Properties

Label 2-1425-5.4-c1-0-7
Degree $2$
Conductor $1425$
Sign $0.447 + 0.894i$
Analytic cond. $11.3786$
Root an. cond. $3.37323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.66i·2-s i·3-s − 5.12·4-s − 2.66·6-s + 0.454i·7-s + 8.33i·8-s − 9-s − 1.45·11-s + 5.12i·12-s + 3.33i·13-s + 1.21·14-s + 12.0·16-s + 2.66i·18-s − 19-s + 0.454·21-s + 3.88i·22-s + ⋯
L(s)  = 1  − 1.88i·2-s − 0.577i·3-s − 2.56·4-s − 1.08·6-s + 0.171i·7-s + 2.94i·8-s − 0.333·9-s − 0.438·11-s + 1.47i·12-s + 0.925i·13-s + 0.324·14-s + 3.00·16-s + 0.629i·18-s − 0.229·19-s + 0.0992·21-s + 0.827i·22-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1425\)    =    \(3 \cdot 5^{2} \cdot 19\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(11.3786\)
Root analytic conductor: \(3.37323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1425} (799, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1425,\ (\ :1/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8845368310\)
\(L(\frac12)\) \(\approx\) \(0.8845368310\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + iT \)
5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 + 2.66iT - 2T^{2} \)
7 \( 1 - 0.454iT - 7T^{2} \)
11 \( 1 + 1.45T + 11T^{2} \)
13 \( 1 - 3.33iT - 13T^{2} \)
17 \( 1 - 17T^{2} \)
23 \( 1 - 6.79iT - 23T^{2} \)
29 \( 1 + 3T + 29T^{2} \)
31 \( 1 - 8.79T + 31T^{2} \)
37 \( 1 - 10.2iT - 37T^{2} \)
41 \( 1 - 3.97T + 41T^{2} \)
43 \( 1 + 8iT - 43T^{2} \)
47 \( 1 - 2.42iT - 47T^{2} \)
53 \( 1 + 13.6iT - 53T^{2} \)
59 \( 1 + 7.54T + 59T^{2} \)
61 \( 1 + 3.90T + 61T^{2} \)
67 \( 1 - 14.1iT - 67T^{2} \)
71 \( 1 + 9.13T + 71T^{2} \)
73 \( 1 - 11.6iT - 73T^{2} \)
79 \( 1 + 8.97T + 79T^{2} \)
83 \( 1 - 4.54iT - 83T^{2} \)
89 \( 1 - 0.0901T + 89T^{2} \)
97 \( 1 - 12.0iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.655774119351435592507217709654, −8.811904994438579135230287028386, −8.174210079608733167632962910649, −7.09266265750294915523519082760, −5.84892812449078544469849904446, −4.89973613435867959850572977958, −3.99270292245372902438077201640, −2.99430054008238813575431285305, −2.12650462002888581291474442195, −1.17900201547043981912504346540, 0.41212784880856727998113936686, 2.95244250507849088387809062583, 4.25727924540442761406113375008, 4.75663136546294923284337434527, 5.80297176196154308480478381436, 6.22929945422030144585613772295, 7.38877108903161828876367716181, 7.898052360212946602181354039720, 8.705499582381530869938391626219, 9.329897160379851314215730318620

Graph of the $Z$-function along the critical line