.23570i
\(116\) 0 0
\(117\) −166.060 + 166.060i −0.131216 + 0.131216i
\(118\) 0 0
\(119\) 65.9507i 0.0508041i
\(120\) 0 0
\(121\) 584.427i 0.439089i
\(122\) 0 0
\(123\) 870.278 870.278i 0.637970 0.637970i
\(124\) 0 0
\(125\) −392.601 392.601i −0.280922 0.280922i
\(126\) 0 0
\(127\) −1457.94 −1.01867 −0.509335 0.860569i \(-0.670108\pi\)
−0.509335 + 0.860569i \(0.670108\pi\)
\(128\) 0 0
\(129\) 296.947 0.202672
\(130\) 0 0
\(131\) −203.507 203.507i −0.135729 0.135729i 0.635978 0.771707i \(-0.280597\pi\)
−0.771707 + 0.635978i \(0.780597\pi\)
\(132\) 0 0
\(133\) 31.9573 31.9573i 0.0208349 0.0208349i
\(134\) 0 0
\(135\) 454.214i 0.289574i
\(136\) 0 0
\(137\) 432.979i 0.270014i −0.990845 0.135007i \(-0.956894\pi\)
0.990845 0.135007i \(-0.0431056\pi\)
\(138\) 0 0
\(139\) −1058.62 + 1058.62i −0.645975 + 0.645975i −0.952018 0.306043i \(-0.900995\pi\)
0.306043 + 0.952018i \(0.400995\pi\)
\(140\) 0 0
\(141\) 1033.65 + 1033.65i 0.617372 + 0.617372i
\(142\) 0 0
\(143\) −1142.01 −0.667829
\(144\) 0 0
\(145\) −158.166 −0.0905861
\(146\) 0 0
\(147\) 727.114 + 727.114i 0.407968 + 0.407968i
\(148\) 0 0
\(149\) −1703.13 + 1703.13i −0.936414 + 0.936414i −0.998096 0.0616815i \(-0.980354\pi\)
0.0616815 + 0.998096i \(0.480354\pi\)
\(150\) 0 0
\(151\) 541.560i 0.291864i 0.989295 + 0.145932i \(0.0466182\pi\)
−0.989295 + 0.145932i \(0.953382\pi\)
\(152\) 0 0
\(153\) 1223.68i 0.646591i
\(154\) 0 0
\(155\) 180.006 180.006i 0.0932800 0.0932800i
\(156\) 0 0
\(157\) 8.94805 + 8.94805i 0.00454861 + 0.00454861i 0.709377 0.704829i \(-0.248976\pi\)
−0.704829 + 0.709377i \(0.748976\pi\)
\(158\) 0 0
\(159\) 921.236 0.459489
\(160\) 0 0
\(161\) −62.1402 −0.0304182
\(162\) 0 0
\(163\) −1308.41 1308.41i −0.628727 0.628727i 0.319021 0.947748i \(-0.396646\pi\)
−0.947748 + 0.319021i \(0.896646\pi\)
\(164\) 0 0
\(165\) −1561.84 + 1561.84i −0.736902 + 0.736902i
\(166\) 0 0
\(167\) 2374.12i 1.10009i −0.835135 0.550045i \(-0.814610\pi\)
0.835135 0.550045i \(-0.185390\pi\)
\(168\) 0 0
\(169\) 1516.12i 0.690084i
\(170\) 0 0
\(171\) −592.949 + 592.949i −0.265169 + 0.265169i
\(172\) 0 0
\(173\) 1310.49 + 1310.49i 0.575922 + 0.575922i 0.933777 0.357855i \(-0.116492\pi\)
−0.357855 + 0.933777i \(0.616492\pi\)
\(174\) 0 0
\(175\) −76.6414 −0.0331060
\(176\) 0 0
\(177\) −1247.10 −0.529591
\(178\) 0 0
\(179\) 248.652 + 248.652i 0.103828 + 0.103828i 0.757112 0.653285i \(-0.226610\pi\)
−0.653285 + 0.757112i \(0.726610\pi\)
\(180\) 0 0
\(181\) −1152.86 + 1152.86i −0.473434 + 0.473434i −0.903024 0.429590i \(-0.858658\pi\)
0.429590 + 0.903024i \(0.358658\pi\)
\(182\) 0 0
\(183\) 878.550i 0.354887i
\(184\) 0 0
\(185\) 1223.72i 0.486321i
\(186\) 0 0
\(187\) −4207.67 + 4207.67i −1.64543 + 1.64543i
\(188\) 0 0
\(189\) 9.26070 + 9.26070i 0.00356411 + 0.00356411i
\(190\) 0 0
\(191\) 457.697 0.173392 0.0866959 0.996235i \(-0.472369\pi\)
0.0866959 + 0.996235i \(0.472369\pi\)
\(192\) 0 0
\(193\) −61.7567 −0.0230329 −0.0115164 0.999934i \(-0.503666\pi\)
−0.0115164 + 0.999934i \(0.503666\pi\)
\(194\) 0 0
\(195\) 931.192 + 931.192i 0.341970 + 0.341970i
\(196\) 0 0
\(197\) 613.568 613.568i 0.221903 0.221903i −0.587396 0.809299i \(-0.699847\pi\)
0.809299 + 0.587396i \(0.199847\pi\)
\(198\) 0 0
\(199\) 3343.30i 1.19095i −0.803372 0.595477i \(-0.796963\pi\)
0.803372 0.595477i \(-0.203037\pi\)
\(200\) 0 0
\(201\) 1207.85i 0.423856i
\(202\) 0 0
\(203\) −3.22476 + 3.22476i −0.00111494 + 0.00111494i
\(204\) 0 0
\(205\) −4880.15 4880.15i −1.66266 1.66266i
\(206\) 0 0
\(207\) 1152.98 0.387137
\(208\) 0 0
\(209\) −4077.77 −1.34959
\(210\) 0 0
\(211\) −445.986 445.986i −0.145512 0.145512i 0.630598 0.776110i \(-0.282810\pi\)
−0.776110 + 0.630598i \(0.782810\pi\)
\(212\) 0 0
\(213\) −1303.98 + 1303.98i −0.419470 + 0.419470i
\(214\) 0 0
\(215\) 1665.15i 0.528198i
\(216\) 0 0
\(217\) 7.34006i 0.00229620i
\(218\) 0 0
\(219\) 1031.32 1031.32i 0.318221 0.318221i
\(220\) 0 0
\(221\) 2508.68 + 2508.68i 0.763585 + 0.763585i
\(222\) 0 0
\(223\) −6100.84 −1.83203 −0.916014 0.401146i \(-0.868612\pi\)
−0.916014 + 0.401146i \(0.868612\pi\)
\(224\) 0 0
\(225\) 1422.04 0.421345
\(226\) 0 0
