Properties

Label 1425.2
Level 1425
Weight 2
Dimension 48794
Nonzero newspaces 36
Sturm bound 288000
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 36 \)
Sturm bound: \(288000\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1425))\).

Total New Old
Modular forms 74016 50190 23826
Cusp forms 69985 48794 21191
Eisenstein series 4031 1396 2635

Trace form

\( 48794 q + 2 q^{2} - 99 q^{3} - 184 q^{4} + 12 q^{5} - 143 q^{6} - 178 q^{7} + 42 q^{8} - 91 q^{9} - 220 q^{10} + 8 q^{11} - 67 q^{12} - 150 q^{13} + 84 q^{14} - 116 q^{15} - 240 q^{16} + 22 q^{17} - 106 q^{18}+ \cdots - 676 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1425))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1425.2.a \(\chi_{1425}(1, \cdot)\) 1425.2.a.a 1 1
1425.2.a.b 1
1425.2.a.c 1
1425.2.a.d 1
1425.2.a.e 1
1425.2.a.f 1
1425.2.a.g 1
1425.2.a.h 1
1425.2.a.i 1
1425.2.a.j 1
1425.2.a.k 2
1425.2.a.l 2
1425.2.a.m 2
1425.2.a.n 2
1425.2.a.o 2
1425.2.a.p 2
1425.2.a.q 2
1425.2.a.r 2
1425.2.a.s 3
1425.2.a.t 3
1425.2.a.u 3
1425.2.a.v 3
1425.2.a.w 3
1425.2.a.x 3
1425.2.a.y 7
1425.2.a.z 7
1425.2.b \(\chi_{1425}(1424, \cdot)\) n/a 116 1
1425.2.c \(\chi_{1425}(799, \cdot)\) 1425.2.c.a 2 1
1425.2.c.b 2
1425.2.c.c 2
1425.2.c.d 2
1425.2.c.e 2
1425.2.c.f 2
1425.2.c.g 2
1425.2.c.h 2
1425.2.c.i 4
1425.2.c.j 4
1425.2.c.k 4
1425.2.c.l 4
1425.2.c.m 4
1425.2.c.n 4
1425.2.c.o 6
1425.2.c.p 6
1425.2.h \(\chi_{1425}(626, \cdot)\) n/a 120 1
1425.2.i \(\chi_{1425}(676, \cdot)\) n/a 128 2
1425.2.k \(\chi_{1425}(818, \cdot)\) n/a 216 2
1425.2.m \(\chi_{1425}(493, \cdot)\) n/a 120 2
1425.2.n \(\chi_{1425}(286, \cdot)\) n/a 352 4
1425.2.q \(\chi_{1425}(1076, \cdot)\) n/a 240 2
1425.2.r \(\chi_{1425}(449, \cdot)\) n/a 232 2
1425.2.s \(\chi_{1425}(49, \cdot)\) n/a 120 2
1425.2.v \(\chi_{1425}(226, \cdot)\) n/a 378 6
1425.2.y \(\chi_{1425}(56, \cdot)\) n/a 784 4
1425.2.z \(\chi_{1425}(229, \cdot)\) n/a 368 4
1425.2.ba \(\chi_{1425}(284, \cdot)\) n/a 784 4
1425.2.bd \(\chi_{1425}(68, \cdot)\) n/a 464 4
1425.2.bf \(\chi_{1425}(943, \cdot)\) n/a 240 4
1425.2.bh \(\chi_{1425}(106, \cdot)\) n/a 800 8
1425.2.bi \(\chi_{1425}(326, \cdot)\) n/a 726 6
1425.2.bn \(\chi_{1425}(199, \cdot)\) n/a 360 6
1425.2.bo \(\chi_{1425}(224, \cdot)\) n/a 696 6
1425.2.bp \(\chi_{1425}(37, \cdot)\) n/a 800 8
1425.2.br \(\chi_{1425}(77, \cdot)\) n/a 1440 8
1425.2.bt \(\chi_{1425}(64, \cdot)\) n/a 800 8
1425.2.bu \(\chi_{1425}(164, \cdot)\) n/a 1568 8
1425.2.bz \(\chi_{1425}(221, \cdot)\) n/a 1568 8
1425.2.cb \(\chi_{1425}(193, \cdot)\) n/a 720 12
1425.2.cc \(\chi_{1425}(218, \cdot)\) n/a 1392 12
1425.2.ce \(\chi_{1425}(16, \cdot)\) n/a 2400 24
1425.2.cg \(\chi_{1425}(88, \cdot)\) n/a 1600 16
1425.2.ci \(\chi_{1425}(83, \cdot)\) n/a 3136 16
1425.2.cl \(\chi_{1425}(41, \cdot)\) n/a 4704 24
1425.2.cm \(\chi_{1425}(14, \cdot)\) n/a 4704 24
1425.2.cn \(\chi_{1425}(4, \cdot)\) n/a 2400 24
1425.2.cr \(\chi_{1425}(17, \cdot)\) n/a 9408 48
1425.2.cs \(\chi_{1425}(13, \cdot)\) n/a 4800 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1425))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1425)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(95))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(285))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(475))\)\(^{\oplus 2}\)