Properties

Label 1425.2.c.p.799.1
Level $1425$
Weight $2$
Character 1425.799
Analytic conductor $11.379$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1425,2,Mod(799,1425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1425.799"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-12,0,0,0,0,-6,0,-6,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3786822880\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.24681024.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 12x^{4} + 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.1
Root \(-2.66908i\) of defining polynomial
Character \(\chi\) \(=\) 1425.799
Dual form 1425.2.c.p.799.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.66908i q^{2} -1.00000i q^{3} -5.12398 q^{4} -2.66908 q^{6} +0.454904i q^{7} +8.33816i q^{8} -1.00000 q^{9} -1.45490 q^{11} +5.12398i q^{12} +3.33816i q^{13} +1.21417 q^{14} +12.0072 q^{16} +2.66908i q^{18} -1.00000 q^{19} +0.454904 q^{21} +3.88325i q^{22} +6.79306i q^{23} +8.33816 q^{24} +8.90981 q^{26} +1.00000i q^{27} -2.33092i q^{28} -3.00000 q^{29} +8.79306 q^{31} -15.3719i q^{32} +1.45490i q^{33} +5.12398 q^{36} +10.2480i q^{37} +2.66908i q^{38} +3.33816 q^{39} +3.97345 q^{41} -1.21417i q^{42} -8.00000i q^{43} +7.45490 q^{44} +18.1312 q^{46} +2.42835i q^{47} -12.0072i q^{48} +6.79306 q^{49} -17.1047i q^{52} -13.6763i q^{53} +2.66908 q^{54} -3.79306 q^{56} +1.00000i q^{57} +8.00724i q^{58} -7.54510 q^{59} -3.90981 q^{61} -23.4694i q^{62} -0.454904i q^{63} -17.0145 q^{64} +3.88325 q^{66} +14.1312i q^{67} +6.79306 q^{69} -9.13122 q^{71} -8.33816i q^{72} +11.6763i q^{73} +27.3526 q^{74} +5.12398 q^{76} -0.661842i q^{77} -8.90981i q^{78} -8.97345 q^{79} +1.00000 q^{81} -10.6054i q^{82} +4.54510i q^{83} -2.33092 q^{84} -21.3526 q^{86} +3.00000i q^{87} -12.1312i q^{88} +0.0901918 q^{89} -1.51854 q^{91} -34.8075i q^{92} -8.79306i q^{93} +6.48146 q^{94} -15.3719 q^{96} +12.0145i q^{97} -18.1312i q^{98} +1.45490 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{4} - 6 q^{9} - 6 q^{11} - 6 q^{14} + 24 q^{16} - 6 q^{19} + 18 q^{24} + 48 q^{26} - 18 q^{29} + 18 q^{31} + 12 q^{36} - 12 q^{39} + 42 q^{44} + 42 q^{46} + 6 q^{49} + 12 q^{56} - 48 q^{59} - 18 q^{61}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1425\mathbb{Z}\right)^\times\).

\(n\) \(476\) \(1027\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.66908i − 1.88732i −0.330911 0.943662i \(-0.607356\pi\)
0.330911 0.943662i \(-0.392644\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) −5.12398 −2.56199
\(5\) 0 0
\(6\) −2.66908 −1.08965
\(7\) 0.454904i 0.171938i 0.996298 + 0.0859688i \(0.0273985\pi\)
−0.996298 + 0.0859688i \(0.972601\pi\)
\(8\) 8.33816i 2.94798i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.45490 −0.438670 −0.219335 0.975650i \(-0.570389\pi\)
−0.219335 + 0.975650i \(0.570389\pi\)
\(12\) 5.12398i 1.47917i
\(13\) 3.33816i 0.925838i 0.886400 + 0.462919i \(0.153198\pi\)
−0.886400 + 0.462919i \(0.846802\pi\)
\(14\) 1.21417 0.324502
\(15\) 0 0
\(16\) 12.0072 3.00181
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 2.66908i 0.629108i
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0.454904 0.0992682
\(22\) 3.88325i 0.827913i
\(23\) 6.79306i 1.41645i 0.705986 + 0.708226i \(0.250504\pi\)
−0.705986 + 0.708226i \(0.749496\pi\)
\(24\) 8.33816 1.70202
\(25\) 0 0
\(26\) 8.90981 1.74736
\(27\) 1.00000i 0.192450i
\(28\) − 2.33092i − 0.440503i
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) 8.79306 1.57928 0.789640 0.613570i \(-0.210267\pi\)
0.789640 + 0.613570i \(0.210267\pi\)
\(32\) − 15.3719i − 2.71740i
\(33\) 1.45490i 0.253266i
\(34\) 0 0
\(35\) 0 0
\(36\) 5.12398 0.853997
\(37\) 10.2480i 1.68476i 0.538888 + 0.842378i \(0.318845\pi\)
−0.538888 + 0.842378i \(0.681155\pi\)
\(38\) 2.66908i 0.432982i
\(39\) 3.33816 0.534533
\(40\) 0 0
\(41\) 3.97345 0.620548 0.310274 0.950647i \(-0.399579\pi\)
0.310274 + 0.950647i \(0.399579\pi\)
\(42\) − 1.21417i − 0.187351i
\(43\) − 8.00000i − 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) 7.45490 1.12387
\(45\) 0 0
\(46\) 18.1312 2.67330
\(47\) 2.42835i 0.354211i 0.984192 + 0.177106i \(0.0566734\pi\)
−0.984192 + 0.177106i \(0.943327\pi\)
\(48\) − 12.0072i − 1.73310i
\(49\) 6.79306 0.970437
\(50\) 0 0
\(51\) 0 0
\(52\) − 17.1047i − 2.37199i
\(53\) − 13.6763i − 1.87859i −0.343115 0.939293i \(-0.611482\pi\)
0.343115 0.939293i \(-0.388518\pi\)
\(54\) 2.66908 0.363216
\(55\) 0 0
\(56\) −3.79306 −0.506869
\(57\) 1.00000i 0.132453i
\(58\) 8.00724i 1.05140i
\(59\) −7.54510 −0.982288 −0.491144 0.871078i \(-0.663421\pi\)
−0.491144 + 0.871078i \(0.663421\pi\)
\(60\) 0 0
\(61\) −3.90981 −0.500600 −0.250300 0.968168i \(-0.580529\pi\)
−0.250300 + 0.968168i \(0.580529\pi\)
\(62\) − 23.4694i − 2.98061i
\(63\) − 0.454904i − 0.0573125i
\(64\) −17.0145 −2.12681
\(65\) 0 0
\(66\) 3.88325 0.477996
