Properties

Label 140.l
Modulus $140$
Conductor $5$
Order $4$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(140, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([0,1,0])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(57,140)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(140\)
Conductor: \(5\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 5.c
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: \(\Q(\zeta_{5})\)

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(9\) \(11\) \(13\) \(17\) \(19\) \(23\) \(27\) \(29\) \(31\)
\(\chi_{140}(57,\cdot)\) \(-1\) \(1\) \(-i\) \(-1\) \(1\) \(-i\) \(i\) \(-1\) \(-i\) \(i\) \(-1\) \(1\)
\(\chi_{140}(113,\cdot)\) \(-1\) \(1\) \(i\) \(-1\) \(1\) \(i\) \(-i\) \(-1\) \(i\) \(-i\) \(-1\) \(1\)