\(227\) −3652.90 3652.90i −1.06807 1.06807i −0.997507 0.0705613i \(-0.977521\pi\)
−0.0705613 0.997507i \(-0.522479\pi\)
\(228\) 0 0
\(229\) −1707.86 + 1707.86i −0.492832 + 0.492832i −0.909197 0.416365i \(-0.863304\pi\)
0.416365 + 0.909197i \(0.363304\pi\)
\(230\) 0 0
\(231\) 63.6867i 0.0181397i
\(232\) 0 0
\(233\) 3019.27i 0.848924i 0.905446 + 0.424462i \(0.139537\pi\)
−0.905446 + 0.424462i \(0.860463\pi\)
\(234\) 0 0
\(235\) 5796.29 5796.29i 1.60897 1.60897i
\(236\) 0 0
\(237\) −2037.20 2037.20i −0.558357 0.558357i
\(238\) 0 0
\(239\) −2964.22 −0.802256 −0.401128 0.916022i \(-0.631382\pi\)
−0.401128 + 0.916022i \(0.631382\pi\)
\(240\) 0 0
\(241\) −2606.84 −0.696769 −0.348384 0.937352i \(-0.613270\pi\)
−0.348384 + 0.937352i \(0.613270\pi\)
\(242\) 0 0
\(243\) −171.827 171.827i −0.0453609 0.0453609i
\(244\) 0 0
\(245\) 4077.35 4077.35i 1.06323 1.06323i
\(246\) 0 0
\(247\) 2431.23i 0.626298i
\(248\) 0 0
\(249\) 1966.34i 0.500450i
\(250\) 0 0
\(251\) 3018.73 3018.73i 0.759126 0.759126i −0.217037 0.976163i \(-0.569639\pi\)
0.976163 + 0.217037i \(0.0696394\pi\)
\(252\) 0 0
\(253\) 3964.56 + 3964.56i 0.985177 + 0.985177i
\(254\) 0 0
\(255\) 6861.86 1.68512
\(256\) 0 0
\(257\) 1988.50 0.482644 0.241322 0.970445i \(-0.422419\pi\)
0.241322 + 0.970445i \(0.422419\pi\)
\(258\) 0 0
\(259\) 24.9496 + 24.9496i 0.00598570 + 0.00598570i
\(260\) 0 0
\(261\) 59.8336 59.8336i 0.0141901 0.0141901i
\(262\) 0 0
\(263\) 6049.85i 1.41844i 0.704987 + 0.709220i \(0.250953\pi\)
−0.704987 + 0.709220i \(0.749047\pi\)
\(264\) 0 0
\(265\) 5165.90i 1.19751i
\(266\) 0 0
\(267\) −2711.86 + 2711.86i −0.621585 + 0.621585i
\(268\) 0 0
\(269\) −3883.56 3883.56i −0.880242 0.880242i 0.113317 0.993559i \(-0.463852\pi\)
−0.993559 + 0.113317i \(0.963852\pi\)
\(270\) 0 0
\(271\) 3321.60 0.744549 0.372275 0.928123i \(-0.378578\pi\)
0.372275 + 0.928123i \(0.378578\pi\)
\(272\) 0 0
\(273\) 37.9711 0.00841800
\(274\) 0 0
\(275\) 4889.75 + 4889.75i 1.07223 + 1.07223i
\(276\) 0 0
\(277\) 3603.29 3603.29i 0.781591 0.781591i −0.198508 0.980099i \(-0.563610\pi\)
0.980099 + 0.198508i \(0.0636096\pi\)
\(278\) 0 0
\(279\) 136.191i 0.0292241i
\(280\) 0 0
\(281\) 823.661i 0.174859i 0.996171 + 0.0874297i \(0.0278653\pi\)
−0.996171 + 0.0874297i \(0.972135\pi\)
\(282\) 0 0
\(283\) −2003.74 + 2003.74i −0.420883 + 0.420883i −0.885508 0.464624i \(-0.846189\pi\)
0.464624 + 0.885508i \(0.346189\pi\)
\(284\) 0 0
\(285\) 3325.01 + 3325.01i 0.691075 + 0.691075i
\(286\) 0 0
\(287\) −198.997 −0.0409283
\(288\) 0 0
\(289\) 13573.2 2.76272
\(290\) 0 0
\(291\) −2110.54 2110.54i −0.425162 0.425162i
\(292\) 0 0
\(293\) 1900.08 1900.08i 0.378852 0.378852i −0.491836 0.870688i \(-0.663674\pi\)
0.870688 + 0.491836i \(0.163674\pi\)
\(294\) 0 0
\(295\) 6993.19i 1.38020i
\(296\) 0 0
\(297\) 1181.67i 0.230867i
\(298\) 0 0
\(299\) 2363.74 2363.74i 0.457185 0.457185i
\(300\) 0 0
\(301\) −33.9499 33.9499i −0.00650112 0.00650112i
\(302\) 0 0
\(303\) −5590.96 −1.06004
\(304\) 0 0
\(305\) −4926.54 −0.924894
\(306\) 0 0
\(307\) −3489.52 3489.52i −0.648721 0.648721i 0.303963 0.952684i \(-0.401690\pi\)
−0.952684 + 0.303963i \(0.901690\pi\)
\(308\) 0 0
\(309\) 2853.57 2853.57i 0.525352 0.525352i
\(310\) 0 0
\(311\) 1471.68i 0.268332i 0.990959 + 0.134166i \(0.0428356\pi\)
−0.990959 + 0.134166i \(0.957164\pi\)
\(312\) 0 0
\(313\) 1258.85i 0.227331i −0.993519 0.113665i \(-0.963741\pi\)
0.993519 0.113665i \(-0.0362592\pi\)
\(314\) 0 0
\(315\) 51.9301 51.9301i 0.00928866 0.00928866i
\(316\) 0 0
\(317\) 5902.41 + 5902.41i 1.04578 + 1.04578i 0.998901 + 0.0468795i \(0.0149277\pi\)
0.0468795 + 0.998901i \(0.485072\pi\)
\(318\) 0 0
\(319\) 411.481 0.0722211
\(320\) 0 0
\(321\) 1857.15 0.322916
\(322\) 0 0
\(323\) 8957.75 + 8957.75i 1.54310 + 1.54310i
\(324\) 0 0
\(325\) 2915.35 2915.35i 0.497583 0.497583i
\(326\) 0 0
\(327\) 738.044i 0.124813i
\(328\) 0 0
\(329\) 236.355i 0.0396068i
\(330\) 0 0
\(331\) −3256.70 + 3256.70i −0.540798 + 0.540798i −0.923763 0.382965i \(-0.874903\pi\)
0.382965 + 0.923763i \(0.374903\pi\)
\(332\) 0 0
\(333\) −462.926 462.926i −0.0761808 0.0761808i
\(334\) 0 0
\(335\) 6773.10 1.10464
\(336\) 0 0
