Properties

Label 144.14.a.t.1.3
Level $144$
Weight $14$
Character 144.1
Self dual yes
Analytic conductor $154.413$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,14,Mod(1,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 144.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-50256,0,-14532] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(154.412537691\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 14629x - 625725 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 72)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-85.5039\) of defining polynomial
Character \(\chi\) \(=\) 144.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+28326.9 q^{5} -120030. q^{7} +2.03411e6 q^{11} -6.77159e6 q^{13} -4.68096e7 q^{17} +2.37852e8 q^{19} -3.19781e8 q^{23} -4.18292e8 q^{25} -6.56256e8 q^{29} +2.79615e7 q^{31} -3.40007e9 q^{35} +1.45690e10 q^{37} -2.93648e10 q^{41} -8.73722e9 q^{43} -5.43201e10 q^{47} -8.24818e10 q^{49} -6.14513e10 q^{53} +5.76198e10 q^{55} +2.17020e11 q^{59} +3.22228e10 q^{61} -1.91818e11 q^{65} -3.18737e11 q^{67} +1.22188e12 q^{71} +7.02020e11 q^{73} -2.44153e11 q^{77} +5.01365e11 q^{79} +3.38646e12 q^{83} -1.32597e12 q^{85} -6.98143e12 q^{89} +8.12793e11 q^{91} +6.73761e12 q^{95} -5.81870e12 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 50256 q^{5} - 14532 q^{7} + 32448 q^{11} + 12923574 q^{13} + 9909216 q^{17} - 356030136 q^{19} + 253392000 q^{23} + 1405874241 q^{25} + 2200998480 q^{29} + 2967736956 q^{31} + 13208644032 q^{35} - 20166914670 q^{37}+ \cdots - 1700880850134 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 28326.9 0.810762 0.405381 0.914148i \(-0.367139\pi\)
0.405381 + 0.914148i \(0.367139\pi\)
\(6\) 0 0
\(7\) −120030. −0.385613 −0.192807 0.981237i \(-0.561759\pi\)
−0.192807 + 0.981237i \(0.561759\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.03411e6 0.346195 0.173098 0.984905i \(-0.444622\pi\)
0.173098 + 0.984905i \(0.444622\pi\)
\(12\) 0 0
\(13\) −6.77159e6 −0.389098 −0.194549 0.980893i \(-0.562324\pi\)
−0.194549 + 0.980893i \(0.562324\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.68096e7 −0.470345 −0.235173 0.971954i \(-0.575566\pi\)
−0.235173 + 0.971954i \(0.575566\pi\)
\(18\) 0 0
\(19\) 2.37852e8 1.15987 0.579935 0.814663i \(-0.303078\pi\)
0.579935 + 0.814663i \(0.303078\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.19781e8 −0.450424 −0.225212 0.974310i \(-0.572307\pi\)
−0.225212 + 0.974310i \(0.572307\pi\)
\(24\) 0 0
\(25\) −4.18292e8 −0.342665
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.56256e8 −0.204874 −0.102437 0.994740i \(-0.532664\pi\)
−0.102437 + 0.994740i \(0.532664\pi\)
\(30\) 0 0
\(31\) 2.79615e7 0.00565861 0.00282931 0.999996i \(-0.499099\pi\)
0.00282931 + 0.999996i \(0.499099\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.40007e9 −0.312641
\(36\) 0 0
\(37\) 1.45690e10 0.933507 0.466753 0.884387i \(-0.345424\pi\)
0.466753 + 0.884387i \(0.345424\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.93648e10 −0.965455 −0.482727 0.875771i \(-0.660354\pi\)
−0.482727 + 0.875771i \(0.660354\pi\)
\(42\) 0 0
\(43\) −8.73722e9 −0.210779 −0.105390 0.994431i \(-0.533609\pi\)
−0.105390 + 0.994431i \(0.533609\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.43201e10 −0.735063 −0.367532 0.930011i \(-0.619797\pi\)
−0.367532 + 0.930011i \(0.619797\pi\)
\(48\) 0 0
\(49\) −8.24818e10 −0.851302
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.14513e10 −0.380836 −0.190418 0.981703i \(-0.560984\pi\)
−0.190418 + 0.981703i \(0.560984\pi\)
\(54\) 0 0
\(55\) 5.76198e10 0.280682
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.17020e11 0.669826 0.334913 0.942249i \(-0.391293\pi\)
0.334913 + 0.942249i \(0.391293\pi\)
\(60\) 0 0
\(61\) 3.22228e10 0.0800791 0.0400396 0.999198i \(-0.487252\pi\)
0.0400396 + 0.999198i \(0.487252\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.91818e11 −0.315466
\(66\) 0 0
\(67\) −3.18737e11 −0.430473 −0.215237 0.976562i \(-0.569052\pi\)
−0.215237 + 0.976562i \(0.569052\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.22188e12 1.13201 0.566006 0.824401i \(-0.308488\pi\)