\(67\) 14.1312i 1.72640i 0.504859 + 0.863202i \(0.331544\pi\)
−0.504859 + 0.863202i \(0.668456\pi\)
\(68\) 0 0
\(69\) 6.79306 0.817789
\(70\) 0 0
\(71\) −9.13122 −1.08368 −0.541838 0.840483i \(-0.682271\pi\)
−0.541838 + 0.840483i \(0.682271\pi\)
\(72\) − 8.33816i − 0.982661i
\(73\) 11.6763i 1.36661i 0.730133 + 0.683305i \(0.239458\pi\)
−0.730133 + 0.683305i \(0.760542\pi\)
\(74\) 27.3526 3.17968
\(75\) 0 0
\(76\) 5.12398 0.587761
\(77\) − 0.661842i − 0.0754239i
\(78\) − 8.90981i − 1.00884i
\(79\) −8.97345 −1.00959 −0.504796 0.863239i \(-0.668432\pi\)
−0.504796 + 0.863239i \(0.668432\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 10.6054i − 1.17118i
\(83\) 4.54510i 0.498889i 0.968389 + 0.249445i \(0.0802480\pi\)
−0.968389 + 0.249445i \(0.919752\pi\)
\(84\) −2.33092 −0.254324
\(85\) 0 0
\(86\) −21.3526 −2.30251
\(87\) 3.00000i 0.321634i
\(88\) − 12.1312i − 1.29319i
\(89\) 0.0901918 0.00956031 0.00478016 0.999989i \(-0.498478\pi\)
0.00478016 + 0.999989i \(0.498478\pi\)
\(90\) 0 0
\(91\) −1.51854 −0.159186
\(92\) − 34.8075i − 3.62894i
\(93\) − 8.79306i − 0.911798i
\(94\) 6.48146 0.668511
\(95\) 0 0
\(96\) −15.3719 −1.56889
\(97\) 12.0145i 1.21989i 0.792446 + 0.609943i \(0.208807\pi\)
−0.792446 + 0.609943i \(0.791193\pi\)
\(98\) − 18.1312i − 1.83153i
\(99\) 1.45490 0.146223
\(100\) 0 0
\(101\) 5.51854 0.549115 0.274558 0.961571i \(-0.411469\pi\)
0.274558 + 0.961571i \(0.411469\pi\)
\(102\) 0 0
\(103\) 2.54510i 0.250776i 0.992108 + 0.125388i \(0.0400175\pi\)
−0.992108 + 0.125388i \(0.959982\pi\)
\(104\) −27.8341 −2.72936
\(105\) 0 0
\(106\) −36.5032 −3.54550
\(107\) − 4.63529i − 0.448110i −0.974576 0.224055i \(-0.928070\pi\)
0.974576 0.224055i \(-0.0719296\pi\)
\(108\) − 5.12398i − 0.493056i
\(109\) 6.24797 0.598447 0.299223 0.954183i \(-0.403272\pi\)
0.299223 + 0.954183i \(0.403272\pi\)
\(110\) 0 0
\(111\) 10.2480 0.972694
\(112\) 5.46214i 0.516124i
\(113\) 5.20694i 0.489827i 0.969545 + 0.244914i \(0.0787596\pi\)
−0.969545 + 0.244914i \(0.921240\pi\)
\(114\) 2.66908 0.249982
\(115\) 0 0
\(116\) 15.3719 1.42725
\(117\) − 3.33816i − 0.308613i
\(118\) 20.1385i 1.85390i
\(119\) 0 0
\(120\) 0 0
\(121\) −8.88325 −0.807569
\(122\) 10.4356i 0.944794i
\(123\) − 3.97345i − 0.358274i
\(124\) −45.0555 −4.04610
\(125\) 0 0
\(126\) −1.21417 −0.108167
\(127\) − 10.6127i − 0.941723i −0.882207 0.470861i \(-0.843943\pi\)
0.882207 0.470861i \(-0.156057\pi\)
\(128\) 14.6691i 1.29658i
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) 21.7029 1.89619 0.948094 0.317989i \(-0.103008\pi\)
0.948094 + 0.317989i \(0.103008\pi\)
\(132\) − 7.45490i − 0.648866i
\(133\) − 0.454904i − 0.0394452i
\(134\) 37.7173 3.25828
\(135\) 0 0
\(136\) 0 0
\(137\) 22.3155i 1.90655i 0.302110 + 0.953273i \(0.402309\pi\)
−0.302110 + 0.953273i \(0.597691\pi\)
\(138\) − 18.1312i − 1.54343i
\(139\) 10.4018 0.882269 0.441134 0.897441i \(-0.354576\pi\)
0.441134 + 0.897441i \(0.354576\pi\)
\(140\) 0 0
\(141\) 2.42835 0.204504
\(142\) 24.3719i 2.04525i
\(143\) − 4.85670i − 0.406138i
\(144\) −12.0072 −1.00060
\(145\) 0 0
\(146\) 31.1650 2.57923
\(147\) − 6.79306i − 0.560282i
\(148\) − 52.5104i − 4.31633i
\(149\) −5.15777 −0.422541 −0.211271 0.977428i \(-0.567760\pi\)
−0.211271 + 0.977428i \(0.567760\pi\)
\(150\) 0 0
\(151\) −8.49593 −0.691389 −0.345695 0.938347i \(-0.612357\pi\)
−0.345695 + 0.938347i \(0.612357\pi\)
\(152\) − 8.33816i − 0.676314i
\(153\) 0 0
\(154\) −1.76651 −0.142349
\(155\) 0 0
\(156\) −17.1047 −1.36947
\(157\) 22.6498i 1.80765i 0.427905 + 0.903824i \(0.359252\pi\)
−0.427905 + 0.903824i \(0.640748\pi\)
\(158\) 23.9508i 1.90543i
\(159\) −13.6763 −1.08460
\(160\) 0 0
\(161\) −3.09019 −0.243541
\(162\) − 2.66908i − 0.209703i
\(163\) − 3.72548i − 0.291802i −0.989299 0.145901i \(-0.953392\pi\)
0.989299 0.145901i \(-0.0466081\pi\)
\(164\) −20.3599 −1.58984
\(165\) 0 0
\(166\) 12.1312 0.941565
\(167\) 12.2214i 0.945721i 0.881137 + 0.472861i \(0.156779\pi\)
−0.881137 + 0.472861i \(0.843221\pi\)
\(168\) 3.79306i 0.292641i
\(169\) 1.85670 0.142823
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 40.9919i 3.12560i
\(173\) − 24.1722i − 1.83778i −0.394511 0.918891i \(-0.629086\pi\)
0.394511 0.918891i \(-0.370914\pi\)
\(174\) 8.00724 0.607027
\(175\) 0 0
\(176\) −17.4694 −1.31680
\(177\) 7.54510i 0.567124i
\(178\) − 0.240729i − 0.0180434i
\(179\) 6.22141 0.465010 0.232505 0.972595i \(-0.425308\pi\)
0.232505 + 0.972595i \(0.425308\pi\)
\(180\) 0 0
\(181\) −20.4959 −1.52345 −0.761725 0.647900i \(-0.775647\pi\)
−0.761725 + 0.647900i \(0.775647\pi\)
\(182\) 4.05311i 0.300436i
\(183\) 3.90981i 0.289021i
\(184\) −56.6416 −4.17568
\(185\) 0 0
\(186\) −23.4694 −1.72086
\(187\) 0 0
\(188\) − 12.4428i − 0.907486i
\(189\) −0.454904 −0.0330894
\(190\) 0 0
\(191\) 0.793062 0.0573840 0.0286920 0.999588i \(-0.490866\pi\)
0.0286920 + 0.999588i \(0.490866\pi\)
\(192\) 17.0145i 1.22791i
