Properties

Label 144.14.a
Level $144$
Weight $14$
Character orbit 144.a
Rep. character $\chi_{144}(1,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $21$
Sturm bound $336$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 144.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 21 \)
Sturm bound: \(336\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(\Gamma_0(144))\).

Total New Old
Modular forms 324 33 291
Cusp forms 300 32 268
Eisenstein series 24 1 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(+\)\(+\)\(+\)\(6\)
\(+\)\(-\)\(-\)\(10\)
\(-\)\(+\)\(-\)\(7\)
\(-\)\(-\)\(+\)\(9\)
Plus space\(+\)\(15\)
Minus space\(-\)\(17\)

Trace form

\( 32 q + 16902 q^{5} + 170068 q^{7} + 2952684 q^{11} + 8510580 q^{13} + 52444602 q^{17} - 547588252 q^{19} - 678198456 q^{23} + 8336604204 q^{25} - 219214674 q^{29} + 5197237628 q^{31} + 21729468384 q^{35}+ \cdots + 1675561670428 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(\Gamma_0(144))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
144.14.a.a 144.a 1.a $1$ $154.413$ \(\Q\) None 4.14.a.a \(0\) \(0\) \(-56214\) \(-333032\) $-$ $-$ $\mathrm{SU}(2)$ \(q-56214q^{5}-333032q^{7}-6397380q^{11}+\cdots\)
144.14.a.b 144.a 1.a $1$ $154.413$ \(\Q\) None 6.14.a.a \(0\) \(0\) \(-54654\) \(-176336\) $-$ $-$ $\mathrm{SU}(2)$ \(q-54654q^{5}-176336q^{7}+6612420q^{11}+\cdots\)
144.14.a.c 144.a 1.a $1$ $154.413$ \(\Q\) None 18.14.a.b \(0\) \(0\) \(-15936\) \(-98252\) $-$ $+$ $\mathrm{SU}(2)$ \(q-15936q^{5}-98252q^{7}-1630464q^{11}+\cdots\)
144.14.a.d 144.a 1.a $1$ $154.413$ \(\Q\) None 2.14.a.a \(0\) \(0\) \(-3990\) \(433432\) $-$ $-$ $\mathrm{SU}(2)$ \(q-3990q^{5}+433432q^{7}+1619772q^{11}+\cdots\)
144.14.a.e 144.a 1.a $1$ $154.413$ \(\Q\) \(\Q(\sqrt{-3}) \) 36.14.a.b \(0\) \(0\) \(0\) \(-615884\) $-$ $+$ $N(\mathrm{U}(1))$ \(q-615884q^{7}-17048302q^{13}-231547688q^{19}+\cdots\)
144.14.a.f 144.a 1.a $1$ $154.413$ \(\Q\) None 8.14.a.a \(0\) \(0\) \(4330\) \(139992\) $+$ $-$ $\mathrm{SU}(2)$ \(q+4330q^{5}+139992q^{7}-6484324q^{11}+\cdots\)
144.14.a.g 144.a 1.a $1$ $154.413$ \(\Q\) None 12.14.a.a \(0\) \(0\) \(14850\) \(62896\) $-$ $-$ $\mathrm{SU}(2)$ \(q+14850q^{5}+62896q^{7}+5104836q^{11}+\cdots\)
144.14.a.h 144.a 1.a $1$ $154.413$ \(\Q\) None 18.14.a.b \(0\) \(0\) \(15936\) \(-98252\) $-$ $+$ $\mathrm{SU}(2)$ \(q+15936q^{5}-98252q^{7}+1630464q^{11}+\cdots\)
144.14.a.i 144.a 1.a $1$ $154.413$ \(\Q\) None 24.14.a.a \(0\) \(0\) \(22490\) \(-181272\) $+$ $-$ $\mathrm{SU}(2)$ \(q+22490q^{5}-181272q^{7}-9261428q^{11}+\cdots\)
144.14.a.j 144.a 1.a $1$ $154.413$ \(\Q\) None 12.14.a.b \(0\) \(0\) \(24570\) \(173704\) $-$ $-$ $\mathrm{SU}(2)$ \(q+24570q^{5}+173704q^{7}-970164q^{11}+\cdots\)
144.14.a.k 144.a 1.a $1$ $154.413$ \(\Q\) None 3.14.a.a \(0\) \(0\) \(30210\) \(-235088\) $-$ $-$ $\mathrm{SU}(2)$ \(q+30210q^{5}-235088q^{7}-11182908q^{11}+\cdots\)
144.14.a.l 144.a 1.a $1$ $154.413$ \(\Q\) None 2.14.a.b \(0\) \(0\) \(57450\) \(-64232\) $-$ $-$ $\mathrm{SU}(2)$ \(q+57450q^{5}-64232q^{7}+2464572q^{11}+\cdots\)
144.14.a.m 144.a 1.a $2$ $154.413$ \(\Q(\sqrt{1969}) \) None 3.14.a.b \(0\) \(0\) \(-40716\) \(21008\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-20358-\beta )q^{5}+(10504+3^{3}\beta )q^{7}+\cdots\)
144.14.a.n 144.a 1.a $2$ $154.413$ \(\Q(\sqrt{781}) \) None 8.14.a.b \(0\) \(0\) \(-18476\) \(-110928\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-9238-4\beta )q^{5}+(-55464+74\beta )q^{7}+\cdots\)
144.14.a.o 144.a 1.a $2$ $154.413$ \(\Q(\sqrt{62869}) \) None 24.14.a.d \(0\) \(0\) \(-5068\) \(-104880\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-2534-\beta )q^{5}+(-52440-5\beta )q^{7}+\cdots\)
144.14.a.p 144.a 1.a $2$ $154.413$ \(\Q(\sqrt{55}) \) None 9.14.a.b \(0\) \(0\) \(0\) \(266600\) $-$ $+$ $\mathrm{SU}(2)$ \(q+65\beta q^{5}+133300q^{7}+11300\beta q^{11}+\cdots\)
144.14.a.q 144.a 1.a $2$ $154.413$ \(\Q(\sqrt{3535}) \) None 36.14.a.e \(0\) \(0\) \(0\) \(862568\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{5}+431284q^{7}-220\beta q^{11}+\cdots\)
144.14.a.r 144.a 1.a $2$ $154.413$ \(\Q(\sqrt{1621}) \) None 24.14.a.c \(0\) \(0\) \(11204\) \(-275808\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(5602-\beta )q^{5}+(-137904+13\beta )q^{7}+\cdots\)
144.14.a.s 144.a 1.a $2$ $154.413$ \(\Q(\sqrt{406}) \) None 24.14.a.b \(0\) \(0\) \(30916\) \(532896\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(15458+7\beta )q^{5}+(266448+37\beta )q^{7}+\cdots\)
144.14.a.t 144.a 1.a $3$ $154.413$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 72.14.a.g \(0\) \(0\) \(-50256\) \(-14532\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-16752+\beta _{2})q^{5}+(-4844+\beta _{1}+\cdots)q^{7}+\cdots\)
144.14.a.u 144.a 1.a $3$ $154.413$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 72.14.a.g \(0\) \(0\) \(50256\) \(-14532\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(16752-\beta _{2})q^{5}+(-4844+\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{14}^{\mathrm{old}}(\Gamma_0(144))\) into lower level spaces

\( S_{14}^{\mathrm{old}}(\Gamma_0(144)) \simeq \) \(S_{14}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 2}\)