0.566006 + 0.824401i \(0.308488\pi\)
\(72\) 0 0
\(73\) 7.02020e11 0.542939 0.271469 0.962447i \(-0.412490\pi\)
0.271469 + 0.962447i \(0.412490\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.44153e11 −0.133498
\(78\) 0 0
\(79\) 5.01365e11 0.232048 0.116024 0.993246i \(-0.462985\pi\)
0.116024 + 0.993246i \(0.462985\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.38646e12 1.13694 0.568471 0.822703i \(-0.307535\pi\)
0.568471 + 0.822703i \(0.307535\pi\)
\(84\) 0 0
\(85\) −1.32597e12 −0.381338
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.98143e12 −1.48905 −0.744525 0.667595i \(-0.767324\pi\)
−0.744525 + 0.667595i \(0.767324\pi\)
\(90\) 0 0
\(91\) 8.12793e11 0.150041
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.73761e12 0.940378
\(96\) 0 0
\(97\) −5.81870e12 −0.709266 −0.354633 0.935006i \(-0.615394\pi\)
−0.354633 + 0.935006i \(0.615394\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.57262e13 −1.47413 −0.737063 0.675824i \(-0.763788\pi\)
−0.737063 + 0.675824i \(0.763788\pi\)
\(102\) 0 0
\(103\) −7.12837e12 −0.588231 −0.294116 0.955770i \(-0.595025\pi\)
−0.294116 + 0.955770i \(0.595025\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.72575e13 1.11169 0.555845 0.831286i \(-0.312395\pi\)
0.555845 + 0.831286i \(0.312395\pi\)
\(108\) 0 0
\(109\) 1.45032e13 0.828310 0.414155 0.910206i \(-0.364077\pi\)
0.414155 + 0.910206i \(0.364077\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.81407e13 −1.27153 −0.635763 0.771884i \(-0.719314\pi\)
−0.635763 + 0.771884i \(0.719314\pi\)
\(114\) 0 0
\(115\) −9.05838e12 −0.365186
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.61855e12 0.181371
\(120\) 0 0
\(121\) −3.03851e13 −0.880149
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4.64276e13 −1.08858
\(126\) 0 0
\(127\) −1.74578e12 −0.0369203 −0.0184601 0.999830i \(-0.505876\pi\)
−0.0184601 + 0.999830i \(0.505876\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.01654e14 1.75736 0.878679 0.477413i \(-0.158426\pi\)
0.878679 + 0.477413i \(0.158426\pi\)
\(132\) 0 0
\(133\) −2.85494e13 −0.447261
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.15495e13 0.407670 0.203835 0.979005i \(-0.434659\pi\)
0.203835 + 0.979005i \(0.434659\pi\)
\(138\) 0 0
\(139\) 4.50845e12 0.0530189 0.0265095 0.999649i \(-0.491561\pi\)
0.0265095 + 0.999649i \(0.491561\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.37741e13 −0.134704
\(144\) 0 0
\(145\) −1.85897e13 −0.166104
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.55776e13 0.565825 0.282913 0.959146i \(-0.408699\pi\)
0.282913 + 0.959146i \(0.408699\pi\)
\(150\) 0 0
\(151\) −1.50063e14 −1.03020 −0.515101 0.857129i \(-0.672246\pi\)
−0.515101 + 0.857129i \(0.672246\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.92062e11 0.00458779
\(156\) 0 0
\(157\) −1.50997e14 −0.804673 −0.402336 0.915492i \(-0.631802\pi\)
−0.402336 + 0.915492i \(0.631802\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.83832e13 0.173689
\(162\) 0 0
\(163\) −3.78745e14 −1.58171 −0.790857 0.612001i \(-0.790365\pi\)
−0.790857 + 0.612001i \(0.790365\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.53136e14 −1.61648 −0.808241 0.588851i \(-0.799580\pi\)
−0.808241 + 0.588851i \(0.799580\pi\)
\(168\) 0 0
\(169\) −2.57021e14 −0.848603
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.63733e14 0.464340 0.232170 0.972675i \(-0.425417\pi\)
0.232170 + 0.972675i \(0.425417\pi\)
\(174\) 0 0
\(175\) 5.02076e13 0.132136
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2.38157e14 −0.541151 −0.270576 0.962699i \(-0.587214\pi\)
−0.270576 + 0.962699i \(0.587214\pi\)
\(180\) 0 0
\(181\) −2.77880e14 −0.587418 −0.293709 0.955895i \(-0.594890\pi\)
−0.293709 + 0.955895i \(0.594890\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.12693e14 0.756852
\(186\) 0 0
\(187\) −9.52157e13 −0.162831
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.06267e15 −1.58374 −0.791869 0.610691i \(-0.790892\pi\)
−0.791869 + 0.610691i \(0.790892\pi\)
\(192\) 0 0
\(193\) −8.30510e14 −1.15670 −0.578352 0.815787i \(-0.696304\pi\)
