Properties

Label 1425.2.c.p
Level $1425$
Weight $2$
Character orbit 1425.c
Analytic conductor $11.379$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1425,2,Mod(799,1425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1425.799"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-12,0,0,0,0,-6,0,-6,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3786822880\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.24681024.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 12x^{4} + 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{2} q^{3} + (\beta_{4} - \beta_{3} - 2) q^{4} - \beta_{3} q^{6} - \beta_{5} q^{7} + (3 \beta_{2} - 2 \beta_1) q^{8} - q^{9} + (\beta_{4} - 1) q^{11} + ( - \beta_{5} + 2 \beta_{2} - \beta_1) q^{12}+ \cdots + ( - \beta_{4} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{4} - 6 q^{9} - 6 q^{11} - 6 q^{14} + 24 q^{16} - 6 q^{19} + 18 q^{24} + 48 q^{26} - 18 q^{29} + 18 q^{31} + 12 q^{36} - 12 q^{39} + 42 q^{44} + 42 q^{46} + 6 q^{49} + 12 q^{56} - 48 q^{59} - 18 q^{61}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 12x^{4} + 36x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 6\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} + 6\nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + 9\nu^{2} + 12 ) / 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} + 10\nu^{3} + 21\nu ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - \beta_{3} - 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{2} - 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -6\beta_{4} + 9\beta_{3} + 24 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 3\beta_{5} - 30\beta_{2} + 39\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1425\mathbb{Z}\right)^\times\).

\(n\) \(476\) \(1027\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
799.1
2.66908i
2.14510i
0.523976i
0.523976i
2.14510i
2.66908i
2.66908i 1.00000i −5.12398 0 −2.66908 0.454904i 8.33816i −1.00000 0
799.2 2.14510i 1.00000i −2.60147 0 2.14510 2.74657i 1.29021i −1.00000 0
799.3 0.523976i 1.00000i 1.72545 0 0.523976 3.20147i 1.95205i −1.00000 0
799.4 0.523976i 1.00000i 1.72545 0 0.523976 3.20147i 1.95205i −1.00000 0
799.5 2.14510i 1.00000i −2.60147 0 2.14510 2.74657i 1.29021i −1.00000 0
799.6 2.66908i 1.00000i −5.12398 0 −2.66908 0.454904i 8.33816i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 799.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1425.2.c.p 6
5.b even 2 1 inner 1425.2.c.p 6
5.c odd 4 1 1425.2.a.u 3
5.c odd 4 1 1425.2.a.v yes 3
15.e even 4 1 4275.2.a.be 3
15.e even 4 1 4275.2.a.bh 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1425.2.a.u 3 5.c odd 4 1
1425.2.a.v yes 3 5.c odd 4 1
1425.2.c.p 6 1.a even 1 1 trivial
1425.2.c.p 6 5.b even 2 1 inner
4275.2.a.be 3 15.e even 4 1
4275.2.a.bh 3 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1425, [\chi])\):

\( T_{2}^{6} + 12T_{2}^{4} + 36T_{2}^{2} + 9 \) Copy content Toggle raw display
\( T_{7}^{6} + 18T_{7}^{4} + 81T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{11}^{3} + 3T_{11}^{2} - 6T_{11} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 12 T^{4} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 18 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( (T^{3} + 3 T^{2} - 6 T - 12)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 60 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( (T + 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} + 57 T^{4} + \cdots + 144 \) Copy content Toggle raw display
$29$ \( (T + 3)^{6} \) Copy content Toggle raw display
$31$ \( (T^{3} - 9 T^{2} + 16)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + 144 T^{4} + \cdots + 33856 \) Copy content Toggle raw display
$41$ \( (T^{3} - 123 T + 426)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 64)^{3} \) Copy content Toggle raw display
$47$ \( T^{6} + 156 T^{4} + \cdots + 9216 \) Copy content Toggle raw display
$53$ \( T^{6} + 219 T^{4} + \cdots + 4761 \) Copy content Toggle raw display
$59$ \( (T^{3} + 24 T^{2} + \cdots + 444)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 9 T^{2} + \cdots - 113)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 213 T^{4} + \cdots + 8464 \) Copy content Toggle raw display
$71$ \( (T^{3} - 6 T^{2} + \cdots + 522)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 195 T^{4} + \cdots + 9409 \) Copy content Toggle raw display
$79$ \( (T^{3} + 15 T^{2} + \cdots - 916)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 93 T^{4} + \cdots + 7056 \) Copy content Toggle raw display
$89$ \( (T^{3} - 3 T^{2} - 33 T + 3)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 480 T^{4} + \cdots + 2096704 \) Copy content Toggle raw display
show more
show less