\(193\) 15.8196i 1.13872i 0.822088 + 0.569360i \(0.192809\pi\)
−0.822088 + 0.569360i \(0.807191\pi\)
\(194\) 32.0676 2.30232
\(195\) 0 0
\(196\) −34.8075 −2.48625
\(197\) 3.75203i 0.267321i 0.991027 + 0.133661i \(0.0426732\pi\)
−0.991027 + 0.133661i \(0.957327\pi\)
\(198\) − 3.88325i − 0.275971i
\(199\) −6.45490 −0.457576 −0.228788 0.973476i \(-0.573476\pi\)
−0.228788 + 0.973476i \(0.573476\pi\)
\(200\) 0 0
\(201\) 14.1312 0.996739
\(202\) − 14.7294i − 1.03636i
\(203\) − 1.36471i − 0.0957840i
\(204\) 0 0
\(205\) 0 0
\(206\) 6.79306 0.473295
\(207\) − 6.79306i − 0.472150i
\(208\) 40.0821i 2.77919i
\(209\) 1.45490 0.100638
\(210\) 0 0
\(211\) 23.9653 1.64984 0.824920 0.565249i \(-0.191220\pi\)
0.824920 + 0.565249i \(0.191220\pi\)
\(212\) 70.0772i 4.81292i
\(213\) 9.13122i 0.625661i
\(214\) −12.3719 −0.845729
\(215\) 0 0
\(216\) −8.33816 −0.567340
\(217\) 4.00000i 0.271538i
\(218\) − 16.6763i − 1.12946i
\(219\) 11.6763 0.789012
\(220\) 0 0
\(221\) 0 0
\(222\) − 27.3526i − 1.83579i
\(223\) 3.20694i 0.214752i 0.994218 + 0.107376i \(0.0342449\pi\)
−0.994218 + 0.107376i \(0.965755\pi\)
\(224\) 6.99276 0.467224
\(225\) 0 0
\(226\) 13.8977 0.924463
\(227\) − 9.13122i − 0.606060i −0.952981 0.303030i \(-0.902002\pi\)
0.952981 0.303030i \(-0.0979983\pi\)
\(228\) − 5.12398i − 0.339344i
\(229\) −16.7400 −1.10621 −0.553104 0.833112i \(-0.686557\pi\)
−0.553104 + 0.833112i \(0.686557\pi\)
\(230\) 0 0
\(231\) −0.661842 −0.0435460
\(232\) − 25.0145i − 1.64228i
\(233\) 9.57165i 0.627060i 0.949578 + 0.313530i \(0.101512\pi\)
−0.949578 + 0.313530i \(0.898488\pi\)
\(234\) −8.90981 −0.582452
\(235\) 0 0
\(236\) 38.6609 2.51661
\(237\) 8.97345i 0.582888i
\(238\) 0 0
\(239\) −17.5185 −1.13318 −0.566590 0.824000i \(-0.691738\pi\)
−0.566590 + 0.824000i \(0.691738\pi\)
\(240\) 0 0
\(241\) 16.9098 1.08926 0.544628 0.838678i \(-0.316671\pi\)
0.544628 + 0.838678i \(0.316671\pi\)
\(242\) 23.7101i 1.52414i
\(243\) − 1.00000i − 0.0641500i
\(244\) 20.0338 1.28253
\(245\) 0 0
\(246\) −10.6054 −0.676178
\(247\) − 3.33816i − 0.212402i
\(248\) 73.3179i 4.65569i
\(249\) 4.54510 0.288034
\(250\) 0 0
\(251\) −11.6392 −0.734662 −0.367331 0.930090i \(-0.619728\pi\)
−0.367331 + 0.930090i \(0.619728\pi\)
\(252\) 2.33092i 0.146834i
\(253\) − 9.88325i − 0.621355i
\(254\) −28.3261 −1.77734
\(255\) 0 0
\(256\) 5.12398 0.320249
\(257\) − 4.76651i − 0.297327i −0.988888 0.148663i \(-0.952503\pi\)
0.988888 0.148663i \(-0.0474971\pi\)
\(258\) 21.3526i 1.32936i
\(259\) −4.66184 −0.289673
\(260\) 0 0
\(261\) 3.00000 0.185695
\(262\) − 57.9267i − 3.57872i
\(263\) − 14.8606i − 0.916347i −0.888863 0.458173i \(-0.848504\pi\)
0.888863 0.458173i \(-0.151496\pi\)
\(264\) −12.1312 −0.746625
\(265\) 0 0
\(266\) −1.21417 −0.0744458
\(267\) − 0.0901918i − 0.00551965i
\(268\) − 72.4081i − 4.42303i
\(269\) 21.5330 1.31289 0.656446 0.754373i \(-0.272059\pi\)
0.656446 + 0.754373i \(0.272059\pi\)
\(270\) 0 0
\(271\) −1.13122 −0.0687167 −0.0343584 0.999410i \(-0.510939\pi\)
−0.0343584 + 0.999410i \(0.510939\pi\)
\(272\) 0 0
\(273\) 1.51854i 0.0919063i
\(274\) 59.5620 3.59827
\(275\) 0 0
\(276\) −34.8075 −2.09517
\(277\) − 13.2624i − 0.796863i −0.917198 0.398431i \(-0.869555\pi\)
0.917198 0.398431i \(-0.130445\pi\)
\(278\) − 27.7632i − 1.66513i
\(279\) −8.79306 −0.526427
\(280\) 0 0
\(281\) 14.1988 0.847030 0.423515 0.905889i \(-0.360796\pi\)
0.423515 + 0.905889i \(0.360796\pi\)
\(282\) − 6.48146i − 0.385965i
\(283\) 19.5330i 1.16112i 0.814218 + 0.580559i \(0.197166\pi\)
−0.814218 + 0.580559i \(0.802834\pi\)
\(284\) 46.7882 2.77637
\(285\) 0 0
\(286\) −12.9629 −0.766513
\(287\) 1.80754i 0.106696i
\(288\) 15.3719i 0.905801i
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 12.0145 0.704301
\(292\) − 59.8292i − 3.50124i
\(293\) 24.9734i 1.45896i 0.684000 + 0.729482i \(0.260239\pi\)
−0.684000 + 0.729482i \(0.739761\pi\)
\(294\) −18.1312 −1.05743
\(295\) 0 0
\(296\) −85.4492 −4.96663
\(297\) − 1.45490i − 0.0844221i
\(298\) 13.7665i 0.797472i
\(299\) −22.6763 −1.31141
\(300\) 0 0
\(301\) 3.63923 0.209762
\(302\) 22.6763i 1.30488i
\(303\) − 5.51854i − 0.317032i
\(304\) −12.0072 −0.688662
\(305\) 0 0
\(306\) 0 0
\(307\) 11.4018i 0.650735i 0.945588 + 0.325367i \(0.105488\pi\)
−0.945588 + 0.325367i \(0.894512\pi\)
\(308\) 3.39127i 0.193235i
\(309\) 2.54510 0.144785
\(310\) 0 0
\(311\) 1.32368 0.0750592 0.0375296 0.999296i \(-0.488051\pi\)
0.0375296 + 0.999296i \(0.488051\pi\)
\(312\) 27.8341i 1.57580i
\(313\) − 20.6127i − 1.16510i −0.812796 0.582549i \(-0.802056\pi\)
0.812796 0.582549i \(-0.197944\pi\)
\(314\) 60.4540 3.41162
\(315\) 0 0
\(316\) 45.9798 2.58657
\(317\) − 18.1722i − 1.02066i −0.859980 0.510328i \(-0.829524\pi\)
0.859980 0.510328i \(-0.170476\pi\)
\(318\) 36.5032i 2.04700i
\(319\) 4.36471 0.244377
\(320\) 0 0
\(321\) −4.63529 −0.258717
\(322\) 8.24797i 0.459641i
\(323\) 0 0