−0.578352 + 0.815787i \(0.696304\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.87432e14 0.959804 0.479902 0.877322i \(-0.340672\pi\)
0.479902 + 0.877322i \(0.340672\pi\)
\(198\) 0 0
\(199\) −1.46950e15 −1.67735 −0.838676 0.544631i \(-0.816670\pi\)
−0.838676 + 0.544631i \(0.816670\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.87704e13 0.0790021
\(204\) 0 0
\(205\) −8.31812e14 −0.782754
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.83817e14 0.401541
\(210\) 0 0
\(211\) −1.42542e15 −1.11201 −0.556004 0.831180i \(-0.687666\pi\)
−0.556004 + 0.831180i \(0.687666\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.47498e14 −0.170892
\(216\) 0 0
\(217\) −3.35622e12 −0.00218204
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.16975e14 0.183010
\(222\) 0 0
\(223\) −1.21296e15 −0.660486 −0.330243 0.943896i \(-0.607131\pi\)
−0.330243 + 0.943896i \(0.607131\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.72976e15 0.839109 0.419554 0.907730i \(-0.362186\pi\)
0.419554 + 0.907730i \(0.362186\pi\)
\(228\) 0 0
\(229\) −4.07334e15 −1.86647 −0.933233 0.359272i \(-0.883025\pi\)
−0.933233 + 0.359272i \(0.883025\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.68044e14 −0.150690 −0.0753452 0.997158i \(-0.524006\pi\)
−0.0753452 + 0.997158i \(0.524006\pi\)
\(234\) 0 0
\(235\) −1.53872e15 −0.595961
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.45486e15 0.504935 0.252467 0.967605i \(-0.418758\pi\)
0.252467 + 0.967605i \(0.418758\pi\)
\(240\) 0 0
\(241\) −2.29665e15 −0.755064 −0.377532 0.925997i \(-0.623227\pi\)
−0.377532 + 0.925997i \(0.623227\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.33645e15 −0.690204
\(246\) 0 0
\(247\) −1.61064e15 −0.451303
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.70634e14 −0.169280 −0.0846401 0.996412i \(-0.526974\pi\)
−0.0846401 + 0.996412i \(0.526974\pi\)
\(252\) 0 0
\(253\) −6.50468e14 −0.155935
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.94640e15 −1.07084 −0.535420 0.844586i \(-0.679847\pi\)
−0.535420 + 0.844586i \(0.679847\pi\)
\(258\) 0 0
\(259\) −1.74871e15 −0.359973
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.14470e15 1.51762 0.758810 0.651313i \(-0.225781\pi\)
0.758810 + 0.651313i \(0.225781\pi\)
\(264\) 0 0
\(265\) −1.74072e15 −0.308767
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.23457e15 −1.48603 −0.743014 0.669276i \(-0.766604\pi\)
−0.743014 + 0.669276i \(0.766604\pi\)
\(270\) 0 0
\(271\) −2.35829e15 −0.361657 −0.180828 0.983515i \(-0.557878\pi\)
−0.180828 + 0.983515i \(0.557878\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.50851e14 −0.118629
\(276\) 0 0
\(277\) 3.89172e15 0.517634 0.258817 0.965926i \(-0.416667\pi\)
0.258817 + 0.965926i \(0.416667\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.96405e15 −0.237991 −0.118995 0.992895i \(-0.537967\pi\)
−0.118995 + 0.992895i \(0.537967\pi\)
\(282\) 0 0
\(283\) −6.96020e15 −0.805397 −0.402698 0.915333i \(-0.631928\pi\)
−0.402698 + 0.915333i \(0.631928\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.52465e15 0.372292
\(288\) 0 0
\(289\) −7.71344e15 −0.778775
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −7.65088e14 −0.0706434 −0.0353217 0.999376i \(-0.511246\pi\)
−0.0353217 + 0.999376i \(0.511246\pi\)
\(294\) 0 0
\(295\) 6.14750e15 0.543069
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.16542e15 0.175259
\(300\) 0 0
\(301\) 1.04873e15 0.0812794
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.12771e14 0.0649251
\(306\) 0 0
\(307\) 1.41175e16 0.962409 0.481205 0.876608i \(-0.340199\pi\)
0.481205 + 0.876608i \(0.340199\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.82245e15 0.552900 0.276450 0.961028i \(-0.410842\pi\)
0.276450 + 0.961028i \(0.410842\pi\)
\(312\) 0 0
\(313\) 4.19155e15 0.251963 0.125981 0.992033i \(-0.459792\pi\)
0.125981 + 0.992033i \(0.459792\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.67999e16 1.48336 0.741681 0.670753i \(-0.234029\pi\)
0.741681 + 0.670753i \(0.234029\pi\)
\(318\) 0 0
\(319\) −1.33489e15 −0.0709263
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.11338e16 −0.545539
\(324\) 0 0