\(337\) −4882.53 −0.789224 −0.394612 0.918848i \(-0.629121\pi\)
−0.394612 + 0.918848i \(0.629121\pi\)
\(338\) 0 0
\(339\) 663.828 + 663.828i 0.106355 + 0.106355i
\(340\) 0 0
\(341\) −468.298 + 468.298i −0.0743688 + 0.0743688i
\(342\) 0 0
\(343\) 332.637i 0.0523635i
\(344\) 0 0
\(345\) 6465.40i 1.00894i
\(346\) 0 0
\(347\) 1744.70 1744.70i 0.269914 0.269914i −0.559151 0.829066i \(-0.688873\pi\)
0.829066 + 0.559151i \(0.188873\pi\)
\(348\) 0 0
\(349\) −6212.48 6212.48i −0.952855 0.952855i 0.0460825 0.998938i \(-0.485326\pi\)
−0.998938 + 0.0460825i \(0.985326\pi\)
\(350\) 0 0
\(351\) −704.532 −0.107137
\(352\) 0 0
\(353\) 683.045 0.102988 0.0514941 0.998673i \(-0.483602\pi\)
0.0514941 + 0.998673i \(0.483602\pi\)
\(354\) 0 0
\(355\) 7312.16 + 7312.16i 1.09321 + 1.09321i
\(356\) 0 0
\(357\) 139.902 139.902i 0.0207407 0.0207407i
\(358\) 0 0
\(359\) 4019.67i 0.590947i 0.955351 + 0.295473i \(0.0954773\pi\)
−0.955351 + 0.295473i \(0.904523\pi\)
\(360\) 0 0
\(361\) 1822.20i 0.265665i
\(362\) 0 0
\(363\) 1239.76 1239.76i 0.179257 0.179257i
\(364\) 0 0
\(365\) −5783.23 5783.23i −0.829337 0.829337i
\(366\) 0 0
\(367\) 8041.99 1.14384 0.571919 0.820310i \(-0.306199\pi\)
0.571919 + 0.820310i \(0.306199\pi\)
\(368\) 0 0
\(369\) 3692.28 0.520900
\(370\) 0 0
\(371\) −105.325 105.325i −0.0147390 0.0147390i
\(372\) 0 0
\(373\) −805.266 + 805.266i −0.111783 + 0.111783i −0.760786 0.649003i \(-0.775186\pi\)
0.649003 + 0.760786i \(0.275186\pi\)
\(374\) 0 0
\(375\) 1665.66i 0.229372i
\(376\) 0 0
\(377\) 245.332i 0.0335152i
\(378\) 0 0
\(379\) 519.461 519.461i 0.0704034 0.0704034i −0.671028 0.741432i \(-0.734147\pi\)
0.741432 + 0.671028i \(0.234147\pi\)
\(380\) 0 0
\(381\) −3092.75 3092.75i −0.415870 0.415870i
\(382\) 0 0
\(383\) −2907.38 −0.387886 −0.193943 0.981013i \(-0.562128\pi\)
−0.193943 + 0.981013i \(0.562128\pi\)
\(384\) 0 0
\(385\) 357.128 0.0472752
\(386\) 0 0
\(387\) 629.920 + 629.920i 0.0827407 + 0.0827407i
\(388\) 0 0
\(389\) −6046.78 + 6046.78i −0.788133 + 0.788133i −0.981188 0.193055i \(-0.938160\pi\)
0.193055 + 0.981188i \(0.438160\pi\)
\(390\) 0 0
\(391\) 17418.1i 2.25287i
\(392\) 0 0
\(393\) 863.406i 0.110822i
\(394\) 0 0
\(395\) −11423.8 + 11423.8i −1.45517 + 1.45517i
\(396\) 0 0
\(397\) 4121.17 + 4121.17i 0.520996 + 0.520996i 0.917872 0.396876i \(-0.129906\pi\)
−0.396876 + 0.917872i \(0.629906\pi\)
\(398\) 0 0
\(399\) 135.583 0.0170117
\(400\) 0 0
\(401\) 3991.60 0.497084 0.248542 0.968621i \(-0.420049\pi\)
0.248542 + 0.968621i \(0.420049\pi\)
\(402\) 0 0
\(403\) 279.207 + 279.207i 0.0345119 + 0.0345119i
\(404\) 0 0
\(405\) −963.533 + 963.533i −0.118218 + 0.118218i
\(406\) 0 0
\(407\) 3183.59i 0.387727i
\(408\) 0 0
\(409\) 7470.32i 0.903138i 0.892236 + 0.451569i \(0.149136\pi\)
−0.892236 + 0.451569i \(0.850864\pi\)
\(410\) 0 0
\(411\) 918.486 918.486i 0.110233 0.110233i
\(412\) 0 0
\(413\) 142.580 + 142.580i 0.0169877 + 0.0169877i
\(414\) 0 0
\(415\) 11026.4 1.30425
\(416\) 0 0
\(417\) −4491.32 −0.527437
\(418\) 0 0
\(419\) −11052.5 11052.5i −1.28866 1.28866i −0.935601 0.353059i \(-0.885142\pi\)
−0.353059 0.935601i \(-0.614858\pi\)
\(420\) 0 0
\(421\) −2747.59 + 2747.59i −0.318075 + 0.318075i −0.848027 0.529952i \(-0.822210\pi\)
0.529952 + 0.848027i \(0.322210\pi\)
\(422\) 0 0
\(423\) 4385.42i 0.504082i
\(424\) 0 0
\(425\) 21482.9i 2.45194i
\(426\) 0 0
\(427\) −100.444 + 100.444i −0.0113837 + 0.0113837i
\(428\) 0 0
\(429\) −2422.57 2422.57i −0.272640 0.272640i
\(430\) 0 0
\(431\) −11.7027 −0.00130789 −0.000653945 1.00000i \(-0.500208\pi\)
−0.000653945 1.00000i \(0.500208\pi\)
\(432\) 0 0
\(433\) −8291.16 −0.920202 −0.460101 0.887866i \(-0.652187\pi\)
−0.460101 + 0.887866i \(0.652187\pi\)
\(434\) 0 0
\(435\) −335.521 335.521i −0.0369816 0.0369816i
\(436\) 0 0
\(437\) 8440.19 8440.19i 0.923911 0.923911i
\(438\) 0 0
\(439\) 14287.6i 1.55332i 0.629918 + 0.776661i \(0.283088\pi\)
−0.629918 + 0.776661i \(0.716912\pi\)
\(440\) 0 0
\(441\) 3084.88i 0.333105i
\(442\) 0 0
\(443\) −5070.34 + 5070.34i −0.543790 + 0.543790i −0.924638 0.380847i \(-0.875632\pi\)
0.380847 + 0.924638i \(0.375632\pi\)
\(444\) 0 0
\(445\) 15207.0 + 15207.0i 1.61995 + 1.61995i
\(446\) 0 0
