Properties

Label 2-12e2-1.1-c13-0-25
Degree $2$
Conductor $144$
Sign $-1$
Analytic cond. $154.412$
Root an. cond. $12.4262$
Motivic weight $13$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.83e4·5-s − 1.20e5·7-s + 2.03e6·11-s − 6.77e6·13-s − 4.68e7·17-s + 2.37e8·19-s − 3.19e8·23-s − 4.18e8·25-s − 6.56e8·29-s + 2.79e7·31-s − 3.40e9·35-s + 1.45e10·37-s − 2.93e10·41-s − 8.73e9·43-s − 5.43e10·47-s − 8.24e10·49-s − 6.14e10·53-s + 5.76e10·55-s + 2.17e11·59-s + 3.22e10·61-s − 1.91e11·65-s − 3.18e11·67-s + 1.22e12·71-s + 7.02e11·73-s − 2.44e11·77-s + 5.01e11·79-s + 3.38e12·83-s + ⋯
L(s)  = 1  + 0.810·5-s − 0.385·7-s + 0.346·11-s − 0.389·13-s − 0.470·17-s + 1.15·19-s − 0.450·23-s − 0.342·25-s − 0.204·29-s + 0.00565·31-s − 0.312·35-s + 0.933·37-s − 0.965·41-s − 0.210·43-s − 0.735·47-s − 0.851·49-s − 0.380·53-s + 0.280·55-s + 0.669·59-s + 0.0800·61-s − 0.315·65-s − 0.430·67-s + 1.13·71-s + 0.542·73-s − 0.133·77-s + 0.232·79-s + 1.13·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(144\)    =    \(2^{4} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(154.412\)
Root analytic conductor: \(12.4262\)
Motivic weight: \(13\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 144,\ (\ :13/2),\ -1)\)

Particular Values

\(L(7)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 2.83e4T + 1.22e9T^{2} \)
7 \( 1 + 1.20e5T + 9.68e10T^{2} \)
11 \( 1 - 2.03e6T + 3.45e13T^{2} \)
13 \( 1 + 6.77e6T + 3.02e14T^{2} \)
17 \( 1 + 4.68e7T + 9.90e15T^{2} \)
19 \( 1 - 2.37e8T + 4.20e16T^{2} \)
23 \( 1 + 3.19e8T + 5.04e17T^{2} \)
29 \( 1 + 6.56e8T + 1.02e19T^{2} \)
31 \( 1 - 2.79e7T + 2.44e19T^{2} \)
37 \( 1 - 1.45e10T + 2.43e20T^{2} \)
41 \( 1 + 2.93e10T + 9.25e20T^{2} \)
43 \( 1 + 8.73e9T + 1.71e21T^{2} \)
47 \( 1 + 5.43e10T + 5.46e21T^{2} \)
53 \( 1 + 6.14e10T + 2.60e22T^{2} \)
59 \( 1 - 2.17e11T + 1.04e23T^{2} \)
61 \( 1 - 3.22e10T + 1.61e23T^{2} \)
67 \( 1 + 3.18e11T + 5.48e23T^{2} \)
71 \( 1 - 1.22e12T + 1.16e24T^{2} \)
73 \( 1 - 7.02e11T + 1.67e24T^{2} \)
79 \( 1 - 5.01e11T + 4.66e24T^{2} \)
83 \( 1 - 3.38e12T + 8.87e24T^{2} \)
89 \( 1 + 6.98e12T + 2.19e25T^{2} \)
97 \( 1 + 5.81e12T + 6.73e25T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.876695313596523912679744123402, −9.462942123663831972162957424873, −8.135583169701943750355025648623, −6.91842396950592997474636140870, −5.98683452675024230565652839837, −4.95199912564355108430558343970, −3.59554736805315212337257819713, −2.40945065489638487046420854691, −1.34362319930844947134167903687, 0, 1.34362319930844947134167903687, 2.40945065489638487046420854691, 3.59554736805315212337257819713, 4.95199912564355108430558343970, 5.98683452675024230565652839837, 6.91842396950592997474636140870, 8.135583169701943750355025648623, 9.462942123663831972162957424873, 9.876695313596523912679744123402

Graph of the $Z$-function along the critical line