\(325\) 2.83250e15 0.133330
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6.52004e15 0.283450
\(330\) 0 0
\(331\) 9.45658e14 0.0395232 0.0197616 0.999805i \(-0.493709\pi\)
0.0197616 + 0.999805i \(0.493709\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.02882e15 −0.349011
\(336\) 0 0
\(337\) 3.74701e16 1.39345 0.696724 0.717339i \(-0.254640\pi\)
0.696724 + 0.717339i \(0.254640\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.68767e13 0.00195898
\(342\) 0 0
\(343\) 2.15299e16 0.713887
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5.14972e16 −1.58359 −0.791793 0.610789i \(-0.790852\pi\)
−0.791793 + 0.610789i \(0.790852\pi\)
\(348\) 0 0
\(349\) 3.46424e16 1.02622 0.513112 0.858322i \(-0.328493\pi\)
0.513112 + 0.858322i \(0.328493\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.35849e16 0.923866 0.461933 0.886915i \(-0.347156\pi\)
0.461933 + 0.886915i \(0.347156\pi\)
\(354\) 0 0
\(355\) 3.46121e16 0.917792
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.59240e16 −1.13221 −0.566103 0.824334i \(-0.691550\pi\)
−0.566103 + 0.824334i \(0.691550\pi\)
\(360\) 0 0
\(361\) 1.45208e16 0.345298
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.98860e16 0.440194
\(366\) 0 0
\(367\) 4.79298e16 1.02394 0.511972 0.859002i \(-0.328915\pi\)
0.511972 + 0.859002i \(0.328915\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.37599e15 0.146855
\(372\) 0 0
\(373\) 1.48431e16 0.285377 0.142688 0.989768i \(-0.454425\pi\)
0.142688 + 0.989768i \(0.454425\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.44389e15 0.0797159
\(378\) 0 0
\(379\) 2.50551e16 0.434251 0.217125 0.976144i \(-0.430332\pi\)
0.217125 + 0.976144i \(0.430332\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.71850e16 −0.440086 −0.220043 0.975490i \(-0.570620\pi\)
−0.220043 + 0.975490i \(0.570620\pi\)
\(384\) 0 0
\(385\) −6.91610e15 −0.108235
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5.91123e15 −0.0864979 −0.0432490 0.999064i \(-0.513771\pi\)
−0.0432490 + 0.999064i \(0.513771\pi\)
\(390\) 0 0
\(391\) 1.49688e16 0.211855
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.42021e16 0.188136
\(396\) 0 0
\(397\) 4.24747e16 0.544493 0.272247 0.962228i \(-0.412233\pi\)
0.272247 + 0.962228i \(0.412233\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.35418e16 −0.162644 −0.0813222 0.996688i \(-0.525914\pi\)
−0.0813222 + 0.996688i \(0.525914\pi\)
\(402\) 0 0
\(403\) −1.89344e14 −0.00220175
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.96348e16 0.323176
\(408\) 0 0
\(409\) 1.00108e17 1.05746 0.528732 0.848789i \(-0.322668\pi\)
0.528732 + 0.848789i \(0.322668\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.60489e16 −0.258294
\(414\) 0 0
\(415\) 9.59278e16 0.921789
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.31352e17 1.18590 0.592948 0.805241i \(-0.297964\pi\)
0.592948 + 0.805241i \(0.297964\pi\)
\(420\) 0 0
\(421\) 5.18481e16 0.453837 0.226918 0.973914i \(-0.427135\pi\)
0.226918 + 0.973914i \(0.427135\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.95801e16 0.161171
\(426\) 0 0
\(427\) −3.86770e15 −0.0308796
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.74822e14 0.00131369 0.000656846 1.00000i \(-0.499791\pi\)
0.000656846 1.00000i \(0.499791\pi\)
\(432\) 0 0
\(433\) 9.52553e16 0.694573 0.347286 0.937759i \(-0.387103\pi\)
0.347286 + 0.937759i \(0.387103\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.60606e16 −0.522433
\(438\) 0 0
\(439\) −1.00081e16 −0.0667314 −0.0333657 0.999443i \(-0.510623\pi\)
−0.0333657 + 0.999443i \(0.510623\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.91776e17 1.83411 0.917054 0.398764i \(-0.130561\pi\)
0.917054 + 0.398764i \(0.130561\pi\)
\(444\) 0 0
\(445\) −1.97762e17 −1.20726
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.41123e17 −1.38879 −0.694395 0.719594i \(-0.744328\pi\)
−0.694395 + 0.719594i \(0.744328\pi\)
\(450\) 0 0
\(451\) −5.97311e16 −0.334236
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.30239e16 0.121648
\(456\) 0 0
\(457\) −1.28788e17 −0.661333 −0.330666 0.943748i \(-0.607273\pi\)