\(447\) −7225.76 −0.764579
\(448\) 0 0
\(449\) 16521.3 1.73650 0.868249 0.496128i \(-0.165245\pi\)
0.868249 + 0.496128i \(0.165245\pi\)
\(450\) 0 0
\(451\) 12696.1 + 12696.1i 1.32558 + 1.32558i
\(452\) 0 0
\(453\) −1148.82 + 1148.82i −0.119153 + 0.119153i
\(454\) 0 0
\(455\) 212.926i 0.0219387i
\(456\) 0 0
\(457\) 3323.22i 0.340161i −0.985430 0.170080i \(-0.945597\pi\)
0.985430 0.170080i \(-0.0544028\pi\)
\(458\) 0 0
\(459\) −2595.81 + 2595.81i −0.263970 + 0.263970i
\(460\) 0 0
\(461\) 1193.80 + 1193.80i 0.120609 + 0.120609i 0.764835 0.644226i \(-0.222820\pi\)
−0.644226 + 0.764835i \(0.722820\pi\)
\(462\) 0 0
\(463\) −6199.48 −0.622277 −0.311139 0.950365i \(-0.600710\pi\)
−0.311139 + 0.950365i \(0.600710\pi\)
\(464\) 0 0
\(465\) 763.699 0.0761628
\(466\) 0 0
\(467\) −2566.04 2566.04i −0.254265 0.254265i 0.568451 0.822717i \(-0.307543\pi\)
−0.822717 + 0.568451i \(0.807543\pi\)
\(468\) 0 0
\(469\) 138.093 138.093i 0.0135960 0.0135960i
\(470\) 0 0
\(471\) 37.9634i 0.00371393i
\(472\) 0 0
\(473\) 4332.02i 0.421113i
\(474\) 0 0
\(475\) 10409.8 10409.8i 1.00555 1.00555i
\(476\) 0 0
\(477\) 1954.24 + 1954.24i 0.187586 + 0.187586i
\(478\) 0 0
\(479\) −4563.85 −0.435339 −0.217670 0.976023i \(-0.569846\pi\)
−0.217670 + 0.976023i \(0.569846\pi\)
\(480\) 0 0
\(481\) −1898.11 −0.179930
\(482\) 0 0
\(483\) −131.819 131.819i −0.0124182 0.0124182i
\(484\) 0 0
\(485\) −11835.0 + 11835.0i −1.10804 + 1.10804i
\(486\) 0 0
\(487\) 1099.80i 0.102334i 0.998690 + 0.0511672i \(0.0162941\pi\)
−0.998690 + 0.0511672i \(0.983706\pi\)
\(488\) 0 0
\(489\) 5551.11i 0.513353i
\(490\) 0 0
\(491\) 11017.7 11017.7i 1.01267 1.01267i 0.0127523 0.999919i \(-0.495941\pi\)
0.999919 0.0127523i \(-0.00405929\pi\)
\(492\) 0 0
\(493\) −903.913 903.913i −0.0825764 0.0825764i
\(494\) 0 0
\(495\) −6626.31 −0.601678
\(496\) 0 0
\(497\) 298.167 0.0269107
\(498\) 0 0
\(499\) −3603.08 3603.08i −0.323238 0.323238i 0.526770 0.850008i \(-0.323403\pi\)
−0.850008 + 0.526770i \(0.823403\pi\)
\(500\) 0 0
\(501\) 5036.28 5036.28i 0.449110 0.449110i
\(502\) 0 0
\(503\) 17947.0i 1.59089i −0.606028 0.795443i \(-0.707238\pi\)
0.606028 0.795443i \(-0.292762\pi\)
\(504\) 0 0
\(505\) 31351.7i 2.76264i
\(506\) 0 0
\(507\) 3216.17 3216.17i 0.281726 0.281726i
\(508\) 0 0
\(509\) −1844.54 1844.54i −0.160625 0.160625i 0.622219 0.782843i \(-0.286231\pi\)
−0.782843 + 0.622219i \(0.786231\pi\)
\(510\) 0 0
\(511\) −235.822 −0.0204151
\(512\) 0 0
\(513\) −2515.67 −0.216510
\(514\) 0 0
\(515\) −16001.6 16001.6i −1.36916 1.36916i
\(516\) 0 0
\(517\) −15079.5 + 15079.5i −1.28278 + 1.28278i
\(518\) 0 0
\(519\) 5559.93i 0.470239i
\(520\) 0 0
\(521\) 5221.57i 0.439081i −0.975603 0.219541i \(-0.929544\pi\)
0.975603 0.219541i \(-0.0704558\pi\)
\(522\) 0 0
\(523\) −581.412 + 581.412i −0.0486106 + 0.0486106i −0.730994 0.682384i \(-0.760943\pi\)
0.682384 + 0.730994i \(0.260943\pi\)
\(524\) 0 0
\(525\) −162.581 162.581i −0.0135155 0.0135155i
\(526\) 0 0
\(527\) 2057.45 0.170064
\(528\) 0 0
\(529\) −4244.75 −0.348874
\(530\) 0 0
\(531\) −2645.49 2645.49i −0.216204 0.216204i
\(532\) 0 0
\(533\) 7569.61 7569.61i 0.615152 0.615152i
\(534\) 0 0
\(535\) 10414.1i 0.841572i
\(536\) 0 0
\(537\) 1054.94i 0.0847749i
\(538\) 0 0
\(539\) −10607.5 + 10607.5i −0.847678 + 0.847678i
\(540\) 0 0
\(541\) −4813.94 4813.94i −0.382564 0.382564i 0.489461 0.872025i \(-0.337194\pi\)
−0.872025 + 0.489461i \(0.837194\pi\)
\(542\) 0 0
\(543\) −4891.18 −0.386557
\(544\) 0 0
\(545\) −4138.64 −0.325284
\(546\) 0 0
\(547\) −10287.7 10287.7i −0.804154 0.804154i 0.179588 0.983742i \(-0.442524\pi\)
−0.983742 + 0.179588i \(0.942524\pi\)
\(548\) 0 0
\(549\) 1863.69 1863.69i 0.144882 0.144882i
\(550\) 0 0
\(551\) 876.006i 0.0677298i
\(552\) 0 0
\(553\) 465.825i 0.0358208i
\(554\) 0 0
\(555\) −2595.89 + 2595.89i −0.198540 + 0.198540i
\(556\) 0 0
\(557\) −16473.4 16473.4i −1.25315 1.25315i −0.954302 0.298843i \(-0.903399\pi\)
−0.298843 0.954302i \(-0.596601\pi\)
\(558\) 0 0
\(559\) 2582.82 0.195424
\(560\) 0 0
\(561\) −17851.6 −1.34349
\(562\) 0 0
\(563\) −3846.62 3846.62i −0.287950 0.287950i 0.548319 0.836269i \(-0.315268\pi\)