\(324\) −5.12398 −0.284666
\(325\) 0 0
\(326\) −9.94360 −0.550725
\(327\) − 6.24797i − 0.345513i
\(328\) 33.1312i 1.82937i
\(329\) −1.10467 −0.0609022
\(330\) 0 0
\(331\) −19.5225 −1.07305 −0.536526 0.843883i \(-0.680264\pi\)
−0.536526 + 0.843883i \(0.680264\pi\)
\(332\) − 23.2890i − 1.27815i
\(333\) − 10.2480i − 0.561585i
\(334\) 32.6199 1.78488
\(335\) 0 0
\(336\) 5.46214 0.297984
\(337\) 0.413875i 0.0225452i 0.999936 + 0.0112726i \(0.00358826\pi\)
−0.999936 + 0.0112726i \(0.996412\pi\)
\(338\) − 4.95568i − 0.269553i
\(339\) 5.20694 0.282802
\(340\) 0 0
\(341\) −12.7931 −0.692783
\(342\) − 2.66908i − 0.144327i
\(343\) 6.27452i 0.338792i
\(344\) 66.7053 3.59651
\(345\) 0 0
\(346\) −64.5176 −3.46849
\(347\) − 30.9243i − 1.66010i −0.557687 0.830051i \(-0.688311\pi\)
0.557687 0.830051i \(-0.311689\pi\)
\(348\) − 15.3719i − 0.824023i
\(349\) 14.7665 0.790433 0.395217 0.918588i \(-0.370670\pi\)
0.395217 + 0.918588i \(0.370670\pi\)
\(350\) 0 0
\(351\) −3.33816 −0.178178
\(352\) 22.3647i 1.19204i
\(353\) 27.5330i 1.46543i 0.680533 + 0.732717i \(0.261748\pi\)
−0.680533 + 0.732717i \(0.738252\pi\)
\(354\) 20.1385 1.07035
\(355\) 0 0
\(356\) −0.462141 −0.0244934
\(357\) 0 0
\(358\) − 16.6054i − 0.877625i
\(359\) 3.83409 0.202356 0.101178 0.994868i \(-0.467739\pi\)
0.101178 + 0.994868i \(0.467739\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 54.7053i 2.87524i
\(363\) 8.88325i 0.466250i
\(364\) 7.78098 0.407834
\(365\) 0 0
\(366\) 10.4356 0.545477
\(367\) 21.2254i 1.10795i 0.832532 + 0.553977i \(0.186891\pi\)
−0.832532 + 0.553977i \(0.813109\pi\)
\(368\) 81.5659i 4.25192i
\(369\) −3.97345 −0.206849
\(370\) 0 0
\(371\) 6.22141 0.323000
\(372\) 45.0555i 2.33602i
\(373\) 22.2624i 1.15271i 0.817201 + 0.576353i \(0.195525\pi\)
−0.817201 + 0.576353i \(0.804475\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −20.2480 −1.04421
\(377\) − 10.0145i − 0.515772i
\(378\) 1.21417i 0.0624504i
\(379\) 3.33816 0.171470 0.0857348 0.996318i \(-0.472676\pi\)
0.0857348 + 0.996318i \(0.472676\pi\)
\(380\) 0 0
\(381\) −10.6127 −0.543704
\(382\) − 2.11675i − 0.108302i
\(383\) − 34.5370i − 1.76476i −0.470541 0.882378i \(-0.655941\pi\)
0.470541 0.882378i \(-0.344059\pi\)
\(384\) 14.6691 0.748578
\(385\) 0 0
\(386\) 42.2238 2.14914
\(387\) 8.00000i 0.406663i
\(388\) − 61.5620i − 3.12534i
\(389\) −19.1047 −0.968645 −0.484323 0.874890i \(-0.660934\pi\)
−0.484323 + 0.874890i \(0.660934\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 56.6416i 2.86083i
\(393\) − 21.7029i − 1.09476i
\(394\) 10.0145 0.504522
\(395\) 0 0
\(396\) −7.45490 −0.374623
\(397\) 13.8301i 0.694115i 0.937844 + 0.347058i \(0.112819\pi\)
−0.937844 + 0.347058i \(0.887181\pi\)
\(398\) 17.2286i 0.863594i
\(399\) −0.454904 −0.0227737
\(400\) 0 0
\(401\) 6.79306 0.339229 0.169615 0.985510i \(-0.445748\pi\)
0.169615 + 0.985510i \(0.445748\pi\)
\(402\) − 37.7173i − 1.88117i
\(403\) 29.3526i 1.46216i
\(404\) −28.2769 −1.40683
\(405\) 0 0
\(406\) −3.64252 −0.180775
\(407\) − 14.9098i − 0.739052i
\(408\) 0 0
\(409\) 12.5104 0.618600 0.309300 0.950965i \(-0.399905\pi\)
0.309300 + 0.950965i \(0.399905\pi\)
\(410\) 0 0
\(411\) 22.3155 1.10074
\(412\) − 13.0410i − 0.642485i
\(413\) − 3.43229i − 0.168892i
\(414\) −18.1312 −0.891101
\(415\) 0 0
\(416\) 51.3140 2.51588
\(417\) − 10.4018i − 0.509378i
\(418\) − 3.88325i − 0.189936i
\(419\) 2.06758 0.101008 0.0505040 0.998724i \(-0.483917\pi\)
0.0505040 + 0.998724i \(0.483917\pi\)
\(420\) 0 0
\(421\) −3.51854 −0.171483 −0.0857416 0.996317i \(-0.527326\pi\)
−0.0857416 + 0.996317i \(0.527326\pi\)
\(422\) − 63.9653i − 3.11378i
\(423\) − 2.42835i − 0.118070i
\(424\) 114.035 5.53804
\(425\) 0 0
\(426\) 24.3719 1.18082
\(427\) − 1.77859i − 0.0860719i
\(428\) 23.7511i 1.14805i
\(429\) −4.85670 −0.234484
\(430\) 0 0
\(431\) 31.4468 1.51474 0.757369 0.652987i \(-0.226485\pi\)
0.757369 + 0.652987i \(0.226485\pi\)
\(432\) 12.0072i 0.577698i
\(433\) 20.9774i 1.00811i 0.863672 + 0.504055i \(0.168159\pi\)
−0.863672 + 0.504055i \(0.831841\pi\)
\(434\) 10.6763 0.512480
\(435\) 0 0
\(436\) −32.0145 −1.53322
\(437\) − 6.79306i − 0.324956i
\(438\) − 31.1650i − 1.48912i
\(439\) −3.75598 −0.179263 −0.0896315 0.995975i \(-0.528569\pi\)
−0.0896315 + 0.995975i \(0.528569\pi\)
\(440\) 0 0
\(441\) −6.79306 −0.323479
\(442\) 0 0
\(443\) 20.0184i 0.951104i 0.879688 + 0.475552i \(0.157752\pi\)
−0.879688 + 0.475552i \(0.842248\pi\)
\(444\) −52.5104 −2.49203
\(445\) 0 0
\(446\) 8.55957 0.405307
\(447\) 5.15777i 0.243954i
\(448\) − 7.73995i − 0.365678i
\(449\) −22.4057 −1.05739 −0.528696 0.848811i \(-0.677319\pi\)
−0.528696 + 0.848811i \(0.677319\pi\)
\(450\) 0 0
\(451\) −5.78098 −0.272216
\(452\) − 26.6803i − 1.25493i
\(453\) 8.49593i 0.399174i
\(454\) −24.3719 −1.14383
\(455\) 0 0
\(456\) −8.33816 −0.390470
\(457\) 34.2890i 1.60397i 0.597343 + 0.801986i \(0.296223\pi\)