−0.330666 + 0.943748i \(0.607273\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.04488e17 −0.507002 −0.253501 0.967335i \(-0.581582\pi\)
−0.253501 + 0.967335i \(0.581582\pi\)
\(462\) 0 0
\(463\) 1.61325e17 0.761071 0.380536 0.924766i \(-0.375740\pi\)
0.380536 + 0.924766i \(0.375740\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.49623e16 −0.200580 −0.100290 0.994958i \(-0.531977\pi\)
−0.100290 + 0.994958i \(0.531977\pi\)
\(468\) 0 0
\(469\) 3.82580e16 0.165996
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.77724e16 −0.0729708
\(474\) 0 0
\(475\) −9.94918e16 −0.397447
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.13574e16 0.232106 0.116053 0.993243i \(-0.462976\pi\)
0.116053 + 0.993243i \(0.462976\pi\)
\(480\) 0 0
\(481\) −9.86550e16 −0.363225
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.64825e17 −0.575046
\(486\) 0 0
\(487\) −4.36624e17 −1.48310 −0.741548 0.670900i \(-0.765908\pi\)
−0.741548 + 0.670900i \(0.765908\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.04800e17 −0.659629 −0.329814 0.944046i \(-0.606986\pi\)
−0.329814 + 0.944046i \(0.606986\pi\)
\(492\) 0 0
\(493\) 3.07191e16 0.0963614
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.46663e17 −0.436519
\(498\) 0 0
\(499\) −2.61990e17 −0.759680 −0.379840 0.925052i \(-0.624021\pi\)
−0.379840 + 0.925052i \(0.624021\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.72135e16 −0.0749191 −0.0374595 0.999298i \(-0.511927\pi\)
−0.0374595 + 0.999298i \(0.511927\pi\)
\(504\) 0 0
\(505\) −4.45474e17 −1.19517
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.79832e17 0.968113 0.484056 0.875037i \(-0.339163\pi\)
0.484056 + 0.875037i \(0.339163\pi\)
\(510\) 0 0
\(511\) −8.42634e16 −0.209365
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.01924e17 −0.476915
\(516\) 0 0
\(517\) −1.10493e17 −0.254475
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4.33395e17 0.949377 0.474688 0.880154i \(-0.342561\pi\)
0.474688 + 0.880154i \(0.342561\pi\)
\(522\) 0 0
\(523\) −5.45127e17 −1.16476 −0.582380 0.812917i \(-0.697878\pi\)
−0.582380 + 0.812917i \(0.697878\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.30887e15 −0.00266150
\(528\) 0 0
\(529\) −4.01777e17 −0.797118
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.98846e17 0.375656
\(534\) 0 0
\(535\) 4.88851e17 0.901316
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.67777e17 −0.294717
\(540\) 0 0
\(541\) −2.81001e17 −0.481865 −0.240933 0.970542i \(-0.577453\pi\)
−0.240933 + 0.970542i \(0.577453\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.10831e17 0.671562
\(546\) 0 0
\(547\) −3.61702e17 −0.577343 −0.288671 0.957428i \(-0.593214\pi\)
−0.288671 + 0.957428i \(0.593214\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.56092e17 −0.237627
\(552\) 0 0
\(553\) −6.01788e16 −0.0894809
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.22966e17 1.16768 0.583839 0.811870i \(-0.301550\pi\)
0.583839 + 0.811870i \(0.301550\pi\)
\(558\) 0 0
\(559\) 5.91648e16 0.0820138
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.50885e17 −1.25841 −0.629207 0.777238i \(-0.716620\pi\)
−0.629207 + 0.777238i \(0.716620\pi\)
\(564\) 0 0
\(565\) −7.97138e17 −1.03090
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.41130e17 0.915513 0.457756 0.889078i \(-0.348653\pi\)
0.457756 + 0.889078i \(0.348653\pi\)
\(570\) 0 0
\(571\) −1.40040e18 −1.69089 −0.845446 0.534061i \(-0.820665\pi\)
−0.845446 + 0.534061i \(0.820665\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.33762e17 0.154344
\(576\) 0 0
\(577\) 8.63725e16 0.0974390 0.0487195 0.998812i \(-0.484486\pi\)
0.0487195 + 0.998812i \(0.484486\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.06476e17 −0.438420
\(582\) 0 0
\(583\) −1.24998e17 −0.131844
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.59248e17 −0.463340 −0.231670 0.972794i \(-0.574419\pi\)
−0.231670 + 0.972794i \(0.574419\pi\)
\(588\) 0 0
\(589\) 6.65072e15 0.00656325
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.28709e17 −0.593737 −0.296869 0.954918i \(-0.595942\pi\)
−0.296869 + 0.954918i \(0.595942\pi\)
\(594\) 0 0
\(595\) 1.59156e17 0.147049