−0.836269 + 0.548319i \(0.815268\pi\)
\(564\) 0 0
\(565\) 3722.47 3722.47i 0.277178 0.277178i
\(566\) 0 0
\(567\) 39.2898i 0.00291008i
\(568\) 0 0
\(569\) 16206.0i 1.19401i 0.802239 + 0.597003i \(0.203642\pi\)
−0.802239 + 0.597003i \(0.796358\pi\)
\(570\) 0 0
\(571\) 15842.4 15842.4i 1.16109 1.16109i 0.176858 0.984236i \(-0.443407\pi\)
0.984236 0.176858i \(-0.0565933\pi\)
\(572\) 0 0
\(573\) 970.923 + 970.923i 0.0707869 + 0.0707869i
\(574\) 0 0
\(575\) −20241.7 −1.46806
\(576\) 0 0
\(577\) −18218.5 −1.31446 −0.657231 0.753689i \(-0.728272\pi\)
−0.657231 + 0.753689i \(0.728272\pi\)
\(578\) 0 0
\(579\) −131.006 131.006i −0.00940314 0.00940314i
\(580\) 0 0
\(581\) 224.811 224.811i 0.0160529 0.0160529i
\(582\) 0 0
\(583\) 13439.5i 0.954728i
\(584\) 0 0
\(585\) 3950.71i 0.279217i
\(586\) 0 0
\(587\) 3225.64 3225.64i 0.226808 0.226808i −0.584550 0.811358i \(-0.698729\pi\)
0.811358 + 0.584550i \(0.198729\pi\)
\(588\) 0 0
\(589\) 996.964 + 996.964i 0.0697439 + 0.0697439i
\(590\) 0 0
\(591\) 2603.15 0.181183
\(592\) 0 0
\(593\) −15436.7 −1.06898 −0.534492 0.845174i \(-0.679497\pi\)
−0.534492 + 0.845174i \(0.679497\pi\)
\(594\) 0 0
\(595\) −784.514 784.514i −0.0540537 0.0540537i
\(596\) 0 0
\(597\) 7092.20 7092.20i 0.486205 0.486205i
\(598\) 0 0
\(599\) 13650.7i 0.931142i −0.885010 0.465571i \(-0.845849\pi\)
0.885010 0.465571i \(-0.154151\pi\)
\(600\) 0 0
\(601\) 27042.7i 1.83543i 0.397236 + 0.917716i \(0.369969\pi\)
−0.397236 + 0.917716i \(0.630031\pi\)
\(602\) 0 0
\(603\) −2562.23 + 2562.23i −0.173038 + 0.173038i
\(604\) 0 0
\(605\) −6952.03 6952.03i −0.467174 0.467174i
\(606\) 0 0
\(607\) 3562.32 0.238205 0.119102 0.992882i \(-0.461998\pi\)
0.119102 + 0.992882i \(0.461998\pi\)
\(608\) 0 0
\(609\) −13.6815 −0.000910348
\(610\) 0 0
\(611\) 8990.64 + 8990.64i 0.595290 + 0.595290i
\(612\) 0 0
\(613\) −11418.0 + 11418.0i −0.752315 + 0.752315i −0.974911 0.222595i \(-0.928547\pi\)
0.222595 + 0.974911i \(0.428547\pi\)
\(614\) 0 0
\(615\) 20704.7i 1.35755i
\(616\) 0 0
\(617\) 3981.62i 0.259796i 0.991527 + 0.129898i \(0.0414649\pi\)
−0.991527 + 0.129898i \(0.958535\pi\)
\(618\) 0 0
\(619\) 6160.23 6160.23i 0.400001 0.400001i −0.478232 0.878233i \(-0.658722\pi\)
0.878233 + 0.478232i \(0.158722\pi\)
\(620\) 0 0
\(621\) 2445.83 + 2445.83i 0.158048 + 0.158048i
\(622\) 0 0
\(623\) 620.092 0.0398771
\(624\) 0 0
\(625\) 10410.2 0.666252
\(626\) 0 0
\(627\) −8650.26 8650.26i −0.550970 0.550970i
\(628\) 0 0
\(629\) −6993.48 + 6993.48i −0.443320 + 0.443320i
\(630\) 0 0
\(631\) 670.100i 0.0422761i 0.999777 + 0.0211381i \(0.00672896\pi\)
−0.999777 + 0.0211381i \(0.993271\pi\)
\(632\) 0 0
\(633\) 1892.16i 0.118810i
\(634\) 0 0
\(635\) −17342.8 + 17342.8i −1.08383 + 1.08383i
\(636\) 0 0
\(637\) 6324.38 + 6324.38i 0.393377 + 0.393377i
\(638\) 0 0
\(639\) −5532.31 −0.342496
\(640\) 0 0
\(641\) −3038.11 −0.187204 −0.0936022 0.995610i \(-0.529838\pi\)
−0.0936022 + 0.995610i \(0.529838\pi\)
\(642\) 0 0
\(643\) 11363.4 + 11363.4i 0.696934 + 0.696934i 0.963748 0.266814i \(-0.0859710\pi\)
−0.266814 + 0.963748i \(0.585971\pi\)
\(644\) 0 0
\(645\) 3532.33 3532.33i 0.215636 0.215636i
\(646\) 0 0
\(647\) 25695.9i 1.56137i 0.624923 + 0.780687i \(0.285131\pi\)
−0.624923 + 0.780687i \(0.714869\pi\)
\(648\) 0 0
\(649\) 18193.3i 1.10039i
\(650\) 0 0
\(651\) 15.5706 15.5706i 0.000937420 0.000937420i
\(652\) 0 0
\(653\) 20933.8 + 20933.8i 1.25452 + 1.25452i 0.953673 + 0.300847i \(0.0972692\pi\)
0.300847 + 0.953673i \(0.402731\pi\)
\(654\) 0 0
\(655\) −4841.61 −0.288821
\(656\) 0 0
\(657\) 4375.54 0.259826
\(658\) 0 0
\(659\) 5253.27 + 5253.27i 0.310529 + 0.310529i 0.845114 0.534586i \(-0.179532\pi\)
−0.534586 + 0.845114i \(0.679532\pi\)
\(660\) 0 0
\(661\) −3182.14 + 3182.14i −0.187248 + 0.187248i −0.794505 0.607257i \(-0.792270\pi\)
0.607257 + 0.794505i \(0.292270\pi\)
\(662\) 0 0
\(663\) 10643.4i 0.623465i
\(664\) 0 0
\(665\) 760.293i 0.0443352i
\(666\) 0 0
\(667\) −851.686 + 851.686i −0.0494414 + 0.0494414i
\(668\) 0 0
\(669\) −12941.8 12941.8i −0.747922 0.747922i
\(670\) 0 0
\(671\) 12816.8 0.737385
\(672\) 0 0
\(673\) 27736.4 1.58865 0.794325 0.607493i \(-0.207825\pi\)