−0.597343 + 0.801986i \(0.703777\pi\)
\(458\) 44.6803i 2.08777i
\(459\) 0 0
\(460\) 0 0
\(461\) 14.5104 0.675817 0.337909 0.941179i \(-0.390281\pi\)
0.337909 + 0.941179i \(0.390281\pi\)
\(462\) 1.76651i 0.0821854i
\(463\) − 33.8486i − 1.57308i −0.617542 0.786538i \(-0.711871\pi\)
0.617542 0.786538i \(-0.288129\pi\)
\(464\) −36.0217 −1.67227
\(465\) 0 0
\(466\) 25.5475 1.18346
\(467\) − 9.22141i − 0.426716i −0.976974 0.213358i \(-0.931560\pi\)
0.976974 0.213358i \(-0.0684401\pi\)
\(468\) 17.1047i 0.790663i
\(469\) −6.42835 −0.296834
\(470\) 0 0
\(471\) 22.6498 1.04365
\(472\) − 62.9122i − 2.89577i
\(473\) 11.6392i 0.535172i
\(474\) 23.9508 1.10010
\(475\) 0 0
\(476\) 0 0
\(477\) 13.6763i 0.626196i
\(478\) 46.7584i 2.13868i
\(479\) −27.3035 −1.24753 −0.623764 0.781613i \(-0.714397\pi\)
−0.623764 + 0.781613i \(0.714397\pi\)
\(480\) 0 0
\(481\) −34.2093 −1.55981
\(482\) − 45.1336i − 2.05578i
\(483\) 3.09019i 0.140609i
\(484\) 45.5176 2.06898
\(485\) 0 0
\(486\) −2.66908 −0.121072
\(487\) 14.4815i 0.656218i 0.944640 + 0.328109i \(0.106411\pi\)
−0.944640 + 0.328109i \(0.893589\pi\)
\(488\) − 32.6006i − 1.47576i
\(489\) −3.72548 −0.168472
\(490\) 0 0
\(491\) −38.2093 −1.72436 −0.862182 0.506599i \(-0.830902\pi\)
−0.862182 + 0.506599i \(0.830902\pi\)
\(492\) 20.3599i 0.917894i
\(493\) 0 0
\(494\) −8.90981 −0.400871
\(495\) 0 0
\(496\) 105.580 4.74070
\(497\) − 4.15383i − 0.186325i
\(498\) − 12.1312i − 0.543613i
\(499\) −35.5740 −1.59251 −0.796256 0.604959i \(-0.793189\pi\)
−0.796256 + 0.604959i \(0.793189\pi\)
\(500\) 0 0
\(501\) 12.2214 0.546012
\(502\) 31.0660i 1.38654i
\(503\) 6.84223i 0.305080i 0.988297 + 0.152540i \(0.0487452\pi\)
−0.988297 + 0.152540i \(0.951255\pi\)
\(504\) 3.79306 0.168956
\(505\) 0 0
\(506\) −26.3792 −1.17270
\(507\) − 1.85670i − 0.0824589i
\(508\) 54.3792i 2.41269i
\(509\) −25.1352 −1.11410 −0.557048 0.830480i \(-0.688066\pi\)
−0.557048 + 0.830480i \(0.688066\pi\)
\(510\) 0 0
\(511\) −5.31160 −0.234972
\(512\) 15.6618i 0.692162i
\(513\) − 1.00000i − 0.0441511i
\(514\) −12.7222 −0.561152
\(515\) 0 0
\(516\) 40.9919 1.80457
\(517\) − 3.53302i − 0.155382i
\(518\) 12.4428i 0.546706i
\(519\) −24.1722 −1.06104
\(520\) 0 0
\(521\) 10.5861 0.463787 0.231893 0.972741i \(-0.425508\pi\)
0.231893 + 0.972741i \(0.425508\pi\)
\(522\) − 8.00724i − 0.350467i
\(523\) 33.9614i 1.48503i 0.669831 + 0.742513i \(0.266366\pi\)
−0.669831 + 0.742513i \(0.733634\pi\)
\(524\) −111.205 −4.85802
\(525\) 0 0
\(526\) −39.6642 −1.72944
\(527\) 0 0
\(528\) 17.4694i 0.760257i
\(529\) −23.1457 −1.00633
\(530\) 0 0
\(531\) 7.54510 0.327429
\(532\) 2.33092i 0.101058i
\(533\) 13.2640i 0.574527i
\(534\) −0.240729 −0.0104174
\(535\) 0 0
\(536\) −117.828 −5.08941
\(537\) − 6.22141i − 0.268474i
\(538\) − 57.4733i − 2.47785i
\(539\) −9.88325 −0.425702
\(540\) 0 0
\(541\) −33.7318 −1.45024 −0.725122 0.688620i \(-0.758217\pi\)
−0.725122 + 0.688620i \(0.758217\pi\)
\(542\) 3.01932i 0.129691i
\(543\) 20.4959i 0.879565i
\(544\) 0 0
\(545\) 0 0
\(546\) 4.05311 0.173457
\(547\) − 20.7255i − 0.886158i −0.896483 0.443079i \(-0.853886\pi\)
0.896483 0.443079i \(-0.146114\pi\)
\(548\) − 114.344i − 4.88455i
\(549\) 3.90981 0.166867
\(550\) 0 0
\(551\) 3.00000 0.127804
\(552\) 56.6416i 2.41083i
\(553\) − 4.08206i − 0.173587i
\(554\) −35.3985 −1.50394
\(555\) 0 0
\(556\) −53.2986 −2.26037
\(557\) − 13.3237i − 0.564543i −0.959335 0.282271i \(-0.908912\pi\)
0.959335 0.282271i \(-0.0910878\pi\)
\(558\) 23.4694i 0.993538i
\(559\) 26.7053 1.12951
\(560\) 0 0
\(561\) 0 0
\(562\) − 37.8977i − 1.59862i
\(563\) − 11.7786i − 0.496408i −0.968708 0.248204i \(-0.920160\pi\)
0.968708 0.248204i \(-0.0798404\pi\)
\(564\) −12.4428 −0.523937
\(565\) 0 0
\(566\) 52.1352 2.19140
\(567\) 0.454904i 0.0191042i
\(568\) − 76.1376i − 3.19466i
\(569\) −43.2278 −1.81220 −0.906101 0.423062i \(-0.860955\pi\)
−0.906101 + 0.423062i \(0.860955\pi\)
\(570\) 0 0
\(571\) −3.41782 −0.143031 −0.0715157 0.997439i \(-0.522784\pi\)
−0.0715157 + 0.997439i \(0.522784\pi\)
\(572\) 24.8856i 1.04052i
\(573\) − 0.793062i − 0.0331307i
\(574\) 4.82446 0.201369
\(575\) 0 0
\(576\) 17.0145 0.708936
\(577\) − 32.4081i − 1.34917i −0.738198 0.674584i \(-0.764323\pi\)
0.738198 0.674584i \(-0.235677\pi\)
\(578\) − 45.3743i − 1.88732i
\(579\) 15.8196 0.657441
\(580\) 0 0
\(581\) −2.06758 −0.0857778
\(582\) − 32.0676i − 1.32924i
\(583\) 19.8977i 0.824080i
\(584\) −97.3590 −4.02874
\(585\) 0 0
\(586\) 66.6561 2.75354
\(587\) − 7.93636i − 0.327569i −0.986496 0.163784i \(-0.947630\pi\)
0.986496 0.163784i \(-0.0523701\pi\)
\(588\) 34.8075i 1.43544i
\(589\) −8.79306 −0.362312
\(590\) 0 0
\(591\) 3.75203 0.154338
\(592\) 123.050i 5.05731i
\(593\) − 1.98553i − 0.0815358i −0.999169 0.0407679i \(-0.987020\pi\)
0.999169 0.0407679i \(-0.0129804\pi\)
\(594\) −3.88325 −0.159332
\(595\) 0 0
\(596\) 26.4283 1.08255