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.14761e17 −0.366880 −0.183440 0.983031i \(-0.558723\pi\)
−0.183440 + 0.983031i \(0.558723\pi\)
\(600\) 0 0
\(601\) 5.50998e17 0.476943 0.238471 0.971150i \(-0.423354\pi\)
0.238471 + 0.971150i \(0.423354\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8.60715e17 −0.713591
\(606\) 0 0
\(607\) 1.05843e17 0.0858883 0.0429442 0.999077i \(-0.486326\pi\)
0.0429442 + 0.999077i \(0.486326\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.67834e17 0.286011
\(612\) 0 0
\(613\) −2.03011e17 −0.154535 −0.0772673 0.997010i \(-0.524619\pi\)
−0.0772673 + 0.997010i \(0.524619\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.91382e17 0.285593 0.142796 0.989752i \(-0.454391\pi\)
0.142796 + 0.989752i \(0.454391\pi\)
\(618\) 0 0
\(619\) −9.67789e17 −0.691499 −0.345749 0.938327i \(-0.612375\pi\)
−0.345749 + 0.938327i \(0.612375\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.37980e17 0.574198
\(624\) 0 0
\(625\) −8.04537e17 −0.539916
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6.81967e17 −0.439071
\(630\) 0 0
\(631\) 2.62249e18 1.65395 0.826977 0.562235i \(-0.190058\pi\)
0.826977 + 0.562235i \(0.190058\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.94524e16 −0.0299336
\(636\) 0 0
\(637\) 5.58533e17 0.331240
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.65719e18 −1.51302 −0.756512 0.653979i \(-0.773098\pi\)
−0.756512 + 0.653979i \(0.773098\pi\)
\(642\) 0 0
\(643\) −3.69318e17 −0.206077 −0.103038 0.994677i \(-0.532856\pi\)
−0.103038 + 0.994677i \(0.532856\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.81215e18 0.971216 0.485608 0.874177i \(-0.338598\pi\)
0.485608 + 0.874177i \(0.338598\pi\)
\(648\) 0 0
\(649\) 4.41442e17 0.231891
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.85288e18 0.935215 0.467607 0.883936i \(-0.345116\pi\)
0.467607 + 0.883936i \(0.345116\pi\)
\(654\) 0 0
\(655\) 2.87953e18 1.42480
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.11072e18 1.00386 0.501932 0.864907i \(-0.332623\pi\)
0.501932 + 0.864907i \(0.332623\pi\)
\(660\) 0 0
\(661\) 2.13919e18 0.997564 0.498782 0.866728i \(-0.333781\pi\)
0.498782 + 0.866728i \(0.333781\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.08715e17 −0.362622
\(666\) 0 0
\(667\) 2.09858e17 0.0922800
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.55446e16 0.0277230
\(672\) 0 0
\(673\) 2.92051e18 1.21160 0.605801 0.795616i \(-0.292853\pi\)
0.605801 + 0.795616i \(0.292853\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4.58911e18 −1.83190 −0.915951 0.401290i \(-0.868562\pi\)
−0.915951 + 0.401290i \(0.868562\pi\)
\(678\) 0 0
\(679\) 6.98417e17 0.273503
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.19249e18 1.20336 0.601678 0.798739i \(-0.294499\pi\)
0.601678 + 0.798739i \(0.294499\pi\)
\(684\) 0 0
\(685\) 8.93697e17 0.330523
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.16123e17 0.148182
\(690\) 0 0
\(691\) −1.92130e18 −0.671411 −0.335706 0.941967i \(-0.608975\pi\)
−0.335706 + 0.941967i \(0.608975\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.27710e17 0.0429857
\(696\) 0 0
\(697\) 1.37455e18 0.454097
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.87273e18 0.914383 0.457192 0.889368i \(-0.348855\pi\)
0.457192 + 0.889368i \(0.348855\pi\)
\(702\) 0 0
\(703\) 3.46526e18 1.08275
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.88761e18 0.568443
\(708\) 0 0
\(709\) −8.72658e17 −0.258014 −0.129007 0.991644i \(-0.541179\pi\)
−0.129007 + 0.991644i \(0.541179\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.94156e15 −0.00254877
\(714\) 0 0
\(715\) −3.90178e17 −0.109213
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.26088e18 −0.610296 −0.305148 0.952305i \(-0.598706\pi\)
−0.305148 + 0.952305i \(0.598706\pi\)
\(720\) 0 0
\(721\) 8.55617e17 0.226830
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.74507e17 0.0702031
\(726\) 0 0
\(727\) 7.74296e18 1.94506 0.972530 0.232776i \(-0.0747808\pi\)
0.972530 + 0.232776i \(0.0747808\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.08986e17 0.0991391