0.794325 + 0.607493i \(0.207825\pi\)
\(674\) 0 0
\(675\) 3016.60 + 3016.60i 0.172013 + 0.172013i
\(676\) 0 0
\(677\) −6076.45 + 6076.45i −0.344959 + 0.344959i −0.858228 0.513269i \(-0.828434\pi\)
0.513269 + 0.858228i \(0.328434\pi\)
\(678\) 0 0
\(679\) 482.594i 0.0272758i
\(680\) 0 0
\(681\) 15498.0i 0.872075i
\(682\) 0 0
\(683\) −2360.09 + 2360.09i −0.132220 + 0.132220i −0.770120 0.637900i \(-0.779803\pi\)
0.637900 + 0.770120i \(0.279803\pi\)
\(684\) 0 0
\(685\) −5150.48 5150.48i −0.287284 0.287284i
\(686\) 0 0
\(687\) −7245.84 −0.402396
\(688\) 0 0
\(689\) 8012.84 0.443055
\(690\) 0 0
\(691\) 10248.5 + 10248.5i 0.564211 + 0.564211i 0.930501 0.366290i \(-0.119372\pi\)
−0.366290 + 0.930501i \(0.619372\pi\)
\(692\) 0 0
\(693\) −135.100 + 135.100i −0.00740552 + 0.00740552i
\(694\) 0 0
\(695\) 25185.4i 1.37459i
\(696\) 0 0
\(697\) 55779.7i 3.03128i
\(698\) 0 0
\(699\) −6404.85 + 6404.85i −0.346572 + 0.346572i
\(700\) 0 0
\(701\) 5637.61 + 5637.61i 0.303751 + 0.303751i 0.842480 0.538728i \(-0.181095\pi\)
−0.538728 + 0.842480i \(0.681095\pi\)
\(702\) 0 0
\(703\) −6777.57 −0.363614
\(704\) 0 0
\(705\) 24591.6 1.31372
\(706\) 0 0
\(707\) 639.212 + 639.212i 0.0340029 + 0.0340029i
\(708\) 0 0
\(709\) 1798.00 1798.00i 0.0952402 0.0952402i −0.657881 0.753122i \(-0.728547\pi\)
0.753122 + 0.657881i \(0.228547\pi\)
\(710\) 0 0
\(711\) 8643.12i 0.455897i
\(712\) 0 0
\(713\) 1938.57i 0.101823i
\(714\) 0 0
\(715\) −13584.7 + 13584.7i −0.710545 + 0.710545i
\(716\) 0 0
\(717\) −6288.05 6288.05i −0.327520 0.327520i
\(718\) 0 0
\(719\) 35035.3 1.81724 0.908622 0.417620i \(-0.137136\pi\)
0.908622 + 0.417620i \(0.137136\pi\)
\(720\) 0 0
\(721\) −652.495 −0.0337034
\(722\) 0 0
\(723\) −5529.94 5529.94i −0.284455 0.284455i
\(724\) 0 0
\(725\) −1050.44 + 1050.44i −0.0538101 + 0.0538101i
\(726\) 0 0
\(727\) 24515.4i 1.25066i −0.780362 0.625328i \(-0.784965\pi\)
0.780362 0.625328i \(-0.215035\pi\)
\(728\) 0 0
\(729\) 729.000i 0.0370370i
\(730\) 0 0
\(731\) 9516.28 9516.28i 0.481494 0.481494i
\(732\) 0 0
\(733\) 23583.9 + 23583.9i 1.18839 + 1.18839i 0.977512 + 0.210878i \(0.0676322\pi\)
0.210878 + 0.977512i \(0.432368\pi\)
\(734\) 0 0
\(735\) 17298.7 0.868126
\(736\) 0 0
\(737\) −17620.7 −0.880689
\(738\) 0 0
\(739\) −17246.2 17246.2i −0.858472 0.858472i 0.132686 0.991158i \(-0.457640\pi\)
−0.991158 + 0.132686i \(0.957640\pi\)
\(740\) 0 0
\(741\) −5157.42 + 5157.42i −0.255685 + 0.255685i
\(742\) 0 0
\(743\) 14249.5i 0.703587i −0.936078 0.351793i \(-0.885572\pi\)
0.936078 0.351793i \(-0.114428\pi\)
\(744\) 0 0
\(745\) 40519.0i 1.99262i
\(746\) 0 0
\(747\) −4171.24 + 4171.24i −0.204308 + 0.204308i
\(748\) 0 0
\(749\) −212.327 212.327i −0.0103582 0.0103582i
\(750\) 0 0
\(751\) −10260.0 −0.498524 −0.249262 0.968436i \(-0.580188\pi\)
−0.249262 + 0.968436i \(0.580188\pi\)
\(752\) 0 0
\(753\) 12807.4 0.619824
\(754\) 0 0
\(755\) 6442.11 + 6442.11i 0.310533 + 0.310533i
\(756\) 0 0
\(757\) 18953.4 18953.4i 0.910005 0.910005i −0.0862671 0.996272i \(-0.527494\pi\)
0.996272 + 0.0862671i \(0.0274939\pi\)
\(758\) 0 0
\(759\) 16820.2i 0.804394i
\(760\) 0 0
\(761\) 24434.3i 1.16392i −0.813218 0.581960i \(-0.802286\pi\)
0.813218 0.581960i \(-0.197714\pi\)
\(762\) 0 0
\(763\) −84.3802 + 84.3802i −0.00400363 + 0.00400363i
\(764\) 0 0
\(765\) 14556.2 + 14556.2i 0.687949 + 0.687949i
\(766\) 0 0
\(767\) −10847.1 −0.510649
\(768\) 0 0
\(769\) −6752.03 −0.316625 −0.158312 0.987389i \(-0.550605\pi\)
−0.158312 + 0.987389i \(0.550605\pi\)
\(770\) 0 0
\(771\) 4218.26 + 4218.26i 0.197039 + 0.197039i
\(772\) 0 0
\(773\) 18608.6 18608.6i 0.865854 0.865854i −0.126157 0.992010i \(-0.540264\pi\)
0.992010 + 0.126157i \(0.0402642\pi\)
\(774\) 0 0
\(775\) 2390.96i 0.110821i
\(776\) 0 0
\(777\) 105.852i 0.00488730i
\(778\) 0 0
\(779\) 27028.8 27028.8i 1.24314 1.24314i
\(780\) 0 0
\(781\) −19023.1 19023.1i −0.871576 0.871576i
\(782\) 0 0
\(783\) 253.852 0.0115861
\(784\) 0 0
\(785\) 212.883 0.00967911
\(786\) 0 0
\(787\) 23406.2 + 23406.2i 1.06016 + 1.06016i 0.998071 + 0.0620850i \(0.0197750\pi\)
0.0620850 + 0.998071i \(0.480225\pi\)
\(788\) 0 0
\(789\) −12833.7 + 12833.7i −0.579076 + 0.579076i