\(597\) 6.45490i 0.264182i
\(598\) 60.5249i 2.47505i
\(599\) 21.3526 0.872445 0.436222 0.899839i \(-0.356316\pi\)
0.436222 + 0.899839i \(0.356316\pi\)
\(600\) 0 0
\(601\) −18.2480 −0.744350 −0.372175 0.928163i \(-0.621388\pi\)
−0.372175 + 0.928163i \(0.621388\pi\)
\(602\) − 9.71340i − 0.395889i
\(603\) − 14.1312i − 0.575468i
\(604\) 43.5330 1.77133
\(605\) 0 0
\(606\) −14.7294 −0.598342
\(607\) − 23.6353i − 0.959327i −0.877453 0.479663i \(-0.840759\pi\)
0.877453 0.479663i \(-0.159241\pi\)
\(608\) 15.3719i 0.623415i
\(609\) −1.36471 −0.0553009
\(610\) 0 0
\(611\) −8.10622 −0.327942
\(612\) 0 0
\(613\) 36.9122i 1.49087i 0.666578 + 0.745435i \(0.267758\pi\)
−0.666578 + 0.745435i \(0.732242\pi\)
\(614\) 30.4323 1.22815
\(615\) 0 0
\(616\) 5.51854 0.222348
\(617\) 14.6908i 0.591429i 0.955276 + 0.295714i \(0.0955577\pi\)
−0.955276 + 0.295714i \(0.904442\pi\)
\(618\) − 6.79306i − 0.273257i
\(619\) 24.3487 0.978656 0.489328 0.872100i \(-0.337242\pi\)
0.489328 + 0.872100i \(0.337242\pi\)
\(620\) 0 0
\(621\) −6.79306 −0.272596
\(622\) − 3.53302i − 0.141661i
\(623\) 0.0410286i 0.00164378i
\(624\) 40.0821 1.60457
\(625\) 0 0
\(626\) −55.0169 −2.19892
\(627\) − 1.45490i − 0.0581033i
\(628\) − 116.057i − 4.63118i
\(629\) 0 0
\(630\) 0 0
\(631\) 21.3237 0.848882 0.424441 0.905455i \(-0.360471\pi\)
0.424441 + 0.905455i \(0.360471\pi\)
\(632\) − 74.8220i − 2.97626i
\(633\) − 23.9653i − 0.952536i
\(634\) −48.5032 −1.92631
\(635\) 0 0
\(636\) 70.0772 2.77874
\(637\) 22.6763i 0.898468i
\(638\) − 11.6498i − 0.461219i
\(639\) 9.13122 0.361225
\(640\) 0 0
\(641\) −26.9919 −1.06611 −0.533057 0.846079i \(-0.678957\pi\)
−0.533057 + 0.846079i \(0.678957\pi\)
\(642\) 12.3719i 0.488282i
\(643\) − 40.1683i − 1.58408i −0.610467 0.792042i \(-0.709018\pi\)
0.610467 0.792042i \(-0.290982\pi\)
\(644\) 15.8341 0.623951
\(645\) 0 0
\(646\) 0 0
\(647\) − 17.2890i − 0.679701i −0.940480 0.339850i \(-0.889624\pi\)
0.940480 0.339850i \(-0.110376\pi\)
\(648\) 8.33816i 0.327554i
\(649\) 10.9774 0.430900
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 19.0893i 0.747594i
\(653\) 21.6537i 0.847375i 0.905808 + 0.423688i \(0.139265\pi\)
−0.905808 + 0.423688i \(0.860735\pi\)
\(654\) −16.6763 −0.652096
\(655\) 0 0
\(656\) 47.7101 1.86277
\(657\) − 11.6763i − 0.455536i
\(658\) 2.94844i 0.114942i
\(659\) 11.6392 0.453400 0.226700 0.973965i \(-0.427206\pi\)
0.226700 + 0.973965i \(0.427206\pi\)
\(660\) 0 0
\(661\) −4.96292 −0.193035 −0.0965175 0.995331i \(-0.530770\pi\)
−0.0965175 + 0.995331i \(0.530770\pi\)
\(662\) 52.1071i 2.02520i
\(663\) 0 0
\(664\) −37.8977 −1.47072
\(665\) 0 0
\(666\) −27.3526 −1.05989
\(667\) − 20.3792i − 0.789085i
\(668\) − 62.6223i − 2.42293i
\(669\) 3.20694 0.123987
\(670\) 0 0
\(671\) 5.68840 0.219598
\(672\) − 6.99276i − 0.269752i
\(673\) − 13.1578i − 0.507195i −0.967310 0.253597i \(-0.918386\pi\)
0.967310 0.253597i \(-0.0816139\pi\)
\(674\) 1.10467 0.0425502
\(675\) 0 0
\(676\) −9.51370 −0.365912
\(677\) − 13.1352i − 0.504825i −0.967620 0.252413i \(-0.918776\pi\)
0.967620 0.252413i \(-0.0812241\pi\)
\(678\) − 13.8977i − 0.533739i
\(679\) −5.46543 −0.209744
\(680\) 0 0
\(681\) −9.13122 −0.349909
\(682\) 34.1457i 1.30751i
\(683\) − 46.5370i − 1.78069i −0.455289 0.890344i \(-0.650464\pi\)
0.455289 0.890344i \(-0.349536\pi\)
\(684\) −5.12398 −0.195920
\(685\) 0 0
\(686\) 16.7472 0.639411
\(687\) 16.7400i 0.638669i
\(688\) − 96.0579i − 3.66217i
\(689\) 45.6537 1.73927
\(690\) 0 0
\(691\) −4.26244 −0.162151 −0.0810754 0.996708i \(-0.525835\pi\)
−0.0810754 + 0.996708i \(0.525835\pi\)
\(692\) 123.858i 4.70838i
\(693\) 0.661842i 0.0251413i
\(694\) −82.5394 −3.13315
\(695\) 0 0
\(696\) −25.0145 −0.948171
\(697\) 0 0
\(698\) − 39.4130i − 1.49180i
\(699\) 9.57165 0.362033
\(700\) 0 0
\(701\) −36.4428 −1.37643 −0.688213 0.725508i \(-0.741605\pi\)
−0.688213 + 0.725508i \(0.741605\pi\)
\(702\) 8.90981i 0.336279i
\(703\) − 10.2480i − 0.386509i
\(704\) 24.7544 0.932968
\(705\) 0 0
\(706\) 73.4878 2.76575
\(707\) 2.51041i 0.0944136i
\(708\) − 38.6609i − 1.45297i
\(709\) 5.23349 0.196548 0.0982740 0.995159i \(-0.468668\pi\)
0.0982740 + 0.995159i \(0.468668\pi\)
\(710\) 0 0
\(711\) 8.97345 0.336531
\(712\) 0.752034i 0.0281837i
\(713\) 59.7318i 2.23697i
\(714\) 0 0
\(715\) 0 0
\(716\) −31.8784 −1.19135
\(717\) 17.5185i 0.654242i
\(718\) − 10.2335i − 0.381911i
\(719\) −50.2809 −1.87516 −0.937580 0.347770i \(-0.886939\pi\)
−0.937580 + 0.347770i \(0.886939\pi\)
\(720\) 0 0
\(721\) −1.15777 −0.0431178
\(722\) − 2.66908i − 0.0993328i
\(723\) − 16.9098i − 0.628883i
\(724\) 105.021 3.90307
\(725\) 0 0
\(726\) 23.7101 0.879965
\(727\) − 2.81567i − 0.104427i −0.998636 0.0522137i \(-0.983372\pi\)
0.998636 0.0522137i \(-0.0166277\pi\)
\(728\) − 12.6618i − 0.469279i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) − 20.0338i − 0.740470i
\(733\) − 9.23349i − 0.341047i −0.985354 0.170523i \(-0.945454\pi\)
