L(s) = 1 | + (2.87 + 2.87i)3-s + (−1.12 + 4.87i)5-s + (−1.87 + 1.87i)7-s + 7.48i·9-s − 3.51·11-s + (0.612 + 0.612i)13-s + (−17.2 + 10.7i)15-s + (14.0 − 14.0i)17-s − 2.25i·19-s − 10.7·21-s + (29.7 + 29.7i)23-s + (−22.4 − 11i)25-s + (4.35 − 4.35i)27-s + 16.9i·29-s + 33.6·31-s + ⋯ |
L(s) = 1 | + (0.956 + 0.956i)3-s + (−0.225 + 0.974i)5-s + (−0.267 + 0.267i)7-s + 0.831i·9-s − 0.319·11-s + (0.0471 + 0.0471i)13-s + (−1.14 + 0.716i)15-s + (0.829 − 0.829i)17-s − 0.118i·19-s − 0.511·21-s + (1.29 + 1.29i)23-s + (−0.897 − 0.440i)25-s + (0.161 − 0.161i)27-s + 0.583i·29-s + 1.08·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00402 - 0.999i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.00402 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.24012 + 1.24512i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.24012 + 1.24512i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (1.12 - 4.87i)T \) |
| 7 | \( 1 + (1.87 - 1.87i)T \) |
good | 3 | \( 1 + (-2.87 - 2.87i)T + 9iT^{2} \) |
| 11 | \( 1 + 3.51T + 121T^{2} \) |
| 13 | \( 1 + (-0.612 - 0.612i)T + 169iT^{2} \) |
| 17 | \( 1 + (-14.0 + 14.0i)T - 289iT^{2} \) |
| 19 | \( 1 + 2.25iT - 361T^{2} \) |
| 23 | \( 1 + (-29.7 - 29.7i)T + 529iT^{2} \) |
| 29 | \( 1 - 16.9iT - 841T^{2} \) |
| 31 | \( 1 - 33.6T + 961T^{2} \) |
| 37 | \( 1 + (-14.7 + 14.7i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 5.67T + 1.68e3T^{2} \) |
| 43 | \( 1 + (38.4 + 38.4i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-49.7 + 49.7i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (53.7 + 53.7i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 39.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 98.9T + 3.72e3T^{2} \) |
| 67 | \( 1 + (31.2 - 31.2i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 138.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (79.4 + 79.4i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 151. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-42.9 - 42.9i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 117. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-42.3 + 42.3i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.53074992032866593191598935879, −12.03503377997953400135375220392, −10.93495208179109031921618455046, −9.950574115304894583623633294533, −9.216267459155911135472422620315, −7.988985703782332411869011192405, −6.85993783828339847998083874660, −5.20173329403313459028962709074, −3.60319312592632309477094590812, −2.79975408087635323133465310738,
1.20445809648615046433197752184, 2.94611465659381743290186764322, 4.59312966598415261853118287766, 6.24984255587538263771242590992, 7.63650909990148857417987452592, 8.277286199517623550927759109312, 9.241543771850162591876862866448, 10.54922285174896364357859481865, 12.09286992869301511366718099166, 12.83571339247846915838923121971