\(790\) 0 0
\(791\) 151.790i 0.00682307i
\(792\) 0 0
\(793\) 7641.56i 0.342194i
\(794\) 0 0
\(795\) 10958.5 10958.5i 0.488880 0.488880i
\(796\) 0 0
\(797\) −1487.10 1487.10i −0.0660925 0.0660925i 0.673288 0.739380i \(-0.264881\pi\)
−0.739380 + 0.673288i \(0.764881\pi\)
\(798\) 0 0
\(799\) 66251.1 2.93341
\(800\) 0 0
\(801\) −11505.5 −0.507522
\(802\) 0 0
\(803\) 15045.5 + 15045.5i 0.661201 + 0.661201i
\(804\) 0 0
\(805\) −739.186 + 739.186i −0.0323638 + 0.0323638i
\(806\) 0 0
\(807\) 16476.6i 0.718715i
\(808\) 0 0
\(809\) 10505.2i 0.456542i −0.973598 0.228271i \(-0.926693\pi\)
0.973598 0.228271i \(-0.0733072\pi\)
\(810\) 0 0
\(811\) −27073.1 + 27073.1i −1.17221 + 1.17221i −0.190531 + 0.981681i \(0.561021\pi\)
−0.981681 + 0.190531i \(0.938979\pi\)
\(812\) 0 0
\(813\) 7046.18 + 7046.18i 0.303961 + 0.303961i
\(814\) 0 0
\(815\) −31128.3 −1.33788
\(816\) 0 0
\(817\) 9222.48 0.394925
\(818\) 0 0
\(819\) 80.5488 + 80.5488i 0.00343663 + 0.00343663i
\(820\) 0 0
\(821\) 9907.96 9907.96i 0.421182 0.421182i −0.464429 0.885610i \(-0.653740\pi\)
0.885610 + 0.464429i \(0.153740\pi\)
\(822\) 0 0
\(823\) 17501.8i 0.741281i 0.928776 + 0.370640i \(0.120862\pi\)
−0.928776 + 0.370640i \(0.879138\pi\)
\(824\) 0 0
\(825\) 20745.4i 0.875471i
\(826\) 0 0
\(827\) 7074.02 7074.02i 0.297446 0.297446i −0.542567 0.840013i \(-0.682547\pi\)
0.840013 + 0.542567i \(0.182547\pi\)
\(828\) 0 0
\(829\) −21066.1 21066.1i −0.882576 0.882576i 0.111220 0.993796i \(-0.464524\pi\)
−0.993796 + 0.111220i \(0.964524\pi\)
\(830\) 0 0
\(831\) 15287.5 0.638167
\(832\) 0 0
\(833\) 46603.7 1.93844
\(834\) 0 0
\(835\) −28241.3 28241.3i −1.17046 1.17046i
\(836\) 0 0
\(837\) −288.904 + 288.904i −0.0119307 + 0.0119307i
\(838\) 0 0
\(839\) 30444.6i 1.25276i −0.779519 0.626379i \(-0.784536\pi\)
0.779519 0.626379i \(-0.215464\pi\)
\(840\) 0 0
\(841\) 24300.6i 0.996376i
\(842\) 0 0
\(843\) −1747.25 + 1747.25i −0.0713861 + 0.0713861i
\(844\) 0 0
\(845\) −18034.9 18034.9i −0.734224 0.734224i
\(846\) 0 0
\(847\) −283.482 −0.0115001
\(848\) 0 0
\(849\) −8501.15 −0.343650
\(850\) 0 0
\(851\) 6589.41 + 6589.41i 0.265431 + 0.265431i
\(852\) 0 0
\(853\) 882.218 882.218i 0.0354122 0.0354122i −0.689179 0.724591i \(-0.742029\pi\)
0.724591 + 0.689179i \(0.242029\pi\)
\(854\) 0 0
\(855\) 14106.8i 0.564261i
\(856\) 0 0
\(857\) 8006.81i 0.319145i 0.987186 + 0.159572i \(0.0510116\pi\)
−0.987186 + 0.159572i \(0.948988\pi\)
\(858\) 0 0
\(859\) −20266.0 + 20266.0i −0.804967 + 0.804967i −0.983867 0.178900i \(-0.942746\pi\)
0.178900 + 0.983867i \(0.442746\pi\)
\(860\) 0 0
\(861\) −422.136 422.136i −0.0167089 0.0167089i
\(862\) 0 0
\(863\) −41478.0 −1.63607 −0.818034 0.575169i \(-0.804936\pi\)
−0.818034 + 0.575169i \(0.804936\pi\)
\(864\) 0 0
\(865\) 31177.7 1.22552
\(866\) 0 0
\(867\) 28793.2 + 28793.2i 1.12787 + 1.12787i
\(868\) 0 0
\(869\) 29719.8 29719.8i 1.16016 1.16016i
\(870\) 0 0
\(871\) 10505.8i 0.408696i
\(872\) 0 0
\(873\) 8954.26i 0.347143i
\(874\) 0 0
\(875\) −190.435 + 190.435i −0.00735756 + 0.00735756i
\(876\) 0 0
\(877\) −6027.15 6027.15i −0.232067 0.232067i 0.581488 0.813555i \(-0.302471\pi\)
−0.813555 + 0.581488i \(0.802471\pi\)
\(878\) 0 0
\(879\) 8061.34 0.309331
\(880\) 0 0
\(881\) −40154.3 −1.53556 −0.767782 0.640712i \(-0.778639\pi\)
−0.767782 + 0.640712i \(0.778639\pi\)
\(882\) 0 0
\(883\) 4435.93 + 4435.93i 0.169061 + 0.169061i 0.786567 0.617505i \(-0.211857\pi\)
−0.617505 + 0.786567i \(0.711857\pi\)
\(884\) 0 0
\(885\) −14834.8 + 14834.8i −0.563465 + 0.563465i
\(886\) 0 0
\(887\) 3275.31i 0.123984i 0.998077 + 0.0619921i \(0.0197454\pi\)
−0.998077 + 0.0619921i \(0.980255\pi\)
\(888\) 0 0
\(889\) 707.186i 0.0266797i
\(890\) 0 0
\(891\) 2506.70 2506.70i 0.0942511 0.0942511i
\(892\) 0 0
\(893\) 32102.9 + 32102.9i 1.20300 + 1.20300i
\(894\) 0 0
\(895\) 5915.67 0.220937
\(896\) 0 0
\(897\) 10028.5 0.373290
\(898\) 0 0
\(899\) −100.602 100.602i −0.00373222 0.00373222i
\(900\) 0 0
\(901\) 29522.9 29522.9i 1.09162 1.09162i
\(902\) 0 0
\(903\) 144.037i 0.00530814i
\(904\) 0 0
\(905\) 27427.7i 1.00743i
\(906\) 0 0
\(907\) 18595.8 18595.8i 0.680775 0.680775i −0.279400 0.960175i \(-0.590135\pi\)
