Properties

Label 140.3
Level 140
Weight 3
Dimension 560
Nonzero newspaces 12
Newform subspaces 17
Sturm bound 3456
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 17 \)
Sturm bound: \(3456\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(140))\).

Total New Old
Modular forms 1272 624 648
Cusp forms 1032 560 472
Eisenstein series 240 64 176

Trace form

\( 560 q - 2 q^{2} - 10 q^{3} + 2 q^{4} - q^{5} + 20 q^{6} + 22 q^{7} + 34 q^{8} + 76 q^{9} + 6 q^{10} + 14 q^{11} - 56 q^{12} - 4 q^{13} - 86 q^{14} - 58 q^{15} - 186 q^{16} - 70 q^{17} - 254 q^{18} - 54 q^{19}+ \cdots - 240 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(140))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
140.3.b \(\chi_{140}(71, \cdot)\) 140.3.b.a 24 1
140.3.d \(\chi_{140}(41, \cdot)\) 140.3.d.a 4 1
140.3.f \(\chi_{140}(99, \cdot)\) 140.3.f.a 36 1
140.3.h \(\chi_{140}(69, \cdot)\) 140.3.h.a 2 1
140.3.h.b 2
140.3.h.c 4
140.3.j \(\chi_{140}(27, \cdot)\) 140.3.j.a 88 2
140.3.l \(\chi_{140}(57, \cdot)\) 140.3.l.a 4 2
140.3.l.b 8
140.3.n \(\chi_{140}(89, \cdot)\) 140.3.n.a 16 2
140.3.p \(\chi_{140}(39, \cdot)\) 140.3.p.a 4 2
140.3.p.b 4
140.3.p.c 80
140.3.r \(\chi_{140}(61, \cdot)\) 140.3.r.a 12 2
140.3.t \(\chi_{140}(11, \cdot)\) 140.3.t.a 64 2
140.3.v \(\chi_{140}(37, \cdot)\) 140.3.v.a 32 4
140.3.x \(\chi_{140}(3, \cdot)\) 140.3.x.a 176 4

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(140))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(140)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(70))\)\(^{\oplus 2}\)