\(732\) 0 0
\(733\) 1.79013e18 0.426293 0.213146 0.977020i \(-0.431629\pi\)
0.213146 + 0.977020i \(0.431629\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.48345e17 −0.149028
\(738\) 0 0
\(739\) −4.22852e18 −0.954991 −0.477495 0.878634i \(-0.658455\pi\)
−0.477495 + 0.878634i \(0.658455\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −7.04422e18 −1.53605 −0.768025 0.640420i \(-0.778760\pi\)
−0.768025 + 0.640420i \(0.778760\pi\)
\(744\) 0 0
\(745\) 2.14088e18 0.458749
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.07142e18 −0.428683
\(750\) 0 0
\(751\) 8.87613e18 1.80536 0.902680 0.430312i \(-0.141596\pi\)
0.902680 + 0.430312i \(0.141596\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4.25080e18 −0.835249
\(756\) 0 0
\(757\) 4.08129e18 0.788268 0.394134 0.919053i \(-0.371045\pi\)
0.394134 + 0.919053i \(0.371045\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.13871e18 1.51899 0.759496 0.650512i \(-0.225446\pi\)
0.759496 + 0.650512i \(0.225446\pi\)
\(762\) 0 0
\(763\) −1.74082e18 −0.319408
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.46957e18 −0.260628
\(768\) 0 0
\(769\) −3.31598e18 −0.578216 −0.289108 0.957296i \(-0.593359\pi\)
−0.289108 + 0.957296i \(0.593359\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −1.30481e17 −0.0219979 −0.0109990 0.999940i \(-0.503501\pi\)
−0.0109990 + 0.999940i \(0.503501\pi\)
\(774\) 0 0
\(775\) −1.16961e16 −0.00193901
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.98449e18 −1.11980
\(780\) 0 0
\(781\) 2.48544e18 0.391897
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.27726e18 −0.652398
\(786\) 0 0
\(787\) −8.54302e18 −1.28167 −0.640834 0.767679i \(-0.721411\pi\)
−0.640834 + 0.767679i \(0.721411\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.37773e18 0.490317
\(792\) 0 0
\(793\) −2.18199e17 −0.0311586
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.33651e19 1.84711 0.923554 0.383468i \(-0.125270\pi\)
0.923554 + 0.383468i \(0.125270\pi\)
\(798\) 0 0
\(799\) 2.54270e18 0.345734
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.42798e18 0.187963
\(804\) 0 0
\(805\) 1.08728e18 0.140821
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 7.28151e18 0.913180 0.456590 0.889677i \(-0.349071\pi\)
0.456590 + 0.889677i \(0.349071\pi\)
\(810\) 0 0
\(811\) −5.91711e18 −0.730254 −0.365127 0.930958i \(-0.618974\pi\)
−0.365127 + 0.930958i \(0.618974\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.07287e19 −1.28239
\(816\) 0 0
\(817\) −2.07817e18 −0.244477
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.29881e18 0.148018 0.0740092 0.997258i \(-0.476421\pi\)
0.0740092 + 0.997258i \(0.476421\pi\)
\(822\) 0 0
\(823\) 1.14772e19 1.28747 0.643735 0.765248i \(-0.277384\pi\)
0.643735 + 0.765248i \(0.277384\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.30445e18 −0.141789 −0.0708945 0.997484i \(-0.522585\pi\)
−0.0708945 + 0.997484i \(0.522585\pi\)
\(828\) 0 0
\(829\) −3.67389e18 −0.393117 −0.196558 0.980492i \(-0.562977\pi\)
−0.196558 + 0.980492i \(0.562977\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.86094e18 0.400406
\(834\) 0 0
\(835\) −1.28359e19 −1.31058
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.41441e19 1.39998 0.699991 0.714151i \(-0.253187\pi\)
0.699991 + 0.714151i \(0.253187\pi\)
\(840\) 0 0
\(841\) −9.82996e18 −0.958027
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −7.28059e18 −0.688015
\(846\) 0 0
\(847\) 3.64712e18 0.339397
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.65887e18 −0.420474
\(852\) 0 0
\(853\) −1.51294e19 −1.34479 −0.672394 0.740194i \(-0.734734\pi\)
−0.672394 + 0.740194i \(0.734734\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.46368e18 −0.212427 −0.106213 0.994343i \(-0.533873\pi\)
−0.106213 + 0.994343i \(0.533873\pi\)
\(858\) 0 0
\(859\) −1.50879e19 −1.28136 −0.640682 0.767806i \(-0.721348\pi\)
−0.640682 + 0.767806i \(0.721348\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.22921e19 1.01288 0.506438 0.862276i \(-0.330962\pi\)
0.506438 + 0.862276i \(0.330962\pi\)
\(864\) 0 0
\(865\) 4.63804e18 0.376469