0.960175 + 0.279400i \(0.0901354\pi\)
\(908\) 0 0
\(909\) −11860.2 11860.2i −0.432759 0.432759i
\(910\) 0 0
\(911\) 25144.8 0.914472 0.457236 0.889345i \(-0.348839\pi\)
0.457236 + 0.889345i \(0.348839\pi\)
\(912\) 0 0
\(913\) −28686.1 −1.03984
\(914\) 0 0
\(915\) −10450.8 10450.8i −0.377586 0.377586i
\(916\) 0 0
\(917\) −98.7128 + 98.7128i −0.00355484 + 0.00355484i
\(918\) 0 0
\(919\) 18292.8i 0.656608i 0.944572 + 0.328304i \(0.106477\pi\)
−0.944572 + 0.328304i \(0.893523\pi\)
\(920\) 0 0
\(921\) 14804.8i 0.529679i
\(922\) 0 0
\(923\) −11341.9 + 11341.9i −0.404467 + 0.404467i
\(924\) 0 0
\(925\) 8127.14 + 8127.14i 0.288885 + 0.288885i
\(926\) 0 0
\(927\) 12106.7 0.428948
\(928\) 0 0
\(929\) 16680.0 0.589078 0.294539 0.955640i \(-0.404834\pi\)
0.294539 + 0.955640i \(0.404834\pi\)
\(930\) 0 0
\(931\) 22582.4 + 22582.4i 0.794962 + 0.794962i
\(932\) 0 0
\(933\) −3121.91 + 3121.91i −0.109546 + 0.109546i
\(934\) 0 0
\(935\) 100104.i 3.50135i
\(936\) 0 0
\(937\) 2053.17i 0.0715839i −0.999359 0.0357920i \(-0.988605\pi\)
0.999359 0.0357920i \(-0.0113954\pi\)
\(938\) 0 0
\(939\) 2670.43 2670.43i 0.0928074 0.0928074i
\(940\) 0 0
\(941\) 17468.5 + 17468.5i 0.605160 + 0.605160i 0.941677 0.336517i \(-0.109249\pi\)
−0.336517 + 0.941677i \(0.609249\pi\)
\(942\) 0 0
\(943\) −52556.8 −1.81494
\(944\) 0 0
\(945\) 220.321 0.00758416
\(946\) 0 0
\(947\) 22999.8 + 22999.8i 0.789223 + 0.789223i 0.981367 0.192144i \(-0.0615441\pi\)
−0.192144 + 0.981367i \(0.561544\pi\)
\(948\) 0 0
\(949\) 8970.37 8970.37i 0.306839 0.306839i
\(950\) 0 0
\(951\) 25041.8i 0.853876i
\(952\) 0 0
\(953\) 29341.4i 0.997336i 0.866793 + 0.498668i \(0.166177\pi\)
−0.866793 + 0.498668i \(0.833823\pi\)
\(954\) 0 0
\(955\) 5444.52 5444.52i 0.184482 0.184482i
\(956\) 0 0
\(957\) 872.884 + 872.884i 0.0294841 + 0.0294841i
\(958\) 0 0
\(959\) −210.020 −0.00707186
\(960\) 0 0
\(961\) −29562.0 −0.992314
\(962\) 0 0
\(963\) 3939.61 + 3939.61i 0.131830 + 0.131830i
\(964\) 0 0
\(965\) −734.625 + 734.625i −0.0245061 + 0.0245061i
\(966\) 0 0
\(967\) 8861.99i 0.294708i −0.989084 0.147354i \(-0.952924\pi\)
0.989084 0.147354i \(-0.0470756\pi\)
\(968\) 0 0
\(969\) 38004.5i 1.25994i
\(970\) 0 0
\(971\) 38037.4 38037.4i 1.25714 1.25714i 0.304681 0.952454i \(-0.401450\pi\)
0.952454 0.304681i \(-0.0985500\pi\)
\(972\) 0 0
\(973\) 513.491 + 513.491i 0.0169186 + 0.0169186i
\(974\) 0 0
\(975\) 12368.8 0.406275
\(976\) 0 0
\(977\) 26081.9 0.854078 0.427039 0.904233i \(-0.359557\pi\)
0.427039 + 0.904233i \(0.359557\pi\)
\(978\) 0 0
\(979\) −39562.1 39562.1i −1.29153 1.29153i
\(980\) 0 0
\(981\) 1565.63 1565.63i 0.0509548 0.0509548i
\(982\) 0 0
\(983\) 28987.6i 0.940552i −0.882520 0.470276i \(-0.844154\pi\)
0.882520 0.470276i \(-0.155846\pi\)
\(984\) 0 0
\(985\) 14597.3i 0.472193i
\(986\) 0 0
\(987\) 501.384 501.384i 0.0161694 0.0161694i
\(988\) 0 0
\(989\) −8966.45 8966.45i −0.288288 0.288288i
\(990\) 0 0
\(991\) −33373.6 −1.06977 −0.534887 0.844923i \(-0.679646\pi\)
−0.534887 + 0.844923i \(0.679646\pi\)
\(992\) 0 0
\(993\) −13817.0 −0.441560
\(994\) 0 0
\(995\) −39770.1 39770.1i −1.26713 1.26713i
\(996\) 0 0
\(997\) 5283.79 5283.79i 0.167843 0.167843i −0.618188 0.786031i \(-0.712133\pi\)
0.786031 + 0.618188i \(0.212133\pi\)
\(998\) 0 0
\(999\) 1964.03i 0.0622014i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 384.4.j.a.289.7 24
4.3 odd 2 384.4.j.b.289.6 24
8.3 odd 2 48.4.j.a.13.5 24
8.5 even 2 192.4.j.a.145.1 24
16.3 odd 4 48.4.j.a.37.5 yes 24
16.5 even 4 inner 384.4.j.a.97.7 24
16.11 odd 4 384.4.j.b.97.6 24
16.13 even 4 192.4.j.a.49.1 24
24.5 odd 2 576.4.k.b.145.12 24
24.11 even 2 144.4.k.b.109.8 24
48.29 odd 4 576.4.k.b.433.12 24
48.35 even 4 144.4.k.b.37.8 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.j.a.13.5 24 8.3 odd 2
48.4.j.a.37.5 yes 24 16.3 odd 4
144.4.k.b.37.8 24 48.35 even 4
144.4.k.b.109.8 24 24.11 even 2
192.4.j.a.49.1 24 16.13 even 4
192.4.j.a.145.1 24 8.5 even 2
384.4.j.a.97.7 24 16.5 even 4 inner
384.4.j.a.289.7 24 1.1 even 1 trivial
384.4.j.b.97.6 24 16.11 odd 4
384.4.j.b.289.6 24 4.3 odd 2
576.4.k.b.145.12 24 24.5 odd 2
576.4.k.b.433.12 24 48.29 odd 4