Properties

Label 140.3.l.a
Level $140$
Weight $3$
Character orbit 140.l
Analytic conductor $3.815$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [140,3,Mod(57,140)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(140, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("140.57"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 140.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.81472370104\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1 + 1) q^{3} + (3 \beta_{2} + \beta_1 - 3) q^{5} + \beta_{3} q^{7} + (2 \beta_{3} + 2 \beta_1) q^{9} + ( - 2 \beta_{3} + 2 \beta_1 - 11) q^{11} + ( - 5 \beta_{2} + 3 \beta_1 - 5) q^{13}+ \cdots + ( - 22 \beta_{3} + 56 \beta_{2} - 22 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 12 q^{5} - 44 q^{11} - 20 q^{13} - 24 q^{15} + 4 q^{17} - 28 q^{21} + 104 q^{23} - 20 q^{27} + 12 q^{33} - 28 q^{35} + 104 q^{37} + 112 q^{41} - 4 q^{43} - 56 q^{45} + 12 q^{47} + 204 q^{51}+ \cdots + 132 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 7\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 7\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/140\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(101\)
\(\chi(n)\) \(-\beta_{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
57.1
−1.87083 + 1.87083i
1.87083 1.87083i
−1.87083 1.87083i
1.87083 + 1.87083i
0 −0.870829 + 0.870829i 0 −4.87083 1.12917i 0 1.87083 + 1.87083i 0 7.48331i 0
57.2 0 2.87083 2.87083i 0 −1.12917 4.87083i 0 −1.87083 1.87083i 0 7.48331i 0
113.1 0 −0.870829 0.870829i 0 −4.87083 + 1.12917i 0 1.87083 1.87083i 0 7.48331i 0
113.2 0 2.87083 + 2.87083i 0 −1.12917 + 4.87083i 0 −1.87083 + 1.87083i 0 7.48331i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 140.3.l.a 4
3.b odd 2 1 1260.3.y.a 4
4.b odd 2 1 560.3.bh.a 4
5.b even 2 1 700.3.l.a 4
5.c odd 4 1 inner 140.3.l.a 4
5.c odd 4 1 700.3.l.a 4
7.b odd 2 1 980.3.l.b 4
15.e even 4 1 1260.3.y.a 4
20.e even 4 1 560.3.bh.a 4
35.f even 4 1 980.3.l.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.3.l.a 4 1.a even 1 1 trivial
140.3.l.a 4 5.c odd 4 1 inner
560.3.bh.a 4 4.b odd 2 1
560.3.bh.a 4 20.e even 4 1
700.3.l.a 4 5.b even 2 1
700.3.l.a 4 5.c odd 4 1
980.3.l.b 4 7.b odd 2 1
980.3.l.b 4 35.f even 4 1
1260.3.y.a 4 3.b odd 2 1
1260.3.y.a 4 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 4T_{3}^{3} + 8T_{3}^{2} + 20T_{3} + 25 \) acting on \(S_{3}^{\mathrm{new}}(140, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 4 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$5$ \( T^{4} + 12 T^{3} + \cdots + 625 \) Copy content Toggle raw display
$7$ \( T^{4} + 49 \) Copy content Toggle raw display
$11$ \( (T^{2} + 22 T + 65)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 20 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$17$ \( T^{4} - 4 T^{3} + \cdots + 116281 \) Copy content Toggle raw display
$19$ \( T^{4} + 100T^{2} + 484 \) Copy content Toggle raw display
$23$ \( T^{4} - 104 T^{3} + \cdots + 1752976 \) Copy content Toggle raw display
$29$ \( T^{4} + 2130 T^{2} + 528529 \) Copy content Toggle raw display
$31$ \( (T^{2} - 1134)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 104 T^{3} + \cdots + 1210000 \) Copy content Toggle raw display
$41$ \( (T^{2} - 56 T - 350)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 4 T^{3} + \cdots + 7828804 \) Copy content Toggle raw display
$47$ \( T^{4} - 12 T^{3} + \cdots + 18983449 \) Copy content Toggle raw display
$53$ \( T^{4} + 140 T^{3} + \cdots + 3062500 \) Copy content Toggle raw display
$59$ \( T^{4} + 1820 T^{2} + 432964 \) Copy content Toggle raw display
$61$ \( (T^{2} + 168 T + 6832)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 140 T^{3} + \cdots + 5866084 \) Copy content Toggle raw display
$71$ \( (T^{2} - 112 T - 3640)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 168 T^{3} + \cdots + 529984 \) Copy content Toggle raw display
$79$ \( T^{4} + 40594 T^{2} + 405418225 \) Copy content Toggle raw display
$83$ \( T^{4} - 112 T^{3} + \cdots + 1254400 \) Copy content Toggle raw display
$89$ \( T^{4} + 17696 T^{2} + 52998400 \) Copy content Toggle raw display
$97$ \( T^{4} - 132 T^{3} + \cdots + 4012009 \) Copy content Toggle raw display
show more
show less