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.01983e18 0.0803339
\(870\) 0 0
\(871\) 2.15835e18 0.167496
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.57270e18 0.419772
\(876\) 0 0
\(877\) −1.43823e19 −1.06741 −0.533706 0.845670i \(-0.679201\pi\)
−0.533706 + 0.845670i \(0.679201\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.57727e19 −1.13648 −0.568239 0.822863i \(-0.692375\pi\)
−0.568239 + 0.822863i \(0.692375\pi\)
\(882\) 0 0
\(883\) −1.54911e19 −1.09986 −0.549929 0.835211i \(-0.685345\pi\)
−0.549929 + 0.835211i \(0.685345\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.71721e18 −0.532055 −0.266028 0.963965i \(-0.585711\pi\)
−0.266028 + 0.963965i \(0.585711\pi\)
\(888\) 0 0
\(889\) 2.09546e17 0.0142370
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.29202e19 −0.852578
\(894\) 0 0
\(895\) −6.74624e18 −0.438745
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.83499e16 −0.00115930
\(900\) 0 0
\(901\) 2.87651e18 0.179124
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.87148e18 −0.476256
\(906\) 0 0
\(907\) −2.40141e19 −1.43225 −0.716126 0.697971i \(-0.754086\pi\)
−0.716126 + 0.697971i \(0.754086\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.69361e19 1.56123 0.780613 0.625015i \(-0.214907\pi\)
0.780613 + 0.625015i \(0.214907\pi\)
\(912\) 0 0
\(913\) 6.88842e18 0.393604
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.22015e19 −0.677661
\(918\) 0 0
\(919\) 2.85938e19 1.56574 0.782872 0.622183i \(-0.213754\pi\)
0.782872 + 0.622183i \(0.213754\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −8.27409e18 −0.440463
\(924\) 0 0
\(925\) −6.09409e18 −0.319880
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.43292e19 −0.731340 −0.365670 0.930744i \(-0.619160\pi\)
−0.365670 + 0.930744i \(0.619160\pi\)
\(930\) 0 0
\(931\) −1.96185e19 −0.987400
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.69716e18 −0.132017
\(936\) 0 0
\(937\) −2.72707e19 −1.31640 −0.658201 0.752843i \(-0.728682\pi\)
−0.658201 + 0.752843i \(0.728682\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.05988e19 0.497649 0.248824 0.968549i \(-0.419956\pi\)
0.248824 + 0.968549i \(0.419956\pi\)
\(942\) 0 0
\(943\) 9.39030e18 0.434864
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.01781e19 1.35962 0.679810 0.733389i \(-0.262062\pi\)
0.679810 + 0.733389i \(0.262062\pi\)
\(948\) 0 0
\(949\) −4.75379e18 −0.211256
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.26002e19 −0.544845 −0.272422 0.962178i \(-0.587825\pi\)
−0.272422 + 0.962178i \(0.587825\pi\)
\(954\) 0 0
\(955\) −3.01022e19 −1.28403
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3.78688e18 −0.157203
\(960\) 0 0
\(961\) −2.44168e19 −0.999968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.35257e19 −0.937812
\(966\) 0 0
\(967\) 1.79166e19 0.704668 0.352334 0.935874i \(-0.385388\pi\)
0.352334 + 0.935874i \(0.385388\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.93584e17 −0.0227278 −0.0113639 0.999935i \(-0.503617\pi\)
−0.0113639 + 0.999935i \(0.503617\pi\)
\(972\) 0 0
\(973\) −5.41148e17 −0.0204448
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.28901e19 1.57776 0.788882 0.614545i \(-0.210660\pi\)
0.788882 + 0.614545i \(0.210660\pi\)
\(978\) 0 0
\(979\) −1.42010e19 −0.515502
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.50402e19 0.885195 0.442598 0.896720i \(-0.354057\pi\)
0.442598 + 0.896720i \(0.354057\pi\)
\(984\) 0 0
\(985\) 2.23055e19 0.778173
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.79399e18 0.0949401
\(990\) 0 0
\(991\) 2.30912e19 0.774404 0.387202 0.921995i \(-0.373442\pi\)
0.387202 + 0.921995i \(0.373442\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.16263e19 −1.35993
\(996\) 0 0
\(997\) 1.25704e19 0.405349 0.202675 0.979246i \(-0.435037\pi\)
0.202675 + 0.979246i \(0.435037\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.14.a.t.1.3 3
3.2 odd 2 144.14.a.u.1.1 3
4.3 odd 2 72.14.a.g.1.3 3
12.11 even 2 72.14.a.h.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.14.a.g.1.3 3 4.3 odd 2
72.14.a.h.1.1 yes 3 12.11 even 2
144.14.a.t.1.3 3 1.1 even 1 trivial
144.14.a.u.1.1 3 3.2 odd 2