0.985354 0.170523i \(-0.0545458\pi\)
\(734\) 56.6522 2.09107
\(735\) 0 0
\(736\) 104.423 3.84907
\(737\) − 20.5596i − 0.757322i
\(738\) 10.6054i 0.390392i
\(739\) 11.1843 0.411422 0.205711 0.978613i \(-0.434049\pi\)
0.205711 + 0.978613i \(0.434049\pi\)
\(740\) 0 0
\(741\) −3.33816 −0.122630
\(742\) − 16.6054i − 0.609605i
\(743\) 23.1602i 0.849664i 0.905272 + 0.424832i \(0.139667\pi\)
−0.905272 + 0.424832i \(0.860333\pi\)
\(744\) 73.3179 2.68797
\(745\) 0 0
\(746\) 59.4202 2.17553
\(747\) − 4.54510i − 0.166296i
\(748\) 0 0
\(749\) 2.10861 0.0770470
\(750\) 0 0
\(751\) 11.7520 0.428838 0.214419 0.976742i \(-0.431214\pi\)
0.214419 + 0.976742i \(0.431214\pi\)
\(752\) 29.1578i 1.06327i
\(753\) 11.6392i 0.424157i
\(754\) −26.7294 −0.973428
\(755\) 0 0
\(756\) 2.33092 0.0847748
\(757\) 17.6232i 0.640526i 0.947329 + 0.320263i \(0.103771\pi\)
−0.947329 + 0.320263i \(0.896229\pi\)
\(758\) − 8.90981i − 0.323619i
\(759\) −9.88325 −0.358739
\(760\) 0 0
\(761\) −22.5556 −0.817641 −0.408820 0.912615i \(-0.634060\pi\)
−0.408820 + 0.912615i \(0.634060\pi\)
\(762\) 28.3261i 1.02615i
\(763\) 2.84223i 0.102895i
\(764\) −4.06364 −0.147017
\(765\) 0 0
\(766\) −92.1819 −3.33067
\(767\) − 25.1867i − 0.909440i
\(768\) − 5.12398i − 0.184896i
\(769\) 26.8486 0.968184 0.484092 0.875017i \(-0.339150\pi\)
0.484092 + 0.875017i \(0.339150\pi\)
\(770\) 0 0
\(771\) −4.76651 −0.171662
\(772\) − 81.0594i − 2.91739i
\(773\) 33.8751i 1.21840i 0.793015 + 0.609202i \(0.208510\pi\)
−0.793015 + 0.609202i \(0.791490\pi\)
\(774\) 21.3526 0.767505
\(775\) 0 0
\(776\) −100.179 −3.59620
\(777\) 4.66184i 0.167243i
\(778\) 50.9919i 1.82815i
\(779\) −3.97345 −0.142363
\(780\) 0 0
\(781\) 13.2850 0.475376
\(782\) 0 0
\(783\) − 3.00000i − 0.107211i
\(784\) 81.5659 2.91307
\(785\) 0 0
\(786\) −57.9267 −2.06618
\(787\) − 30.0781i − 1.07217i −0.844164 0.536084i \(-0.819903\pi\)
0.844164 0.536084i \(-0.180097\pi\)
\(788\) − 19.2254i − 0.684875i
\(789\) −14.8606 −0.529053
\(790\) 0 0
\(791\) −2.36866 −0.0842198
\(792\) 12.1312i 0.431064i
\(793\) − 13.0516i − 0.463474i
\(794\) 36.9138 1.31002
\(795\) 0 0
\(796\) 33.0748 1.17231
\(797\) − 29.3792i − 1.04066i −0.853964 0.520332i \(-0.825808\pi\)
0.853964 0.520332i \(-0.174192\pi\)
\(798\) 1.21417i 0.0429813i
\(799\) 0 0
\(800\) 0 0
\(801\) −0.0901918 −0.00318677
\(802\) − 18.1312i − 0.640236i
\(803\) − 16.9879i − 0.599491i
\(804\) −72.4081 −2.55364
\(805\) 0 0
\(806\) 78.3445 2.75957
\(807\) − 21.5330i − 0.757998i
\(808\) 46.0145i 1.61878i
\(809\) 45.7358 1.60798 0.803992 0.594640i \(-0.202705\pi\)
0.803992 + 0.594640i \(0.202705\pi\)
\(810\) 0 0
\(811\) 6.10227 0.214280 0.107140 0.994244i \(-0.465831\pi\)
0.107140 + 0.994244i \(0.465831\pi\)
\(812\) 6.99276i 0.245398i
\(813\) 1.13122i 0.0396736i
\(814\) −39.7955 −1.39483
\(815\) 0 0
\(816\) 0 0
\(817\) 8.00000i 0.279885i
\(818\) − 33.3913i − 1.16750i
\(819\) 1.51854 0.0530621
\(820\) 0 0
\(821\) −11.2175 −0.391492 −0.195746 0.980655i \(-0.562713\pi\)
−0.195746 + 0.980655i \(0.562713\pi\)
\(822\) − 59.5620i − 2.07746i
\(823\) − 24.6353i − 0.858732i −0.903131 0.429366i \(-0.858737\pi\)
0.903131 0.429366i \(-0.141263\pi\)
\(824\) −21.2214 −0.739283
\(825\) 0 0
\(826\) −9.16107 −0.318754
\(827\) − 32.6311i − 1.13469i −0.823479 0.567347i \(-0.807970\pi\)
0.823479 0.567347i \(-0.192030\pi\)
\(828\) 34.8075i 1.20965i
\(829\) 33.3382 1.15788 0.578941 0.815369i \(-0.303466\pi\)
0.578941 + 0.815369i \(0.303466\pi\)
\(830\) 0 0
\(831\) −13.2624 −0.460069
\(832\) − 56.7970i − 1.96908i
\(833\) 0 0
\(834\) −27.7632 −0.961362
\(835\) 0 0
\(836\) −7.45490 −0.257833
\(837\) 8.79306i 0.303933i
\(838\) − 5.51854i − 0.190635i
\(839\) −51.1312 −1.76525 −0.882623 0.470082i \(-0.844224\pi\)
−0.882623 + 0.470082i \(0.844224\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 9.39127i 0.323644i
\(843\) − 14.1988i − 0.489033i
\(844\) −122.798 −4.22688
\(845\) 0 0
\(846\) −6.48146 −0.222837
\(847\) − 4.04103i − 0.138851i
\(848\) − 164.215i − 5.63916i
\(849\) 19.5330 0.670371
\(850\) 0 0
\(851\) −69.6151 −2.38637
\(852\) − 46.7882i − 1.60294i
\(853\) − 40.9122i − 1.40081i −0.713747 0.700404i \(-0.753003\pi\)
0.713747 0.700404i \(-0.246997\pi\)
\(854\) −4.74719 −0.162446
\(855\) 0 0
\(856\) 38.6498 1.32102
\(857\) 17.8220i 0.608788i 0.952546 + 0.304394i \(0.0984540\pi\)
−0.952546 + 0.304394i \(0.901546\pi\)
\(858\) 12.9629i 0.442547i
\(859\) −14.1231 −0.481873 −0.240937 0.970541i \(-0.577455\pi\)
−0.240937 + 0.970541i \(0.577455\pi\)
\(860\) 0 0
\(861\) 1.80754 0.0616007
\(862\) − 83.9339i − 2.85880i
\(863\) 32.4307i 1.10396i 0.833859 + 0.551978i \(0.186127\pi\)
−0.833859 + 0.551978i \(0.813873\pi\)
\(864\) 15.3719 0.522964
\(865\) 0 0
\(866\) 55.9903 1.90263
\(867\) − 17.0000i − 0.577350i
\(868\) − 20.4959i − 0.695677i
\(869\) 13.0555 0.442878
\(870\) 0 0
\(871\) −47.1722 −1.59837
