Properties

Label 144.14.a.t
Level $144$
Weight $14$
Character orbit 144.a
Self dual yes
Analytic conductor $154.413$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,14,Mod(1,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 144.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(154.412537691\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 14629x - 625725 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 72)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 16752) q^{5} + (3 \beta_{2} + \beta_1 - 4844) q^{7} + ( - 44 \beta_{2} - 16 \beta_1 + 10816) q^{11} + ( - 268 \beta_{2} - 4 \beta_1 + 4307858) q^{13} + (666 \beta_{2} + 320 \beta_1 + 3303072) q^{17}+ \cdots + (63174192 \beta_{2} + \cdots - 566960283378) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 50256 q^{5} - 14532 q^{7} + 32448 q^{11} + 12923574 q^{13} + 9909216 q^{17} - 356030136 q^{19} + 253392000 q^{23} + 1405874241 q^{25} + 2200998480 q^{29} + 2967736956 q^{31} + 13208644032 q^{35} - 20166914670 q^{37}+ \cdots - 1700880850134 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 14629x - 625725 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 96\nu^{2} + 17760\nu - 936256 ) / 7 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 96\nu^{2} - 6432\nu - 936256 ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 3456 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 185\beta_{2} + 67\beta _1 + 33705216 ) / 3456 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−52.8818
138.386
−85.5039
0 0 0 −63560.1 0 −374836. 0 0 0
1.2 0 0 0 −15022.7 0 480334. 0 0 0
1.3 0 0 0 28326.9 0 −120030. 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.14.a.t 3
3.b odd 2 1 144.14.a.u 3
4.b odd 2 1 72.14.a.g 3
12.b even 2 1 72.14.a.h yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.14.a.g 3 4.b odd 2 1
72.14.a.h yes 3 12.b even 2 1
144.14.a.t 3 1.a even 1 1 trivial
144.14.a.u 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} + 50256T_{5}^{2} - 1271159040T_{5} - 27047793152000 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(144))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + \cdots - 27047793152000 \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots - 21\!\cdots\!32 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 90\!\cdots\!68 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots + 23\!\cdots\!44 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 74\!\cdots\!88 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 20\!\cdots\!16 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 49\!\cdots\!52 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 64\!\cdots\!20 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 43\!\cdots\!20 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 26\!\cdots\!40 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 45\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 32\!\cdots\!32 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 93\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 69\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 85\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 52\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 20\!\cdots\!32 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 63\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 48\!\cdots\!72 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 21\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 25\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 95\!\cdots\!76 \) Copy content Toggle raw display
show more
show less