\(872\) 52.0965i 1.76421i
\(873\) − 12.0145i − 0.406628i
\(874\) −18.1312 −0.613298
\(875\) 0 0
\(876\) −59.8292 −2.02144
\(877\) 20.9243i 0.706563i 0.935517 + 0.353281i \(0.114934\pi\)
−0.935517 + 0.353281i \(0.885066\pi\)
\(878\) 10.0250i 0.338327i
\(879\) 24.9734 0.842333
\(880\) 0 0
\(881\) −31.3671 −1.05678 −0.528392 0.849000i \(-0.677205\pi\)
−0.528392 + 0.849000i \(0.677205\pi\)
\(882\) 18.1312i 0.610510i
\(883\) − 0.635288i − 0.0213791i −0.999943 0.0106896i \(-0.996597\pi\)
0.999943 0.0106896i \(-0.00340266\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 53.4307 1.79504
\(887\) − 55.0660i − 1.84894i −0.381259 0.924468i \(-0.624509\pi\)
0.381259 0.924468i \(-0.375491\pi\)
\(888\) 85.4492i 2.86749i
\(889\) 4.82775 0.161918
\(890\) 0 0
\(891\) −1.45490 −0.0487411
\(892\) − 16.4323i − 0.550194i
\(893\) − 2.42835i − 0.0812616i
\(894\) 13.7665 0.460421
\(895\) 0 0
\(896\) −6.67302 −0.222930
\(897\) 22.6763i 0.757140i
\(898\) 59.8027i 1.99564i
\(899\) −26.3792 −0.879795
\(900\) 0 0
\(901\) 0 0
\(902\) 15.4299i 0.513759i
\(903\) − 3.63923i − 0.121106i
\(904\) −43.4163 −1.44400
\(905\) 0 0
\(906\) 22.6763 0.753370
\(907\) − 8.49593i − 0.282103i −0.990002 0.141051i \(-0.954952\pi\)
0.990002 0.141051i \(-0.0450483\pi\)
\(908\) 46.7882i 1.55272i
\(909\) −5.51854 −0.183038
\(910\) 0 0
\(911\) 58.9798 1.95409 0.977044 0.213039i \(-0.0683361\pi\)
0.977044 + 0.213039i \(0.0683361\pi\)
\(912\) 12.0072i 0.397599i
\(913\) − 6.61268i − 0.218848i
\(914\) 91.5200 3.02721
\(915\) 0 0
\(916\) 85.7752 2.83409
\(917\) 9.87272i 0.326026i
\(918\) 0 0
\(919\) −8.22141 −0.271199 −0.135600 0.990764i \(-0.543296\pi\)
−0.135600 + 0.990764i \(0.543296\pi\)
\(920\) 0 0
\(921\) 11.4018 0.375702
\(922\) − 38.7294i − 1.27549i
\(923\) − 30.4815i − 1.00331i
\(924\) 3.39127 0.111564
\(925\) 0 0
\(926\) −90.3445 −2.96890
\(927\) − 2.54510i − 0.0835919i
\(928\) 46.1158i 1.51383i
\(929\) −1.76651 −0.0579573 −0.0289786 0.999580i \(-0.509225\pi\)
−0.0289786 + 0.999580i \(0.509225\pi\)
\(930\) 0 0
\(931\) −6.79306 −0.222634
\(932\) − 49.0450i − 1.60652i
\(933\) − 1.32368i − 0.0433355i
\(934\) −24.6127 −0.805351
\(935\) 0 0
\(936\) 27.8341 0.909786
\(937\) − 6.20694i − 0.202772i −0.994847 0.101386i \(-0.967672\pi\)
0.994847 0.101386i \(-0.0323277\pi\)
\(938\) 17.1578i 0.560221i
\(939\) −20.6127 −0.672669
\(940\) 0 0
\(941\) 15.8833 0.517779 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(942\) − 60.4540i − 1.96970i
\(943\) 26.9919i 0.878976i
\(944\) −90.5958 −2.94864
\(945\) 0 0
\(946\) 31.0660 1.01004
\(947\) 16.1352i 0.524322i 0.965024 + 0.262161i \(0.0844352\pi\)
−0.965024 + 0.262161i \(0.915565\pi\)
\(948\) − 45.9798i − 1.49335i
\(949\) −38.9774 −1.26526
\(950\) 0 0
\(951\) −18.1722 −0.589276
\(952\) 0 0
\(953\) − 41.1110i − 1.33172i −0.746078 0.665858i \(-0.768066\pi\)
0.746078 0.665858i \(-0.231934\pi\)
\(954\) 36.5032 1.18183
\(955\) 0 0
\(956\) 89.7647 2.90320
\(957\) − 4.36471i − 0.141091i
\(958\) 72.8751i 2.35449i
\(959\) −10.1514 −0.327807
\(960\) 0 0
\(961\) 46.3179 1.49413
\(962\) 91.3074i 2.94387i
\(963\) 4.63529i 0.149370i
\(964\) −86.6456 −2.79067
\(965\) 0 0
\(966\) 8.24797 0.265374
\(967\) 30.9798i 0.996243i 0.867107 + 0.498121i \(0.165977\pi\)
−0.867107 + 0.498121i \(0.834023\pi\)
\(968\) − 74.0700i − 2.38070i
\(969\) 0 0
\(970\) 0 0
\(971\) 51.2133 1.64351 0.821756 0.569839i \(-0.192995\pi\)
0.821756 + 0.569839i \(0.192995\pi\)
\(972\) 5.12398i 0.164352i
\(973\) 4.73182i 0.151695i
\(974\) 38.6522 1.23850
\(975\) 0 0
\(976\) −46.9460 −1.50270
\(977\) 20.2093i 0.646554i 0.946304 + 0.323277i \(0.104785\pi\)
−0.946304 + 0.323277i \(0.895215\pi\)
\(978\) 9.94360i 0.317961i
\(979\) −0.131220 −0.00419382
\(980\) 0 0
\(981\) −6.24797 −0.199482
\(982\) 101.984i 3.25443i
\(983\) − 41.1191i − 1.31150i −0.754979 0.655748i \(-0.772353\pi\)
0.754979 0.655748i \(-0.227647\pi\)
\(984\) 33.1312 1.05618
\(985\) 0 0
\(986\) 0 0
\(987\) 1.10467i 0.0351619i
\(988\) 17.1047i 0.544172i
\(989\) 54.3445 1.72805
\(990\) 0 0
\(991\) 27.4549 0.872134 0.436067 0.899914i \(-0.356371\pi\)
0.436067 + 0.899914i \(0.356371\pi\)
\(992\) − 135.167i − 4.29154i
\(993\) 19.5225i 0.619527i
\(994\) −11.0869 −0.351655
\(995\) 0 0
\(996\) −23.2890 −0.737940
\(997\) 13.1086i 0.415154i 0.978219 + 0.207577i \(0.0665577\pi\)
−0.978219 + 0.207577i \(0.933442\pi\)
\(998\) 94.9499i 3.00559i
\(999\) −10.2480 −0.324231
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1425.2.c.p.799.1 6
5.2 odd 4 1425.2.a.u.1.3 3
5.3 odd 4 1425.2.a.v.1.1 yes 3
5.4 even 2 inner 1425.2.c.p.799.6 6
15.2 even 4 4275.2.a.be.1.1 3
15.8 even 4 4275.2.a.bh.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.u.1.3 3 5.2 odd 4
1425.2.a.v.1.1 yes 3 5.3 odd 4
1425.2.c.p.799.1 6 1.1 even 1 trivial
1425.2.c.p.799.6 6 5.4 even 2 inner
4275.2.a.be.1.1 3 15.2 even 4
4275.2.a.bh.1.3 3 15.8 even 4